Skip to main content

Advertisement

Log in

Next-Generation Immunotherapy Approaches in Melanoma

  • Melanoma (RJ Sullivan, Section Editor)
  • Published:
Current Oncology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

For patients with metastatic melanoma, immune checkpoint inhibition has drastically changed outcomes. Here, we review the current and next generations of immune-based anti-cancer therapeutics for patients with metastatic melanoma.

Recent Findings

The need for new anti-cancer therapeutics in patients with metastatic melanoma who have progression of disease despite immune checkpoint blockade is evident. Several novel agents are expected to have FDA approval within the next few years, as they have yielded impressive responses. Despite these optimistic agents, the field of immuno-oncology continues to expand and produce agents with novel mechanisms of action.

Summary

The next generation of immunotherapy is based upon years of thoroughly researched immuno-oncology. Many of these agents are currently being evaluated in early phase clinical trials, and much of the preliminary data looks promising.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA: A Cancer J Clin. 2020;70(1). https://doi.org/10.3322/caac.21590

  2. Balch CM, Gershenwald JE, Soong S, Thompson JF, Atkins MB, Byrd DR, Buzaid AC, Cochran AJ, Coit DG, Ding S, Eggermont AM, Flaherty KT, Gimotty PA, Kirkwood JM, McMasters KM, Mihm Jr MC, Morton DL, Ross MI, Sober AJ, Sondak VK. Final version of 2009 AJCC melanoma staging and classification. J Clin Oncol. 2009;27(36). https://doi.org/10.1200/JCO.2009.23.4799

  3. Robert C, Grob JJ, Stroyakovskiy D, et al. Five-year outcomes with dabrafenib plus trametinib in metastatic melanoma. New Engl J Med. 2019;381(7). https://doi.org/10.1056/NEJMoa1904059.

  4. Hayward NK, Wilmott JS, Waddell N, et al. Whole-genome landscapes of major melanoma subtypes. Nature. 2017;545(7653). https://doi.org/10.1038/nature22071.

  5. Fife BT, Bluestone JA. Control of peripheral T-cell tolerance and autoimmunity via the CTLA-4 and PD-1 pathways. Immunol Rev. 2008;224(1). https://doi.org/10.1111/j.1600-065X.2008.00662.x.

  6. Hodi FS, O’Day SJ, McDermott DF, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010;363(8). https://doi.org/10.1056/NEJMoa1003466.

  7. Robert C, Thomas L, Bondarenko I, et al. Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. N Engl J Med. 2011;364(26). https://doi.org/10.1056/NEJMoa1104621.

  8. Robert C, Schachter J, Long G, et al. Pembrolizumab versus ipilimumab in advanced melanoma. N Engl J Med. 2015;372(26). https://doi.org/10.1056/NEJMoa1503093.

  9. Larkin J, Chiarion-Sileni V, Gonzalez R, et al. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl J Med. 2015;373(1). https://doi.org/10.1056/NEJMoa1504030.

  10. Larkin J, Chiarion-Sileni V, Gonzalez R, et al. Five-year survival with combined nivolumab and ipilimumab in advanced melanoma. N Engl J Med. 2019;381(16). https://doi.org/10.1056/NEJMoa1910836.

  11. Topalian SL, Hodi FS, Brahmer JR, et al. Safety, activity, and immune correlates of anti–PD-1 antibody in cancer. N Engl J Med. 2012;366(26). https://doi.org/10.1056/NEJMoa1200690.

  12. Demeure CE, Wolfers J, Martin-Garcia N, Gaulard P, Triebel F. T lymphocytes infiltrating various tumour types express the MHC class II ligand lymphocyte activation gene-3 (LAG-3): role of LAG-3/MHC class II interactions in cell–cell contacts. Eur J Cancer. 2001;37(13). https://doi.org/10.1016/S0959-8049(01)00184-8.

  13. Workman CJ, Cauley LS, Kim I-J, Blackman MA, Woodland DL, Vignali DAA. Lymphocyte activation gene-3 (CD223) regulates the size of the expanding T cell population following antigen activation in vivo. J Immunol. 2004;172(9). https://doi.org/10.4049/jimmunol.172.9.5450.

