Skip to main content

Advertisement

Log in

Notochord to Nucleus Pulposus Transition

  • Skeletal Development (E Schipani and E Zelzer, Section Editors)
  • Published:
Current Osteoporosis Reports Aims and scope Submit manuscript

Abstract

A tissue that commonly deteriorates in older vertebrates is the intervertebral disc, which is located between the vertebrae. Age-related changes in the intervertebral discs are thought to cause most cases of back pain. Back pain affects more than half of people over the age of 65, and the treatment of back pain costs 50–100 billion dollars per year in the USA. The normal intervertebral disc is composed of three distinct regions: a thick outer ring of fibrous cartilage called the annulus fibrosus, a gel-like material that is surrounded by the annulus fibrosus called the nucleus pulposus, and superior and inferior cartilaginous end plates. The nucleus pulposus has been shown to be critical for disc health and function. Damage to this structure often leads to disc disease. Recent reports have demonstrated that the embryonic notochord, a rod-like structure present in the midline of vertebrate embryos, gives rise to all cell types found in adult nuclei pulposi. The mechanism responsible for the transformation of the notochord into nuclei pulposi is unknown. In this review, we discuss potential molecular and physical mechanisms that may be responsible for the notochord to nuclei pulposi transition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Sulik K, Dehart DB, Iangaki T, et al. Morphogenesis of the murine node and notochordal plate. Dev Dyn. 1994;201(3):260–78.

    Article  CAS  PubMed  Google Scholar 

  2. Beddington RS. Induction of a second neural axis by the mouse node. Development. 1994;120(3):613–20.

    CAS  PubMed  Google Scholar 

  3. Fleming A, Kishida MG, Kimmel CB, Keynes RJ. Building the backbone: the development and evolution of vertebral patterning. Development. 2015;142(10):1733–44.

    Article  CAS  PubMed  Google Scholar 

  4. Yusuf F, Brand-Saberi B. The eventful somite: patterning, fate determination and cell division in the somite. Anat Embryol (Berl). 2006;211 Suppl 1:21–30.

    Google Scholar 

  5. Litingtung Y, Chiang C. Control of Shh activity and signaling in the neural tube. Dev Dyn. 2000;219(2):143–54.

    Article  CAS  PubMed  Google Scholar 

  6. Trout JJ, Buckwalter JA, Moore KC. Ultrastructure of the human intervertebral disc: II. Cells of the nucleus pulposus. Anat Rec. 1982;204(4):307–14.

    Article  CAS  PubMed  Google Scholar 

  7. Trout JJ, Buckwalter JA, Moore KC, Landas SK. Ultrastructure of the human intervertebral disc. I. Changes in notochordal cells with age. Tissue Cell. 1982;14(2):359–69.

    Article  CAS  PubMed  Google Scholar 

  8. Hadjipavlou AG, Tzermiadianos MN, Bogduk N, Zindrick MR. The pathophysiology of disc degeneration: a critical review. J Bone Joint Surg (Br). 2008;90(10):1261–70.

    Article  CAS  Google Scholar 

  9. Gallucci M, Puglielli E, Splendiani A, Pistoia F, Spacca G. Degenerative disorders of the spine. Eur Radiol. 2005;15(3):591–8.

    Article  PubMed  Google Scholar 

  10. Katz JN. Lumbar disc disorders and low-back pain: socioeconomic factors and consequences. J Bone Joint Surg Am. 2006;88 Suppl 2:21–4.

    Article  PubMed  Google Scholar 

  11. Rubin DI. Epidemiology and risk factors for spine pain. Neurol Clin. 2007;25(2):353–71.

    Article  PubMed  Google Scholar 

  12. Walmsley R. The development and growth of the intervertebral disc. Edinb Med J. 1953;60(8):341–64.

    CAS  PubMed  Google Scholar 

  13. Choi KS, Cohn MJ, Harfe BD. Identification of nucleus pulposus precursor cells and notochordal remnants in the mouse: implications for disk degeneration and chordoma formation. Dev Dyn. 2008;237(12):3953–8. First paper demonstrating that notochord cells form nuclei pulposi and that notochordal remnants are present in mice.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. McCann MR, Tamplin OJ, Rossant J, Seguin CA. Tracing notochord-derived cells using a Noto-cre mouse: implications for intervertebral disc development. Dis Model Mech. 2011. Independent confirmation that mice contain notochordal remnants and that nuclei pulposi are formed from the embryonic notochord.

  15. Smith LJ, Nerurkar NL, Choi KS, Harfe BD, Elliott DM. Degeneration and regeneration of the intervertebral disc: lessons from development. Dis Model Mech. 2011;4(1):31–41.

