Skip to main content

Advertisement

Log in

Anaplastic Thyroid Carcinoma: Current Issues in Genomics and Therapeutics

  • Head and Neck Cancers (EY Hanna, Section Editor)
  • Published:
Current Oncology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Anaplastic thyroid carcinoma is a type of thyroid carcinoma with the most aggressive biological behaviour amongst thyroid cancer. Here, we review the current genomic and the impacts of advances in therapies to improve the management of patients with the cancer.

Recent Findings

Common mutations being identified in anaplastic thyroid carcinoma are p53 and TERT promoter mutations. Other common mutated genes included BRAF, RAS, EIF1AX, PIK3CA, PTEN and AKT1, SWI/SNF, ALK and CDKN2A. Changes in expression of different microRNAs are also involved in the pathogenesis of anaplastic thyroid carcinoma. Curative resection combined with radiotherapy and combination chemotherapies (such as anthracyclines, platins and taxanes) has been shown to have effects in the treatment of some patients with anaplastic thyroid carcinoma. Newer molecular targeted therapies in clinical trials target mostly the cell membrane kinase and downstream proteins. These include targeting the EGFR, FGFR, VEGFR, c-kit, PDGFR and RET on the cell membrane as well as VEGF itself and the downstream targets such as BRAF, MEK and mTOR. Immunotherapy is also being tested in the cancer.

Summary

Updated knowledge of genomic as well as clinical trials on novel therapies is needed to improve the management of the patients with this aggressive cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Lam KY, Lo CY, Chan KW, Wan KY. Insular and anaplastic carcinoma of the thyroid: a 45-year comparative study at a single institution and a review of the significance of p53 and p21. Ann Surg. 2000;231:329–38. https://doi.org/10.1097/00000658-200003000-00005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. • Yoo SK, Song YS, Lee EK, Hwang J, Kim HH, Jung G, et al. Integrative analysis of genomic and transcriptomic characteristics associated with progression of aggressive thyroid cancer. Nat Commun. 2019;10:2764. https://doi.org/10.1038/s41467-019-10680-5. This study performed whole-genome sequencing in patients with anaplastic thyroid carcinoma.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kunstman JW, Juhlin CC, Goh G, Brown TC, Stenman A, Healy JM, et al. Characterisation of the mutational landscape of anaplastic thyroid cancer via whole-exome sequencing. Hum Mol Genet. 2015;24:2318–29. https://doi.org/10.1093/hmg/ddu749.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ravi N, Yang M, Gretarsson S, Jansson C, Mylona N, Sydow SR, et al. Identification of Targetable Lesions in Anaplastic Thyroid Cancer by Genome Profiling. Cancers (Basel). 2019;11:402. https://doi.org/10.3390/cancers11030402.

    Article  CAS  Google Scholar 

  5. Pozdeyev N, Gay LM, Sokol ES, Hartmaier R, Deaver KE, Davis S, et al. Genetic Analysis of 779 Advanced Differentiated and Anaplastic Thyroid Cancers. Clin Cancer Res. 2018;24:3059–68. https://doi.org/10.1158/1078-0432.CCR-18-0373.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Latteyer S, Tiedje V, König K, Ting S, Heukamp LC, Meder L, et al. Targeted next-generation sequencing for TP53, RAS, BRAF, ALK and NF1 mutations in anaplastic thyroid cancer. Endocrine. 2016;54:733–41. https://doi.org/10.1007/s12020-016-1080-9.

    Article  CAS  PubMed  Google Scholar 

  7. Khan SA, Ci B, Xie Y, Gerber DE, Beg MS, Sherman SI, et al. Unique mutation patterns in anaplastic thyroid cancer identified by comprehensive genomic profiling. Head Neck. 2019;41:1928–34. https://doi.org/10.1002/hed.25634.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Jeon MJ, Chun SM, Kim D, Kwon H, Jang EK, Kim TY, et al. Genomic Alterations of Anaplastic Thyroid Carcinoma Detected by Targeted Massive Parallel Sequencing in a BRAF(V600E) Mutation-Prevalent Area. Thyroid. 2016;26:683–90. https://doi.org/10.1089/thy.2015.0506.