  14. Huang C-T, Workman CJ, Flies D, et al. Role of LAG-3 in regulatory T cells. Immunity. 2004;21(4). https://doi.org/10.1016/j.immuni.2004.08.010.

  15. Triebel F, Jitsukawa S, Baixeras E, et al. LAG-3, a novel lymphocyte activation gene closely related to CD4. Journal of Experimental Medicine. 1990;171(5). https://doi.org/10.1084/jem.171.5.1393.

  16. Mao X, Ou MT, Karuppagounder SS, et al. Pathological -synuclein transmission initiated by binding lymphocyte-activation gene 3. Science. 2016;353(6307). https://doi.org/10.1126/science.aah3374.

  17. Kouo T, Huang L, Pucsek AB, et al. Galectin-3 shapes antitumor immune responses by suppressing CD8 + T cells via LAG-3 and inhibiting expansion of plasmacytoid dendritic cells. Cancer Immunol Res. 2015;3(4). https://doi.org/10.1158/2326-6066.CIR-14-0150.

  18. Xu F, Liu J, Liu D, et al. LSECtin expressed on melanoma cells promotes tumor progression by inhibiting antitumor T-cell responses. Cancer Res. 2014;74(13). https://doi.org/10.1158/0008-5472.CAN-13-2690.

  19. Wang J, Sanmamed MF, Datar I, et al. Fibrinogen-like protein 1 is a major immune inhibitory ligand of LAG-3. Cell. 2019;176(1-2). https://doi.org/10.1016/j.cell.2018.11.010.

  20. Baitsch L, Baumgaertner P, Devêvre E, et al. Exhaustion of tumor-specific CD8+ T cells in metastases from melanoma patients. J Clin Investig. 2011;121(6). https://doi.org/10.1172/JCI46102.

  21. Matsuzaki J, Gnjatic S, Mhawech-Fauceglia P, et al. Tumor-infiltrating NY-ESO-1–specific CD8 + T cells are negatively regulated by LAG-3 and PD-1 in human ovarian cancer. Proc Natl Acad Sci. 2010;107(17). https://doi.org/10.1073/pnas.1003345107.

  22. Li F-J, Zhang Y, Jin G-X, Yao L, Wu D-Q. Expression of LAG-3 is coincident with the impaired effector function of HBV-specific CD8+ T cell in HCC patients. Immunol Lett. 2013;150(1-2). https://doi.org/10.1016/j.imlet.2012.12.004.

  23. Taube JM, Young GD, McMiller TL, et al. Differential expression of immune-regulatory genes associated with PD-L1 display in melanoma: implications for PD-1 pathway blockade. Clin Cancer Res. 2015;21(17). https://doi.org/10.1158/1078-0432.CCR-15-0244.

  24. Yarchoan M, Xing D, Luan L, et al. Characterization of the immune microenvironment in hepatocellular carcinoma. Clin Cancer Res. 2017;23(23). https://doi.org/10.1158/1078-0432.CCR-17-0950.

  25. Huang R-Y, Eppolito C, Lele S, Shrikant P, Matsuzaki J, Odunsi K. LAG3 and PD1 co-inhibitory molecules collaborate to limit CD8+ T cell signaling and dampen antitumor immunity in a murine ovarian cancer model. Oncotarget. 2015;6(29). https://doi.org/10.18632/oncotarget.4751.

  26. Jing W, Gershan JA, Weber J, et al. Combined immune checkpoint protein blockade and low dose whole body irradiation as immunotherapy for myeloma. J ImmunoTher Cancer. 2015;3(1). 10.1186/s40425-014-0043-z

  27. Woo S-R, Turnis ME, Goldberg MV, et al. Immune inhibitory molecules LAG-3 and PD-1 synergistically regulate T-cell function to promote tumoral immune escape. Cancer Res. 2012;72(4). https://doi.org/10.1158/0008-5472.CAN-11-1620.

