Skip to main content

Advertisement

Log in

Thyroid-stimulating hormone, thyroid hormones, and bone loss

  • Published:
Current Osteoporosis Reports Aims and scope Submit manuscript

Abstract

It has become accepted by virtue of rich anecdotal experience and clinical research that thyrotoxicosis is associated with high-turnover osteoporosis. The bone loss, primarily due to accelerated resorption that is not compensated by a coupled increase in bone formation, has been attributed solely to elevated thyroid hormone levels. Evidence using mice lacking the thyroid hormone receptors α and β establishes a role for thyroid hormones in regulating bone remodeling but does not exclude an independent action of thyroid-stimulating hormone (TSH), levels of which are low in hyperthyroid states, even when thyroid hormones are normal, as after thyroxine supplementation and in subclinical hyperthyroidism. We show that TSH directly suppresses bone remodeling and that TSH receptor null mice have profound bone loss, suggesting that reduced TSH signaling contributes to hyperthyroid osteoporosis. TSH and its receptor could become valuable drug targets in treating bone loss.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Stepnick LS: The frequency of bone disease. In Bone Health and Osteoporosis: A Report of the Surgeon General. Edited by McGowan JA, Raisz LG, Noonan AS, Elderkin AL. Washington, DC: Office of the US Surgeon General; 2004:68–87.

    Google Scholar 

  2. Greenspan SL, Greenspan FS: The effect of thyroid hormone on skeletal integrity. Ann Intern Med 1999, 130:750–758.

    PubMed  CAS  Google Scholar 

  3. Von Recklinghausen F: Die Fibrose Oder Deformierende Ostitis, die Osteomalazie und die Osteoplastische Carzinose in Ihren Gegenseitigen Beziehungen. Berlin: George Reimer; 1891.

    Google Scholar 

  4. Ross DS: Hyperthyroidism, thyroid hormone therapy, and bone. Thyroid 1994, 4:319–326.

    Article  PubMed  CAS  Google Scholar 

  5. Baran DT: Thyroid hormone and bone mass: the clinician’s dilemma. Thyroid 1994, 4:143–144.

    Article  PubMed  CAS  Google Scholar 

  6. Murphy E, Williams GR: The thyroid and the skeleton. Clin Endocr 2004, 61:285–298.

    Article  PubMed  CAS  Google Scholar 

  7. Wenzel KW: Thyroid hormone and bone. Thyroid 1994, 4:508–509.

    Article  PubMed  CAS  Google Scholar 

  8. Allain TJ, Chambers TJ, Flanagan AM, McGregor AM: Tri-iodothyronine stimulates rat osteoclastic bone resorption by an indirect effect. J Endocrinol 1992, 133:327–331.

    Article  PubMed  CAS  Google Scholar 

  9. Britto JM, Fenton AJ, Holloway WR, Nicholson GC: Osteoblasts mediate thyroid hormone stimulation of osteoclastic bone resorption. Endocrinology 1994, 134:169–176.

    Article  PubMed  CAS  Google Scholar 

  10. Kim CH, Kim HK, Shong YK, et al.: Thyroid hormone stimulates basal and interleukin (IL)-1-induced IL-6 production in human bone marrow stromal cells: a possible mediator of thyroid hormone-induced bone loss. J Endocrinol 1999, 160:97–102.

    Article  PubMed  CAS  Google Scholar 

  11. Ishikawa Y, Genge BR, Wuthier RE, Wu LN.: Thyroid hormone inhibits growth and stimulates terminal differentiation of epiphyseal growth plate chondrocytes. J Bone Miner Res 1998, 13:1398–1411.

    Article  PubMed  CAS  Google Scholar 

  12. Bassett JH, Nordström K, Boyde A, et al.: Thyroid status during skeletal development determines adult bone structure and mineralization. Mol Endocrinol 2007, 21:1893–1904.

    Article  PubMed  CAS  Google Scholar 

  13. De Menis E, Da Rin G, Roiter I, et al.: Bone turnover in overt and subclinical hyperthyroidism due to autonomous thyroid adenoma. Horm Res 1992, 37:217–220.

    Article  PubMed  Google Scholar 

  14. Kisakol G, Kaya A, Gonen S, Tunc R: Bone and calcium metabolism in subclinical autoimmune hyperthyroidism and hypothyroidism. Endocr J 2003, 50:657–661.