    Article  CAS  PubMed  Google Scholar 

  9. Duan H, Li Y, Hu P, Gao J, Ying J, Xu W, et al. Mutational profiling of poorly differentiated and anaplastic thyroid carcinoma by the use of targeted next-generation sequencing. Histopathology. 2019;75:890–9. https://doi.org/10.1111/his.13942.

    Article  PubMed  Google Scholar 

  10. Landa I, Ibrahimpasic T, Boucai L, Sinha R, Knauf JA, Shah RH, et al. Genomic and transcriptomic hallmarks of poorly differentiated and anaplastic thyroid cancers. J Clin Invest. 2016;126:1052–66. https://doi.org/10.1172/JCI85271.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Hanna GJ, Busaidy NL, Chau NG, Wirth LJ, Barletta JA, Calles A, et al. Genomic Correlates of Response to Everolimus in Aggressive Radioiodine-refractory Thyroid Cancer: A Phase II Study. Clin Cancer Res. 2018;24:1546–53. https://doi.org/10.1158/1078-0432.CCR-17-2297.

    Article  CAS  PubMed  Google Scholar 

  12. Tiedje V, Ting S, Herold T, Synoracki S, Latteyer S, Moeller LC, et al. NGS based identification of mutational hotspots for targeted therapy in anaplastic thyroid carcinoma. Oncotarget. 2017;8:42613–20. https://doi.org/10.18632/oncotarget.17300.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Deeken-Draisey A, Yang GY, Gao J, Alexiev BA. Anaplastic thyroid carcinoma: an epidemiologic, histologic, immunohistochemical, and molecular single-institution study. Hum Pathol. 2018;82:140–8. https://doi.org/10.1016/j.humpath.2018.07.027.

    Article  CAS  PubMed  Google Scholar 

  14. Bonhomme B, Godbert Y, Perot G, Al Ghuzlan A, Bardet S, Belleannée G, et al. Molecular Pathology of Anaplastic Thyroid Carcinomas: A Retrospective Study of 144 Cases. Thyroid. 2017;27:682–92. https://doi.org/10.1089/thy.2016.0254.

    Article  CAS  PubMed  Google Scholar 

  15. Lam KY, Tsao SW, Zhang D, Law S, He D, Ma L, et al. Prevalence and predictive value of p53 mutation in patients with oesophageal squamous cell carcinomas: a prospective clinico-pathological study and survival analysis of 70 patients. Int J Cancer. 1997;74:212–9. https://doi.org/10.1002/(sici)1097-0215(19970422)74:2<212::aid-ijc13>3.0.co;2-f.

    Article  CAS  PubMed  Google Scholar 

  16. Levine AJ, Oren M. The first 30 years of p53: growing ever more complex. Nat Rev Cancer. 2009;9:749–58. https://doi.org/10.1038/nrc2723.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Smallridge RC, Marlow LA, Copland JA. Anaplastic thyroid cancer: molecular pathogenesis and emerging therapies. Endocr Relat Cancer. 2009;16:17–44. https://doi.org/10.1677/ERC-08-0154.

    Article  CAS  PubMed  Google Scholar 

  18. Perri F, Pisconti S, Della Vittoria Scarpati G. P53 mutations and cancer: a tight linkage. Ann Transl Med. 2016;4:522. https://doi.org/10.21037/atm.2016.12.40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Panebianco F, Nikitski AV, Nikiforova MN, Nikiforov YE. Spectrum of TERT promoter mutations and mechanisms of activation in thyroid cancer. Cancer Med. 2019;8:5831–9. https://doi.org/10.1002/cam4.2467.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Melo M, da Rocha AG, Vinagre J, Batista R, Peixoto J, Tavares C, et al. TERT promoter mutations are a major indicator of poor outcome in differentiated thyroid carcinomas. J Clin Endocrinol Metab. 2014;99:E754–65. https://doi.org/10.1210/jc.2013-3734.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Shi X, Liu R, Qu S, Zhu G, Bishop J, Liu X, et al. Association of TERT promoter mutation 1,295,228 C>T with BRAF V600E mutation, older patient age, and distant metastasis in anaplastic thyroid cancer. J Clin Endocrinol Metab. 2015;100:E632–7. https://doi.org/10.1210/jc.2014-3606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Salajegheh A, Petcu EB, Smith RA, Lam AK. Follicular variant of papillary thyroid carcinoma: a diagnostic challenge for clinicians and pathologists. Postgrad Med J. 2008;84:78–82. https://doi.org/10.1136/pgmj.2007.064881.