  28. Duhoux FP, Jager A, Dirix LY, et al. Combination of paclitaxel and a LAG-3 fusion protein (eftilagimod alpha), as a first-line chemoimmunotherapy in patients with metastatic breast carcinoma (MBC): final results from the run-in phase of a placebo-controlled randomized phase II. J Clin Oncol. 2018;36(15_suppl). https://doi.org/10.1200/JCO.2018.36.15_suppl.1050.

  29. Ascierto PA, Melero I, Bhatia S, et al. Initial efficacy of anti-lymphocyte activation gene-3 (anti–LAG-3; BMS-986016) in combination with nivolumab (nivo) in pts with melanoma (MEL) previously treated with anti–PD-1/PD-L1 therapy. J Clin Oncol. 2017;35(15_suppl). https://doi.org/10.1200/JCO.2017.35.15_suppl.9520.

  30. Bristol Myers Squibb announces RELATIVITY-047, a trial evaluating anti-LAG-3 antibody relatlimab and Opdivo (nivolumab) in patients with previously untreated metastatic or unresectable melanoma, meets primary endpoint of progression-free survival. https://news.bms.com/news/corporate-financial/2021/.

  31. Sim GC, Radvanyi L. The IL-2 cytokine family in cancer immunotherapy. Cytokine Growth Factor Rev. 2014;25(4). https://doi.org/10.1016/j.cytogfr.2014.07.018.

  32. Létourneau S, Krieg C, Pantaleo G, Boyman O. IL-2– and CD25-dependent immunoregulatory mechanisms in the homeostasis of T-cell subsets. J Allergy Clin Immunol. 2009;123(4). https://doi.org/10.1016/j.jaci.2009.02.011.

  33. Bentebibel S-E, Hurwitz ME, Bernatchez C, et al. A first-in-human study and biomarker analysis of NKTR-214, a novel IL2Rβγ-biased cytokine, in patients with advanced or metastatic solid tumors. Cancer Discov. 2019;9(6). https://doi.org/10.1158/2159-8290.CD-18-1495.

  34. Diab A, Tannir NM, Bentebibel S-E, et al. Bempegaldesleukin (NKTR-214) plus nivolumab in patients with advanced solid tumors: phase i dose-escalation study of safety, efficacy, and immune activation (PIVOT-02). Cancer Discovery. 2020;10(8). https://doi.org/10.1158/2159-8290.CD-19-1510.

  35. Vaishampayan U, Muzaffar J, Velcheti V, et al. ALKS 4230 monotherapy and in combination with pembrolizumab (pembro) in patients (pts) with refractory solid tumours (ARTISTRY-1). In: ESMO Virtual Congress; 2020.

  36. Silva D-A, Yu S, Ulge UY, et al. De novo design of potent and selective mimics of IL-2 and IL-15. Nature. 2019;565(7738). https://doi.org/10.1038/s41586-018-0830-7.

  37. Sockolosky JT, Trotta E, Parisi G, et al. Selective targeting of engineered T cells using orthogonal IL-2 cytokine-receptor complexes. Science. 2018;359(6379). https://doi.org/10.1126/science.aar3246.

  38. Schwartz R, Strover L, Dutcher J. Managing toxicities of high-dose interleukin-2. Oncology. 2002;16(11 Suppl 13):11–20.

    PubMed  Google Scholar 

  39. Zhang M, Guzman W, Johnson P, et al. XTX201, a protein-engineered IL-2, exhibits tumor-selective activity in mice without peripheral toxicities in non-human primates. In: Society of Immunotherapy for Cancer. ; 2020, 568 XTX201, a protein-engineered IL-2, exhibits tumor-selective activity in mice without peripheral toxicities in non-human primates.

  40. Vignali DAA, Kuchroo VK. IL-12 family cytokines: immunological playmakers. Nat Immunol. 2012;13(8). https://doi.org/10.1038/ni.2366.

  41. Gollob J, Mier J, Veenstra K, McDermott D, Clancy D, Clancy M, et al. Phase I trial of twice-weekly intravenous interleukin 12 in patients with metastatic renal cell cancer or malignant melanoma: ability to maintain IFN-gamma induction is associated with clinical response. Clin Cancer Res. 2000;6(5):1678–92.