    Article  PubMed  CAS  Google Scholar 

  15. Földes J, Tarján G, Szathmari M, et al.: Bone mineral density in patients with endogenous subclinical hyperthyroidism: is this thyroid status a risk factor for osteoporosis? Clin Endocr 1993, 39:521–527.

    Article  PubMed  Google Scholar 

  16. Gurlek A, Gedik O: Effect of endogenous subclinical hyperthyroidism on bone metabolism and bone mineral density in premenopausal women. Thyroid 1999, 9:539–543.

    Article  PubMed  CAS  Google Scholar 

  17. Kindblom JM, Gevers EF, Skrtic SM, et al.: Increased adipogenesis in bone marrow but decreased bone mineral density in mice devoid of thyroid hormone receptors. Bone 2005, 36:607–616.

    Article  PubMed  CAS  Google Scholar 

  18. Göthe S, Wang Z, Ng L, et al.: Mice devoid of all known thyroid hormone receptors are viable but exhibit disorders of the pituitary-thyroid axis, growth, and bone maturation. Genes Dev 1999, 13:1329–1341.

    Article  PubMed  Google Scholar 

  19. Bauer DC, Ettinger B, Nevitt MC, et al.: Risk for fracture in women with low serum levels of thyroid-stimulating hormone. Ann Intern Med 2001, 134:561–568.

    PubMed  CAS  Google Scholar 

  20. Morris MS: The association between serum thyroid-stimulating hormone in its reference range and bone status in postmenopausal American women. Bone 2007, 40:1128–1134.

    Article  PubMed  CAS  Google Scholar 

  21. Bassett JH, O’shea PJ, Sriskantharajah S, et al.: Thyroid hormone excess rather than thyrotropin deficiency induces osteoporosis in hyperthyroidism. Mol Endocrinol 2007, 21:1095–1107.

    Article  PubMed  CAS  Google Scholar 

  22. Bassett D, Williams G: The skeletal phenotypes of TRalpha and TRbeta mutant mice. J Mol Endocrinol 2008 Dec 29 (Epub ahead of print).

  23. Abe E, Marians RC, Yu W, et al.: TSH is a negative regulator of skeletal remodeling. Cell 2003, 115:151–162.

    Article  PubMed  CAS  Google Scholar 

  24. Novack D: TSH, the bone suppressing hormone. Cell 2003, 115:129–130.

    Article  PubMed  CAS  Google Scholar 

  25. Zaidi M, Sun L, Davies TF, Abe E: Low TSH triggers bone loss: fact or fiction? Thyroid 2006, 16:1075–1076.

    Article  PubMed  CAS  Google Scholar 

  26. Hase H, Ando T, Eldeiry L, et al.: TNFalpha mediates the skeletal effects of thyroid-stimulating hormone. Proc Natl Acad Sci U S A 2006, 103:12849–12854.

    Article  PubMed  CAS  Google Scholar 

  27. Sun L, Vukicevic S, Baliram R, et al.: Intermittent recombinant TSH injections prevent ovariectomy-induced bone loss. Proc Natl Acad Sci U S A 2008, 105:4289–4294.

    Article  PubMed  CAS  Google Scholar 

  28. Yamoah K, Brebene A, Baliram R, et al.: High-mobility group box proteins modulate tumor necrosis factor-alpha expression in osteoclastogenesis via a novel deoxyribonucleic acid sequence. Mol Endocrinol 2008, 22:1141–1153.

    Article  PubMed  CAS  Google Scholar 

  29. Ma R, Latif R, Zaidi M, Davies T: Thyroid and bone: TSH inhibits osteoclastogenesis from embryonic stem cells. Presented at the 91st Annual Meeting of the Endocrine Society. Washington DC; June 10–13, 2009.

  30. Bassett JH, Williams AJ, Murphy E, et al.: A lack of thyroid hormones rather than excess thyrotropin causes abnormal skeletal development in hypothyroidism. Mol Endocrinol 2008, 22:501–512.

    Article  PubMed  CAS  Google Scholar 

  31. Mazziotti G, Sorvillo F, Piscopo M, et al.: Recombinant human TSH modulates in vivo C-telopeptides of type-1 collagen and bone alkaline phosphatase, but not osteoprotegerin production in postmenopausal women monitored for differentiated thyroid carcinoma J Bone Miner Res 2005, 20:480–486.