    Article  PubMed Central  PubMed  Google Scholar 

  16. Bruggeman BJ, Maier JA, Mohiuddin YS, et al. Avian intervertebral disc arises from rostral sclerotome and lacks a nucleus pulposus: implications for evolution of the vertebrate disc. Dev Dyn. 2012;241(4):675–83.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Aszodi A, Chan D, Hunziker E, Bateman JF, Fassler R. Collagen II is essential for the removal of the notochord and the formation of intervertebral discs. J Cell Biol. 1998;143(5):1399–412.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Choi KS, Harfe BD. Hedgehog signaling is required for formation of the notochord sheath and patterning of nuclei pulposi within the intervertebral discs. Proc Natl Acad Sci U S A. 2011;108(23):9484–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Cayuso J, Xu Q, Wilkinson DG. Mechanisms of boundary formation by Eph receptor and ephrin signaling. Dev Biol. 2015;401(1):122–31.

    Article  CAS  PubMed  Google Scholar 

  20. Lisabeth EM, Falivelli G, Pasquale EB. Eph receptor signaling and ephrins. Cold Spring Harb Perspect Biol. 2013;5(9). doi:10.1101/cshperspect.a009159

  21. Fagotto F. The cellular basis of tissue separation. Development. 2014;141(17):3303–18.

    Article  CAS  PubMed  Google Scholar 

  22. Durbin L, Brennan C, Shiomi K, et al. Eph signaling is required for segmentation and differentiation of the somites. Genes Dev. 1998;12(19):3096–109.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Xu Q, Mellitzer G, Robinson V, Wilkinson DG. In vivo cell sorting in complementary segmental domains mediated by Eph receptors and ephrins. Nature. 1999;399(6733):267–71.

    Article  CAS  PubMed  Google Scholar 

  24. Xu Q, Alldus G, Holder N, Wilkinson DG. Expression of truncated Sek-1 receptor tyrosine kinase disrupts the segmental restriction of gene expression in the Xenopus and zebrafish hindbrain. Development. 1995;121(12):4005–16.

    CAS  PubMed  Google Scholar 

  25. Rohani N, Canty L, Luu O, Fagotto F, Winklbauer R. EphrinB/EphB signaling controls embryonic germ layer separation by contact-induced cell detachment. PLoS Biol. 2011;9(3), e1000597.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Rothberg JM, Hartley DA, Walther Z, Artavanis-Tsakonas S. Slit: an EGF-homologous locus of D. Melanogaster involved in the development of the embryonic central nervous system. Cell. 1988;55(6):1047–59.

    Article  CAS  PubMed  Google Scholar 

  27. Brose K, Bland KS, Wang KH, et al. Slit proteins bind Robo receptors and have an evolutionarily conserved role in repulsive axon guidance. Cell. 1999;96(6):795–806.

    Article  CAS  PubMed  Google Scholar 

  28. Kidd T, Brose K, Mitchell KJ, et al. Roundabout controls axon crossing of the CNS midline and defines a novel subfamily of evolutionarily conserved guidance receptors. Cell. 1998;92(2):205–15.

    Article  CAS  PubMed  Google Scholar 

  29. Ypsilanti AR, Zagar Y, Chedotal A. Moving away from the midline: new developments for Slit and Robo. Development. 2010;137(12):1939–52.

    Article  CAS  PubMed  Google Scholar 

  30. Domyan ET, Branchfield K, Gibson DA, et al. Roundabout receptors are critical for foregut separation from the body wall. Dev Cell. 2013;24(1):52–63.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Seeger M, Tear G, Ferres-Marco D, Goodman CS. Mutations affecting growth cone guidance in Drosophila: genes necessary for guidance toward or away from the midline. Neuron. 1993;10(3):409–26.

    Article  CAS  PubMed  Google Scholar 

  32. Rothberg JM, Jacobs JR, Goodman CS, Artavanis-Tsakonas S. Slit: an extracellular protein necessary for development of midline glia and commissural axon pathways contains both EGF and LRR domains. Genes Dev. 1990;4(12A):2169–87.

    Article  CAS  PubMed  Google Scholar 

  33. Shiau CE, Lwigale PY, Das RM, Wilson SA, Bronner-Fraser M. Robo2-Slit1 dependent cell-cell interactions mediate assembly of the trigeminal ganglion. Nat Neurosci. 2008;11(3):269–76.

    Article  CAS  PubMed  Google Scholar 

  34. Howitt JA, Clout NJ, Hohenester E. Binding site for Robo receptors revealed by dissection of the leucine-rich repeat region of Slit. EMBO J. 2004;23(22):4406–12.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Liu Z, Patel K, Schmidt H, Andrews W, Pini A, Sundaresan V. Extracellular Ig domains 1 and 2 of Robo are important for ligand (Slit) binding. Mol Cell Neurosci. 2004;26(2):232–40.

    Article  CAS  PubMed  Google Scholar 

  36. Gilthorpe JD, Papantoniou EK, Chedotal A, Lumsden A, Wingate RJ. The migration of cerebellar rhombic lip derivatives. Development. 2002;129(20):4719–28.

    CAS  PubMed  Google Scholar 

  37. Causeret F, Hidalgo-Sanchez M, Fort P, et al. Distinct roles of Rac1/Cdc42 and Rho/Rock for axon outgrowth and nucleokinesis of precerebellar neurons toward netrin 1. Development. 2004;131(12):2841–52.