    Article  CAS  PubMed  Google Scholar 

  23. Yoo SK, Lee S, Kim SJ, Jee HG, Kim BA, Cho H, et al. Comprehensive analysis of the transcriptional and mutational landscape of follicular and papillary thyroid cancers. PLoS Genet. 2016;12:e1006239. https://doi.org/10.1371/journal.pgen.1006239.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Karoulia Z, Gavathiotis E, Poulikakos PI. New perspectives for targeting RAF kinase in human cancer. Nat Rev Cancer. 2017;17:676–91. https://doi.org/10.1038/nrc.2017.79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Dankner M, Rose AAN, Rajkumar S, Siegel PM, Watson IR. Classifying BRAF alterations in cancer: new rational therapeutic strategies for actionable mutations. Oncogene. 2018;37:3183–99. https://doi.org/10.1038/s41388-018-0171-x.

    Article  CAS  PubMed  Google Scholar 

  26. Ng JY, Lu CT, Lam AK. BRAF mutation: Current and future clinical pathological applications in colorectal carcinoma. Histol Histopathol. 2019;34:469–77. https://doi.org/10.14670/HH-18-079.

    Article  CAS  PubMed  Google Scholar 

  27. Pakneshan S, Salajegheh A, Smith RA, Lam AK. Clinicopathological relevance of BRAF mutations in human cancer. Pathology. 2013;45:346–56. https://doi.org/10.1097/PAT.0b013e328360b61d.

    Article  CAS  PubMed  Google Scholar 

  28. Rosove MH, Peddi PF, Glaspy JA. BRAF V600E inhibition in anaplastic thyroid cancer. N Engl J Med. 2013;368:684–5. https://doi.org/10.1056/NEJMc1215697.

    Article  CAS  PubMed  Google Scholar 

  29. Rushton S, Burghel G, Wallace A, Nonaka D. Immunohistochemical detection of BRAF V600E mutation status in anaplastic thyroid carcinoma. Histopathology. 2016;69:524–6. https://doi.org/10.1111/his.12964.

    Article  PubMed  Google Scholar 

  30. Smith RA, Salajegheh A, Weinstein S, Nassiri M, Lam AK. Correlation between BRAF mutation and the clinicopathological parameters in papillary thyroid carcinoma with particular reference to follicular variant. Hum Pathol. 2011;42:500–6. https://doi.org/10.1016/j.humpath.2009.09.023.

    Article  CAS  PubMed  Google Scholar 

  31. Rahman MA, Salajegheh A, Smith RA, Lam AK. Multiple proliferation-survival signalling pathways are simultaneously active in BRAF V600E mutated thyroid carcinomas. Exp Mol Pathol. 2015;99:492–7. https://doi.org/10.1016/j.yexmp.2015.09.006.

    Article  CAS  PubMed  Google Scholar 

  32. Huang Y, Qu S, Zhu G, Wang F, Liu R, Shen X, et al. BRAF V600E mutation-assisted risk stratification of solitary intrathyroidal papillary thyroid cancer for precision treatment. J Natl Cancer Inst. 2018;110:362–70. https://doi.org/10.1093/jnci/djx227.

    Article  PubMed  Google Scholar 

  33. Kim KJ, Kim SG, Tan J, Shen X, Viola D, Elisei R, et al. BRAF V600E status may facilitate decision-making on active surveillance of low-risk papillary thyroid microcarcinoma. Eur J Cancer. 2020;124:161–9. https://doi.org/10.1016/j.ejca.2019.10.017.

    Article  CAS  PubMed  Google Scholar 

  34. Shen X, Zhu G, Liu R, Viola D, Elisei R, Puxeddu E, et al. Patient Age-associated mortality risk is differentiated by BRAF V600E status in papillary thyroid cancer. J Clin Oncol. 2018;36:438–45. https://doi.org/10.1200/JCO.2017.74.5497.