    CAS  PubMed  Google Scholar 

  42. Lucas ML, Heller R. IL-12 gene therapy using an electrically mediated nonviral approach reduces metastatic growth of melanoma. DNA Cell Biol. 2003;22(12). https://doi.org/10.1089/104454903322624966.

  43. Heller L, Merkler K, Westover J, et al. Evaluation of toxicity following electrically mediated interleukin-12 gene delivery in a B16 mouse melanoma model. Clin Cancer Res. 2006;12(10). https://doi.org/10.1158/1078-0432.CCR-05-2727.

  44. Algazi A, Bhatia S, Agarwala S, et al. Intratumoral delivery of tavokinogene telseplasmid yields systemic immune responses in metastatic melanoma patients. Ann Oncol. 2020;31(4). https://doi.org/10.1016/j.annonc.2019.12.008.

  45. IMLYGIC (talimogene laherparepvec). U.S Food & Drug Administration.

  46. Liu BL, Robinson M, Han Z-Q, et al. ICP34.5 deleted herpes simplex virus with enhanced oncolytic, immune stimulating, and anti-tumour properties. Gene Therapy. 2003;10(4). https://doi.org/10.1038/sj.gt.3301885.

  47. Kohlhapp FJ, Kaufman HL. Molecular pathways: mechanism of action for talimogene laherparepvec, a new oncolytic virus immunotherapy. Clin Cancer Res. 2016;22(5). 10.1158/1078-0432.CCR-15-2667

  48. Andtbacka RHI, Collichio F, Harrington KJ, et al. Final analyses of OPTiM: a randomized phase III trial of talimogene laherparepvec versus granulocyte-macrophage colony-stimulating factor in unresectable stage III–IV melanoma. J ImmunoTher Cancer. 2019;7(1). https://doi.org/10.1186/s40425-019-0623-z.

  49. Puzanov I, Milhem MM, Minor D, et al. Talimogene laherparepvec in combination with ipilimumab in previously untreated, unresectable stage IIIB-IV melanoma. J Clin Oncol. 2016;34(22). https://doi.org/10.1200/JCO.2016.67.1529.

  50. Chesney J, Puzanov I, Collichio F, et al. Randomized, open-label phase II study evaluating the efficacy and safety of talimogene laherparepvec in combination with ipilimumab versus ipilimumab alone in patients with advanced, unresectable melanoma. J Clin Oncol. 2018;36(17). https://doi.org/10.1200/JCO.2017.73.7379\.

  51. Long GV, Dummer R, Ribas A, et al. Efficacy analysis of MASTERKEY-265 phase 1b study of talimogene laherparepvec (T-VEC) and pembrolizumab (pembro) for unresectable stage IIIB-IV melanoma. J Clin Oncol. 2016;34(15_suppl). https://doi.org/10.1200/JCO.2016.34.15_suppl.9568.

  52. Middleton MR, Aroldi F, Sacco JJ, et al. An open-label, multicenter, phase 1/2 clinical trial of RP1, an enhanced potency oncolytic HSV, combined with nivolumab: updated results from the skin cancer cohorts. In: Society for Immunotherapy of Cancer; 2020.

  53. Middleton M, Sacco JJ, Harrington K, et al. Initial results of a phase 1 trial of RP2, a first in class, enhanced potency, anti-CTLA-4 antibody expressing, oncolytic HSV as single agent and combined with nivolumab in patients with solid tumors. In: Society for Immunotherapy of Cancer; 2020.

  54. Krug A, Towarowski A, Britsch S, et al. Toll-like receptor expression reveals CpG DNA as a unique microbial stimulus for plasmacytoid dendritic cells which synergizes with CD40 ligand to induce high amounts of IL-12. Eur J Immunol. 2001;31(10). 10.1002/1521-4141(2001010)31:https://doi.org/10.1002/1521-4141(2001010)31:10<3026::AID-IMMU3026>3.0.CO;2-H.