    Article  CAS  PubMed  Google Scholar 

  38. Causeret F, Danne F, Ezan F, Sotelo C, Bloch-Gallego E. Slit antagonizes netrin-1 attractive effects during the migration of inferior olivary neurons. Dev Biol. 2002;246(2):429–40.

    Article  CAS  PubMed  Google Scholar 

  39. Hu H. Chemorepulsion of neuronal migration by Slit2 in the developing mammalian forebrain. Neuron. 1999;23(4):703–11.

    Article  CAS  PubMed  Google Scholar 

  40. Nguyen-Ba-Charvet KT, Picard-Riera N, Tessier-Lavigne M, Baron-Van Evercooren A, Sotelo C, Chedotal A. Multiple roles for slits in the control of cell migration in the rostral migratory stream. J Neurosci. 2004;24(6):1497–506.

    Article  CAS  PubMed  Google Scholar 

  41. Sawamoto K, Wichterle H, Gonzalez-Perez O, et al. New neurons follow the flow of cerebrospinal fluid in the adult brain. Science. 2006;311(5761):629–32.

    Article  CAS  PubMed  Google Scholar 

  42. Geisen MJ, Di Meglio T, Pasqualetti M, et al. Hox paralog group 2 genes control the migration of mouse pontine neurons through slit-robo signaling. PLoS Biol. 2008;6(6), e142.

    Article  PubMed Central  PubMed  Google Scholar 

  43. Marillat V, Cases O, Nguyen-Ba-Charvet KT, Tessier-Lavigne M, Sotelo C, Chedotal A. Spatiotemporal expression patterns of slit and robo genes in the rat brain. J Comp Neurol. 2002;442(2):130–55.

    Article  PubMed  Google Scholar 

  44. McMaster ML, Goldstein AM, Bromley CM, Ishibe N, Parry DM. Chordoma: incidence and survival patterns in the United States, 1973–1995. Cancer Causes Control : CCC. 2001;12(1):1–11.

    Article  CAS  PubMed  Google Scholar 

  45. Sciubba DM, Chi JH, Rhines LD, Gokaslan ZL. Chordoma of the spinal column. Neurosurg Clin N Am. 2008;19(1):5–15.

    Article  PubMed  Google Scholar 

  46. Stacchiotti S, Sommer J. Chordoma Global Consensus G. Building a global consensus approach to chordoma: a position paper from the medical and patient community. Lancet Oncol. 2015;16(2):e71–83.

    Article  PubMed  Google Scholar 

  47. Yamaguchi T, Watanabe-Ishiiwa H, Suzuki S, Igarashi Y, Ueda Y. Incipient chordoma: a report of two cases of early-stage chordoma arising from benign notochordal cell tumors. Mod Pathol. 2005;18(7):1005–10.

    Article  PubMed  Google Scholar 

  48. Yamaguchi T, Yamato M, Saotome K. First histologically confirmed case of a classic chordoma arising in a precursor benign notochordal lesion: differential diagnosis of benign and malignant notochordal lesions. Skelet Radiol. 2002;31(7):413–8.

    Article  Google Scholar 

  49. Yamaguchi T, Suzuki S, Ishiiwa H, Shimizu K, Ueda Y. Benign notochordal cell tumors: a comparative histological study of benign notochordal cell tumors, classic chordomas, and notochordal vestiges of fetal intervertebral discs. Am J Surg Pathol. 2004;28(6):756–61.

    Article  PubMed  Google Scholar 

  50. Yamaguchi T, Suzuki S, Ishiiwa H, Ueda Y. Intraosseous benign notochordal cell tumours: overlooked precursors of classic chordomas? Histopathology. 2004;44(6):597–602.

    Article  CAS  PubMed  Google Scholar 

  51. Yang XR, Ng D, Alcorta DA, et al. T (brachyury) gene duplication confers major susceptibility to familial chordoma. Nat Genet. 2009;41(11):1176–8. Key paper showing that T (brachyury) is duplicated in familial chordoma.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Vujovic S, Henderson S, Presneau N, et al. Brachyury, a crucial regulator of notochordal development, is a novel biomarker for chordomas. J Pathol. 2006;209(2):157–65.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This paper was supported with funds from the national institute of arthritis and musculoskeletal and skin diseases (grant AR062690).

Compliance with Ethics Guidelines

Conflict of Interest

The authors of this paper declare they have no conflicts of interest

Human and Animal Rights and Informed Consent

Dr. Lawson has nothing to declare.

All studies by Dr. Harfe involving animals were performed after approval by the appropriate institutional review boards.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian D. Harfe.

Additional information

This article is part of the Topical Collection on Skeletal Development

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lawson, L., Harfe, B.D. Notochord to Nucleus Pulposus Transition. Curr Osteoporos Rep 13, 336–341 (2015). https://doi.org/10.1007/s11914-015-0284-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11914-015-0284-x

Keywords

Navigation