    Article  CAS  PubMed  Google Scholar 

  35. Wang F, Zhao S, Shen X, Zhu G, Liu R, Viola D, et al. BRAF V600E confers male sex disease-specific mortality risk in patients with papillary thyroid cancer. J Clin Oncol. 2018;36:2787–95. https://doi.org/10.1200/JCO.2018.78.5097.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Xing M, Alzahrani AS, Carson KA, Viola D, Elisei R, Bendlova B, et al. Association between BRAF V600E mutation and mortality in patients with papillary thyroid cancer. J Am Med Assoc. 2013;309:1493–501. https://doi.org/10.1001/jama.2013.3190.

    Article  CAS  Google Scholar 

  37. Xing M, Alzahrani AS, Carson KA, Shong YK, Kim TY, Viola D, et al. Association between BRAF V600E mutation and recurrence of papillary thyroid cancer. J Clin Oncol. 2015;33:42–50. https://doi.org/10.1200/JCO.2014.56.8253.

    Article  PubMed  Google Scholar 

  38. Asati V, Bharti SK, Mahapatra DK, Asati V, Budhwani AK. Triggering PIK3CA Mutations in PI3K/Akt/mTOR Axis: Exploration of Newer Inhibitors and Rational Preventive Strategies. Curr Pharm Des. 2016;22:6039–54. https://doi.org/10.2174/1381612822666160614000053.

    Article  CAS  PubMed  Google Scholar 

  39. Thorpe LM, Yuzugullu H, Zhao JJ. PI3K in cancer: divergent roles of isoforms, modes of activation and therapeutic targeting. Nat Rev Cancer. 2015;15:7–24. https://doi.org/10.1038/nrc3860.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Karakas B, Bachman KE, Park BH. Mutation of the PIK3CA oncogene in human cancers. Br J Cancer. 2006;94:455–9. https://doi.org/10.1038/sj.bjc.6602970.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Janku F, Lee JJ, Tsimberidou AM, Hong DS, Naing A, Falchook GS, et al. PIK3CA mutations frequently coexist with RAS and BRAF mutations in patients with advanced cancers. PLoS One. 2011;6:e22769. https://doi.org/10.1371/journal.pone.0022769.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Jin J, Shi Y, Zhang S, Yang S. PIK3CA mutation and clinicopathological features of colorectal cancer: a systematic review and Meta-Analysis. Acta Oncol. 2020;59:66–74. https://doi.org/10.1080/0284186X.2019.1664764.

    Article  CAS  PubMed  Google Scholar 

  43. Song MS, Salmena L, Pandolfi PP. The functions and regulation of the PTEN tumour suppressor. Nat Rev Mol Cell Biol. 2012;13:283–96. https://doi.org/10.1038/nrm3330.

    Article  CAS  PubMed  Google Scholar 

  44. Carpten JD, Faber AL, Horn C, Donoho GP, Briggs SL, Robbins CM, et al. A transforming mutation in the pleckstrin homology domain of AKT1 in cancer. Nature. 2007;448:439–44. https://doi.org/10.1038/nature05933.

    Article  CAS  PubMed  Google Scholar 

  45. Lu C, Allis CD. SWI/SNF complex in cancer. Nat Genet. 2017;49:178–9. https://doi.org/10.1038/ng.3779.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Reisman D, Glaros S, Thompson EA. The SWI/SNF complex and cancer. Oncogene. 2009;28:1653–68. https://doi.org/10.1038/onc.2009.4.

    Article  CAS  PubMed  Google Scholar 

  47. Tennstedt P, Strobel G, Bölch C, Grob T, Minner S, Masser S, et al. Patterns of ALK expression in different human cancer types. J Clin Pathol. 2014;67:477–81. https://doi.org/10.1136/jclinpath-2013-201991.

    Article  CAS  PubMed  Google Scholar 

  48. Du X, Shao Y, Qin HF, Tai YH, Gao HJ. ALK-rearrangement in non-small-cell lung cancer (NSCLC). Thorac Cancer. 2018;9:423–30. https://doi.org/10.1111/1759-7714.12613.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Devarakonda S, Morgensztern D, Govindan R. Genomic alterations in lung adenocarcinoma. Lancet Oncol. 2015;16:e342–51. https://doi.org/10.1016/S1470-2045(15)00077-7.