    Article  PubMed  CAS  Google Scholar 

  32. Sampath TK, Simic P, Sendak R, et al.: Thyroid-stimulating hormone restores bone volume, microarchitecture, and strength in aged ovariectomized rats. J Bone Miner Res 2007, 22:849–859.

    Article  PubMed  CAS  Google Scholar 

  33. Giusti M, Cecoli F, Ghiara C, et al.: Recombinant human thyroid stimulating hormone does not acutely change serum osteoprotegerin and soluble receptor activator of nuclear factor-kappaBeta ligand in patients under evaluation for differentiated thyroid carcinoma. Hormones (Athens) 2007, 6:304–313.

    Google Scholar 

  34. Martini G, Gennari L, De Paola V, et al.: The effects of recombinant TSH on bone turnover markers and serum osteoprotegerin and RANKL levels. Thyroid 2008, 18:455–460.

    Article  PubMed  CAS  Google Scholar 

  35. Zofkova I, Hill M: Biochemical markers of bone remodeling correlate negatively with circulating TSH in postmenopausal women. Endocr Regul 2008, 42:121–127.

    PubMed  CAS  Google Scholar 

  36. La Vignera S, Vicari E, Tumino S, et al.: L-thyroxin treatment and post-menopausal osteoporosis: relevance of the risk profile present in clinical history. Minerva Ginecol 2008, 60:475–484.

    PubMed  Google Scholar 

  37. Grimnes G, Emaus N, Joakimsen RM, et al.: The relationship between serum TSH and bone mineral density in men and postmenopausal women: the Troms. Thyroid 2008, 18:1147–1155.

    Article  PubMed  CAS  Google Scholar 

  38. Mikosch P, Kerschan-Schindl K, Woloszczuk W, et al.: High cathepsin K levels in men with differentiated thyroid cancer on suppressive L-thyroxine therapy. Thyroid 2008, 18:27–33.

    Article  PubMed  CAS  Google Scholar 

  39. Heemstra KA, van der Deure WM, Peeters RP, et al.: Thyroid hormone independent associations between serum TSH levels and indicators of bone turnover in cured patients with differentiated thyroid carcinoma. Eur J Endocrinol 2008, 159:69–76.

    Article  PubMed  CAS  Google Scholar 

  40. Nagata M, Suzuki A, Sekiguchi S, et al.: Subclinical hypothyroidism is related to lower heel QUS in postmenopausal women. Endocr J 2007, 54:625–630.

    Article  PubMed  CAS  Google Scholar 

  41. van der Deure WM, Uitterlinden AG, Hofman A, et al.: Effects of serum TSH and FT4 levels and the TSHR-Asp727Glu polymorphism on bone: the Rotterdam Study. Clin Endocrinol (Oxf) 2008, 68:175–181.

    Google Scholar 

  42. Albagha OME, Natarajan R, Reid DM, et al.: The D272E polymorphism of the human thyroid stimulating hormone receptor is associated with bone mineral density and bone loss in women from the UK [abstract M115]. J Bone Miner Res 2005, 20(Suppl 1):S341.

    Google Scholar 

  43. Sun L, Peng Y, Sharrow AC, et al.: FSH directly regulates bone mass. Cell 2006, 125:247–260.

    Article  PubMed  CAS  Google Scholar 

  44. Iqbal J, Sun L, Kumar TR, et al.: Follicle stimulating hormone stimulates TNF production from immune cells to trigger osteoclast and osteoblast formation. Proc Natl Acad Sci U S A 2006, 103:14925–14930.

    Article  PubMed  CAS  Google Scholar 

  45. Sowers MR, Greendale GA, Bondarenko I, et al.: Endogenous hormones and bone turnover markers in pre- and perimenopausal women: SWAN. Osteoporos Int 2003, 14:191–197.

    Article  PubMed  CAS  Google Scholar 

  46. Devleta B, Adem B, Senada SJ: Hypergonadotropic amenorrhea and bone density: new approach to an old problem. Bone Miner Metab 2004, 22:360–364.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mone Zaidi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zaidi, M., Davies, T.F., Zallone, A. et al. Thyroid-stimulating hormone, thyroid hormones, and bone loss. Curr Osteoporos Rep 7, 47–52 (2009). https://doi.org/10.1007/s11914-009-0009-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11914-009-0009-0

Keywords

Navigation