  55. Link BK, Ballas ZK, Weisdorf D, et al. Oligodeoxynucleotide CpG 7909 delivered as intravenous infusion demonstrates immunologic modulation in patients with previously treated non-Hodgkin lymphoma. J Immunother. 2006;29(5). https://doi.org/10.1097/01.cji.0000211304.60126.8f.

  56. Baines J, Celis E. Immune-mediated tumor regression induced by CpG-containing oligodeoxynucleotides. Clin Cancer Res. 2003;9(7):2693–700.

    CAS  PubMed  Google Scholar 

  57. Carpentier A, Laigle-Donadey F, Zohar S, et al. Phase 1 trial of a CpG oligodeoxynucleotide for patients with recurrent glioblastoma1. Neuro-Oncology. 2006;8(1). https://doi.org/10.1215/S1522851705000475.

  58. Haymaker C, Andtbacka RHI, Johnson DB, et al. Final results from ILLUMINATE-204, a phase I/II trial of intratumoral tilsotolimod in combination with ipilimumab in PD-1 inhibitor refractory advanced melanoma. In: ESMO Virtual Congress; 2020.

  59. Idera Pharmaceuticals announces results from ILLUMINATE-301 trial of tilsotolimod + ipilimumab in anti-PD-1 refractory advanced melanoma. https://ir.iderapharma.com/news-releases/news-release-details/idera-pharmaceuticals-announces-results-illuminate-301-trial.

  60. Milhem M, Gonzales R, Medina T, et al. Abstract CT144: Intratumoral toll-like receptor 9 (TLR9) agonist, CMP-001, in combination with pembrolizumab can reverse resistance to PD-1 inhibition in a phase Ib trial in subjects with advanced melanoma. In: Clinical Trials. American Association for Cancer Research; 2018. https://doi.org/10.1158/1538-7445.AM2018-CT144.

  61. Garris CS, Luke JJ. Dendritic cells, the T-cell-inflamed tumor microenvironment, and immunotherapy treatment response. Clin Cancer Res. 2020;26(15). https://doi.org/10.1158/1078-0432.CCR-19-1321.

  62. Oates J, Hassan NJ, Jakobsen BK. ImmTACs for targeted cancer therapy: why, what, how, and which. Mol Immunol. 2015;67(2). https://doi.org/10.1016/j.molimm.2015.01.024.

  63. Middleton MR, McAlpine C, Woodcock VK, et al. Tebentafusp, a TCR/anti-CD3 bispecific fusion protein targeting gp100, potently activated antitumor immune responses in patients with metastatic melanoma. Clin Cancer Res. 2020;26(22). https://doi.org/10.1158/1078-0432.CCR-20-1247.

  64. Boudousquie C, Bossi G, Hurst JM, Rygiel KA, Jakobsen BK, Hassan NJ. Polyfunctional response by ImmTAC (IMCgp100) redirected CD8 + and CD4 + T cells. Immunology. 2017;152(3). https://doi.org/10.1111/imm.12779.

  65. Liddy N, Bossi G, Adams KJ, et al. Monoclonal TCR-redirected tumor cell killing. Nat Med. 2012;18(6). https://doi.org/10.1038/nm.2764.

  66. Carvajal RD, Nathan P, Sacco JJ, et al. A phase I study of tebentafusp using an intra-patient dose escalation regimen in patients with advanced uveal melanoma; 2020.

  67. Luke JJ, Triozzi PL, McKenna KC, et al. Biology of advanced uveal melanoma and next steps for clinical therapeutics. Pigment Cell Melanoma Res. 2015;28(2). https://doi.org/10.1111/pcmr.12304.

  68. Nielson D. Immunocore’s tebentafusp demonstrates superior overall survival compared to investigator’s choice in a phase 3 clinical trial of patients with previously untreated metastatic uveal melanoma. Immunocore.

  69. Rosenberg SA, Yang JC, Sherry RM, et al. Durable complete responses in heavily pretreated patients with metastatic melanoma using T-cell transfer immunotherapy. Clin Cancer Res. 2011;17(13). https://doi.org/10.1158/1078-0432.CCR-11-0116.