    Article  CAS  PubMed  Google Scholar 

  50. Liu Z, Hou P, Ji M, Guan H, Studeman K, Jensen K, et al. Highly prevalent genetic alterations in receptor tyrosine kinases and phosphatidylinositol 3-kinase/akt and mitogen-activated protein kinase pathways in anaplastic and follicular thyroid cancers. J Clin Endocrinol Metab. 2008;93:3106–16. https://doi.org/10.1210/jc.2008-0273.

    Article  CAS  PubMed  Google Scholar 

  51. Kato S, Subbiah V, Marchlik E, Elkin SK, Carter JL, Kurzrock R. RET aberrations in diverse cancers: next-generation sequencing of 4,871 patients. Clin Cancer Res. 2017;23:1988–97. https://doi.org/10.1158/1078-0432.CCR-16-1679.

    Article  CAS  PubMed  Google Scholar 

  52. Gopalan V, Islam F, Pillai S, Tang JC, Tong DK, Law S, et al. Overexpression of microRNA-1288 in oesophageal squamous cell carcinoma. Exp Cell Res. 2016;348:146–54. https://doi.org/10.1016/j.yexcr.2016.09.010.

    Article  CAS  PubMed  Google Scholar 

  53. Lee KT, Tan JK, Lam AK, Gan SY. MicroRNAs serving as potential biomarkers and therapeutic targets in nasopharyngeal carcinoma: A critical review. Crit Rev Oncol Hematol. 2016;103:1–9. https://doi.org/10.1016/j.critrevonc.2016.04.006.

    Article  PubMed  Google Scholar 

  54. Islam F, Gopalan V, Vider J, Wahab R, Ebrahimi F, Lu CT, et al. MicroRNA-186-5p overexpression modulates colon cancer growth by repressing the expression of the FAM134B tumour inhibitor. Exp Cell Res. 2017;357:260–70. https://doi.org/10.1016/j.yexcr.2017.05.021.

    Article  CAS  PubMed  Google Scholar 

  55. Mamoori A, Gopalan V, Lam AK. Role of miR-193a in cancer: complexity and factors control the pattern of its expression. Curr Cancer Drug Targets. 2018;18:618–28. https://doi.org/10.2174/1568009618666180308105727.

    Article  CAS  PubMed  Google Scholar 

  56. Amin M, Islam F, Gopalan V, Lam AK. Detection and quantification of MicroRNAs in esophageal adenocarcinoma. Methods Mol Biol. 1756;2018:257–68. https://doi.org/10.1007/978-1-4939-7734-5_22.

    Article  CAS  Google Scholar 

  57. Gopalan V, Ebrahimi F, Islam F, Vider J, Qallandar OB, Pillai S, et al. Tumour suppressor properties of miR-15a and its regulatory effects on BCL2 and SOX2 proteins in colorectal carcinomas. Exp Cell Res. 2018;370:245–53. https://doi.org/10.1016/j.yexcr.2018.06.025.

    Article  CAS  PubMed  Google Scholar 

  58. Han L, Cui D, Li B, Xu WW, Lam AKY, Chan KT, et al. MicroRNA-338-5p reverses chemoresistance and inhibits invasion of esophageal squamous cell carcinoma cells by targeting Id-1. Cancer Sci. 2019;110:3677–88. https://doi.org/10.1111/cas.14220.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Mamoori A, Wahab R, Vider J, Gopalan V, Lam AK. The tumour suppressor effects and regulation of cancer stem cells by macrophage migration inhibitory factor targeted miR-451 in colon cancer. Gene. 2019;697:165–74. https://doi.org/10.1016/j.gene.2019.02.046.

    Article  CAS  PubMed  Google Scholar 

  60. Islam F, Gopalan V, Lam AK. Roles of MicroRNAs in esophageal squamous cell carcinoma pathogenesis. Methods Mol Biol. 2020;2129:241–57. https://doi.org/10.1007/978-1-0716-0377-2_18.

    Article  CAS  PubMed  Google Scholar 

  61. Luo Y, Xiong W, Dong S, Liu F, Liu H, Li J. MicroRNA-146a promotes the proliferation of rat vascular smooth muscle cells by downregulating p53 signaling. Mol Med Rep. 2017;16:6940–5. https://doi.org/10.3892/mmr.2017.7477.

    Article  CAS  PubMed  Google Scholar 

  62. Shen C, Yang H, Liu H, Wang X, Zhang Y, Xu R. Inhibitory effect and mechanisms of microRNA-146b-5p on the proliferation and metastatic potential of Caski human cervical cancer cells. Mol Med Rep. 2015;11:3955–61. https://doi.org/10.3892/mmr.2015.3151.

    Article  CAS  PubMed  Google Scholar 

  63. Ramírez-Moya J, Wert-Lamas L, Santisteban P. MicroRNA-146b promotes PI3K/AKT pathway hyperactivation and thyroid cancer progression by targeting PTEN. Oncogene. 2018;37:3369–83. https://doi.org/10.1038/s41388-017-0088-9.

    Article  CAS  PubMed  Google Scholar 

  64. Nikiforova MN, Tseng GC, Steward D, Diorio D, Nikiforov YE. MicroRNA expression profiling of thyroid tumors: biological significance and diagnostic utility. J Clin Endocrinol Metab. 2008;93:1600–8. https://doi.org/10.1210/jc.2007-2696.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Visone R, Russo L, Pallante P, De Martino I, Ferraro A, Leone V, et al. MicroRNAs (miR)-221 and miR-222, both overexpressed in human thyroid papillary carcinomas, regulate p27Kip1 protein levels and cell cycle. Endocr Relat Cancer. 2007;14:791–8. https://doi.org/10.1677/ERC-07-0129.

    Article  CAS  PubMed  Google Scholar 

  66. Chang CJ, Chao CH, Xia W, Yang JY, Xiong Y, Li CW, et al. p53 regulates epithelial-mesenchymal transition and stem cell properties through modulating miRNAs. Nat Cell Biol. 2011;13:317–23. https://doi.org/10.1038/ncb2173.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Zhu H, Wu H, Liu X, Li B, Chen Y, Ren X, et al. Regulation of autophagy by a beclin 1-targeted microRNA, miR-30a, in cancer cells. Autophagy. 2009;5:816–23. https://doi.org/10.4161/auto.9064.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Johnson SM, Grosshans H, Shingara J, Byrom M, Jarvis R, Cheng A, et al. RAS is regulated by the let-7 microRNA family. Cell. 2005;120:635–47. https://doi.org/10.1016/j.cell.2005.01.014.

    Article  CAS  PubMed  Google Scholar 

  69. Maroof H, Irani S, Arianna A, Vider J, Gopalan V, Lam AK. Interactions of Vascular Endothelial Growth Factor and p53 with miR-195 in Thyroid Carcinoma: Possible Therapeutic Targets in Aggressive Thyroid Cancers. Curr Cancer Drug Targets. 2019;19:561–70. https://doi.org/10.2174/1568009618666180628154727.

    Article  CAS  PubMed  Google Scholar 

  70. Vosgha H, Ariana A, Smith RA, Lam AK. miR-205 targets angiogenesis and EMT concurrently in anaplastic thyroid carcinoma. Endocr Relat Cancer. 2018;25:323–37. https://doi.org/10.1530/ERC-17-0497.

    Article  CAS  PubMed  Google Scholar 

  71. Maroof H, Islam F, Dong L, Ajjikuttira P, Gopalan V, McMillan NAJ, et al. Liposomal Delivery of miR-34b-5p Induced Cancer Cell Death in Thyroid Carcinoma. Cells. 2018;7:265. https://doi.org/10.3390/cells7120265.

    Article  CAS  PubMed Central  Google Scholar 

  72. Maroof H, Islam F, Ariana A, Gopalan V, Lam AK. The roles of microRNA-34b-5p in angiogenesis of thyroid carcinoma. Endocrine. 2017;58:153–66. https://doi.org/10.1007/s12020-017-1393-3.

    Article  CAS  PubMed  Google Scholar 

  73. Salajegheh A, Vosgha H, Rahman MA, Amin M, Smith RA, Lam AK. Interactive role of miR-126 on VEGF-A and progression of papillary and undifferentiated thyroid carcinoma. Hum Pathol. 2016;51:75–85. https://doi.org/10.1016/j.humpath.2015.12.018.