  70. Sarnaik A, Khushalani NI, Chesney JA, et al. Long-term follow up of lifileucel (LN-144) cryopreserved autologous tumor infiltrating lymphocyte therapy in patients with advanced melanoma progressed on multiple prior therapies. J Clin Oncol. 2020;38(15_suppl). https://doi.org/10.1200/JCO.2020.38.15_suppl.10006.

  71. Schlabach M, Colletti N, Hohmann A, et al. Abstract 2175: KSQ-001: a CRISPR/Cas9-engineered tumor infiltrating lymphocyte (eTILTM) therapy for solid tumors. In: Immunology. American Association for Cancer Research; 2020. https://doi.org/10.1158/1538-7445.AM2020-2175

  72. Neelapu SS, Locke FL, Bartlett NL, et al. Axicabtagene ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma. New England Journal of Medicine. 2017;377(26). https://doi.org/10.1056/NEJMoa1707447.

  73. Park JH, Rivière I, Gonen M, et al. Long-term follow-up of CD19 CAR therapy in acute lymphoblastic leukemia. New England Journal of Medicine. 2018;378(5). https://doi.org/10.1056/NEJMoa1709919.

  74. Wagner J, Wickman E, DeRenzo C, Gottschalk S. CAR T cell therapy for solid tumors: bright future or dark reality? Molecular Therapy. 2020;28(11). https://doi.org/10.1016/j.ymthe.2020.09.015.

  75. Dugast A-S, McArdel S, Hoover M, et al. Poster #3272: RTX-240, an allogeneic red cell therapeutic expressing 4-1BBL and IL-15TP, exhibits potent in vitro and in vivo activity and a favorable preclinical safety profile. In: American Association for Cancer Research (AACR) Annual Meeting; 2019.

  76. Bartkowiak T, Curran MA. 4-1BB agonists: multi-potent potentiators of tumor immunity. Front Oncol. 2015;5. https://doi.org/10.3389/fonc.2015.00117.

  77. Zhang X, Dastagir SR, Subbiah N, et al. Poster #3260: Engineered Red Cell Therapeutics (RCT) as artificial antigen presenting cells promote and antitumor activity of antigen specific T cells. In: American Association for Cancer Research (AACR) Annual Meeting; 2019.

  78. Zhang X, Luo M, Dastagir SR, et al. Poster #F290: An engineered allogeneic artificial antigen-presenting red cell therapeuticTM, RTX-321, promotes antigen-specific T cell expansion and anti-tumor activity. In: FOCIS Virtual Annual Meeting; 2020.

  79. Takeuchi O, Akira S. Pattern recognition receptors and inflammation. Cell. 2010;140(6). https://doi.org/10.1016/j.cell.2010.01.022.

  80. Woo S-R, Fuertes MB, Corrales L, et al. STING-dependent cytosolic DNA sensing mediates innate immune recognition of immunogenic tumors. Immunity. 2014;41(5). https://doi.org/10.1016/j.immuni.2014.10.017.

  81. Fuertes MB, Kacha AK, Kline J, et al. Host type I IFN signals are required for antitumor CD8+ T cell responses through CD8α+ dendritic cells. J Exp Med. 2011;208(10). https://doi.org/10.1084/jem.20101159.

  82. Meric-Bernstam F, Sandhu SK, Hamid O, et al. Phase Ib study of MIW815 (ADU-S100) in combination with spartalizumab (PDR001) in patients (pts) with advanced/metastatic solid tumors or lymphomas. Journal of Clin Oncol. 2019;37(15_suppl). https://doi.org/10.1200/JCO.2019.37.15_suppl.2507.

  83. Harrington KJ, Brody J, Ingham M, et al. 5475 - Preliminary results of the first-in-human (FIH) study of MK-1454, an agonist of stimulator of interferon genes (STING), as monotherapy or in combination with pembrolizumab (pembro) in patients with advanced solid tumors or lymphomas. In: Tomassini J, ed. ESMO Congress; 2018.