    Article  CAS  PubMed  Google Scholar 

  74. Yau T, Lo CY, Epstein RJ, Lam AK, Wan KY, Lang BH. Treatment outcomes in anaplastic thyroid carcinoma: survival improvement in young patients with localised disease treated by combination of surgery and radiotherapy. Ann Surg Oncol. 2008;15:2500–5. https://doi.org/10.1245/s10434-008-0005-0.

    Article  PubMed  Google Scholar 

  75. Pierie JP, Muzikansky A, Gaz RD, Faquin WC, Ott MJ. The effect of surgery and radiotherapy on outcome of anaplastic thyroid carcinoma. Ann Surg Oncol. 2002;9:57–64. https://doi.org/10.1245/aso.2002.9.1.57.

    Article  PubMed  Google Scholar 

  76. Chang HS, Nam KH, Chung WY, Park CS. Anaplastic thyroid carcinoma: a therapeutic dilemma. Yonsei Med J. 2005;46:759–64. https://doi.org/10.3349/ymj.2005.46.6.759.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Smallridge RC, Ain KB, Asa SL, Bible KC, Brierley JD, Burman KD, et al. American Thyroid Association guidelines for management of patients with anaplastic thyroid cancer. Thyroid. 2012;22:1104–39. https://doi.org/10.1089/thy.2012.0302.

    Article  PubMed  Google Scholar 

  78. Haigh PI, Ituarte PH, Wu HS, Treseler PA, Posner MD, Quivey JM, et al. Completely resected anaplastic thyroid carcinoma combined with adjuvant chemotherapy and irradiation is associated with prolonged survival. Cancer. 2001;91:2335–42.

    Article  CAS  Google Scholar 

  79. Ain KB, Egorin MJ, DeSimone PA. Treatment of anaplastic thyroid carcinoma with paclitaxel: phase 2 trial using ninety-six-hour infusion. Collaborative Anaplastic Thyroid Cancer Health Intervention Trials (CATCHIT) Group. Thyroid. 2000;10:587–94. https://doi.org/10.1089/thy.2000.10.587.

    Article  CAS  PubMed  Google Scholar 

  80. Higashiyama T, Ito Y, Hirokawa M, Fukushima M, Uruno T, Miya A, et al. Induction chemotherapy with weekly paclitaxel administration for anaplastic thyroid carcinoma. Thyroid. 2010;20:7–14. https://doi.org/10.1089/thy.2009.0115.

    Article  CAS  PubMed  Google Scholar 

  81. Tacara O, Sriamornsak P, Dassa CR. Doxorubicin: an update on anticancer molecular action, toxicity and novel drug delivery systems. J Pharm Pharmacol. 2013;65:157–70. https://doi.org/10.1111/j.2042-7158.2012.01567.x.

    Article  CAS  Google Scholar 

  82. Dasari S, Tchounwou PB. Cisplatin in cancer therapy: molecular mechanisms of action. Eur J Pharmacol. 2014;740:364–78. https://doi.org/10.1016/j.ejphar.2014.07.025.

    Article  CAS  Google Scholar 

  83. Shimaoka K, Schoenfeld DA, DeWys WD, Creech RH, DeConti R. A randomised trial of doxorubicin versus doxorubicin plus cisplatin in patients with advanced thyroid carcinoma. Cancer. 1985;56:2155–60. https://doi.org/10.1002/1097-0142(19851101)56:9<2155::aid-cncr2820560903>3.0.co;2-e.

    Article  CAS  PubMed  Google Scholar 

  84. Ringel I, Horwitz SB. Studies with RP 56976 (taxotere): a semisynthetic analogue of taxol. J Natl Cancer Inst. 1991;83:288–91. https://doi.org/10.1093/jnci/83.4.288.

    Article  CAS  PubMed  Google Scholar 

  85. Hartwell LH, Weinert TA. Checkpoints: controls that ensure the order of cell cycle events. Science. 1989;246:629–34. https://doi.org/10.1126/science.2683079.