  84. Linehan MM, Dickey TH, Molinari ES, et al. A minimal RNA ligand for potent RIG-I activation in living mice. Science Advances. 2018;4(2). https://doi.org/10.1126/sciadv.1701854.

  85. Seth RB, Sun L, Ea C-K, Chen ZJ. Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-κB and IRF3. Cell. 2005;122(5). https://doi.org/10.1016/j.cell.2005.08.012.

  86. Besch R, Poeck H, Hohenauer T, Senft D, Häcker G, Berking C, et al. Proapoptotic signaling induced by RIG-I and MDA-5 results in type I interferon–independent apoptosis in human melanoma cells. J Clin Invest. Published online July 20. 2009. https://doi.org/10.1172/JCI37155.

  87. Elion DL, Jacobson ME, Hicks DJ, et al. Therapeutically active RIG-I agonist induces immunogenic tumor cell killing in breast cancers. Cancer Research. 2018;78(21). https://doi.org/10.1158/0008-5472.CAN-18-0730.

  88. Martinon F. Detection of immune danger signals by NALP3. Journal of Leukocyte Biology. 2008;83(3). https://doi.org/10.1189/jlb.0607362.

  89. Okamoto M, Liu W, Luo Y, et al. Constitutively active inflammasome in human melanoma cells mediating autoinflammation via caspase-1 processing and secretion of interleukin-1β. J Biol Chem. 2010;285(9). https://doi.org/10.1074/jbc.M109.064907.

  90. Ahmad I, Muneer KM, Tamimi IA, Chang ME, Ata MO, Yusuf N. Thymoquinone suppresses metastasis of melanoma cells by inhibition of NLRP3 inflammasome. Toxicol Appl Pharmacol. 2013;270(1). https://doi.org/10.1016/j.taap.2013.03.027.

  91. Lee HE, Lee JY, Yang G, et al. Inhibition of NLRP3 inflammasome in tumor microenvironment leads to suppression of metastatic potential of cancer cells. Sci Rep. 2019;9(1). https://doi.org/10.1038/s41598-019-48794-x

Download references

Funding

JJL acknowledges Department of Defense Career Development Award (W81XWH-17-1-0265), the Sy Holzer Endowed Immunotherapy Research Award, and the Hillman Fellowship for Innovative Cancer Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason J. Luke.

Ethics declarations

Conflict of Interest

JJL declares Scientific Advisory Board: (no stock) 7 Hills, Spring bank (stock) Actym, Alphamab Oncology, Arch Oncology, Kanaph, Mavu, Onc.AI, Pyxis, Tempest. Consultancy with compensation: Abbvie, Array, Bayer, Bristol-Myers Squibb, Checkmate, Cstone, Eisai, EMD Serono, KSQ, Janssen, Merck, Mersana, Nektar, Novartis, Pfizer, Regeneron, Ribon, Rubius, Silicon, Tesaro, TRex, Werewolf, Xilio, Xencor. Research support: (all to institution for clinical trials unless noted) AbbVie, Agios (IIT), Array (IIT), Astellas, Bristol-Myers Squibb (IIT & industry), Corvus, EMD Serono, Immatics, Incyte, Kadmon, Macrogenics, Merck, Moderna, Nektar, Numab, Replimmune, Rubius, Spring bank, Synlogic, Takeda, Trishula, Tizona, Xencor. Travel: Pyxis. Patents: (both provisional) Serial #15/612,657 (Cancer Immunotherapy), PCT/US18/36052 (Microbiome Biomarkers for Anti-PD-1/PD-L1 Responsiveness: Diagnostic, Prognostic and Therapeutic Uses Thereof). The other authors declare no disclosures or conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical collection on Melanoma

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buchanan, T., Amouzegar, A. & Luke, J.J. Next-Generation Immunotherapy Approaches in Melanoma. Curr Oncol Rep 23, 116 (2021). https://doi.org/10.1007/s11912-021-01104-z

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11912-021-01104-z

Keywords

Navigation