    Article  CAS  PubMed  Google Scholar 

  86. Park JE, Woo SR, Kang CM, Juhn KM, Ju YJ, Shin HJ, et al. Paclitaxel stimulates chromosomal fusion and instability in cells with dysfunctional telomeres: implication in multinucleation and chemosensitisation. Biochem Biophys Res Commun. 2011;404:615–21. https://doi.org/10.1016/j.bbrc.2010.12.018.

    Article  CAS  PubMed  Google Scholar 

  87. Onoda N, Sugino K, Higashiyama T, Kammori M, Toda K, Ito K, et al. The Safety and Efficacy of Weekly Paclitaxel Administration for Anaplastic Thyroid Cancer Patients: A Nationwide Prospective Study. Thyroid. 2016;26:1293–9. https://doi.org/10.1089/thy.2016.0072.

    Article  CAS  PubMed  Google Scholar 

  88. Troch M, Koperek O, Scheuba C, Dieckmann K, Hoffmann M, Niederle B, et al. High efficacy of concomitant treatment of undifferentiated (anaplastic) thyroid cancer with radiation and docetaxel. J Clin Endocrinol Metab. 2010;95:E54–7. https://doi.org/10.1210/jc.2009-2827.

    Article  PubMed  Google Scholar 

  89. Pennell NA, Daniels GH, Haddad RI, Ross DS, Evans T, Wirth LJ, et al. A phase II study of gefitinib in patients with advanced thyroid cancer. Thyroid. 2008;18:317–23. https://doi.org/10.1089/thy.2007.0120.

    Article  CAS  PubMed  Google Scholar 

  90. Ha HT, Lee JS, Urba S, Koenig RJ, Sisson J, Giordano T, et al. A phase II study of imatinib in patients with advanced anaplastic thyroid cancer. Thyroid. 2010;20:975–80. https://doi.org/10.1089/thy.2010.0057.

    Article  CAS  PubMed  Google Scholar 

  91. Bible KC, Suman VJ, Menefee ME, Smallridge RC, Molina JR, Maples WJ, et al. A multiinstitutional phase 2 trial of pazopanib monotherapy in advanced anaplastic thyroid cancer. J Clin Endocrinol Metab. 2012;97:3179–84. https://doi.org/10.1210/jc.2012-1520.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Cohen EE, Tortorici M, Kim S, Ingrosso A, Pithavala YK, Bycott P. A Phase II trial of axitinib in patients with various histologic subtypes of advanced thyroid cancer: long-term outcomes and pharmacokinetic/pharmacodynamic analyses. Cancer Chemother Pharmacol. 2014;74:1261–70. https://doi.org/10.1007/s00280-014-2604-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Ravaud A, de la Fouchardière C, Caron P, Doussau A, Do Cao C, Asselineau J, et al. A multicenter phase II study of sunitinib in patients with locally advanced or metastatic differentiated, anaplastic or medullary thyroid carcinomas: mature data from the THYSU study. Eur J Cancer. 2017;76:110–7. https://doi.org/10.1016/j.ejca.2017.01.029.

    Article  CAS  PubMed  Google Scholar 

  94. Savvides P, Nagaiah G, Lavertu P, Fu P, Wright JJ, Chapman R, et al. Phase II trial of sorafenib in patients with advanced anaplastic carcinoma of the thyroid. Thyroid. 2013;23:600–4. https://doi.org/10.1089/thy.2012.0103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Ito Y, Onoda N, Ito KI, Sugitani I, Takahashi S, Yamaguchi I, et al. Sorafenib in Japanese Patients with Locally Advanced or Metastatic Medullary Thyroid Carcinoma and Anaplastic Thyroid Carcinoma. Thyroid. 2017;27:1142–8. https://doi.org/10.1089/thy.2016.0621.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Takahashi S, Kiyota N, Yamazaki T, Chayahara N, Nakano K, Inagaki L, et al. A Phase II study of the safety and efficacy of lenvatinib in patients with advanced thyroid cancer. Future Oncol. 2019;15:717–26. https://doi.org/10.2217/fon-2018-0557.

    Article  CAS  PubMed  Google Scholar 

  97. Hyman DM, Puzanov I, Subbiah V, Faris JE, Chau I, Blay JY, et al. Vemurafenib in Multiple Nonmelanoma Cancers with BRAF V600 Mutations. N Engl J Med. 2015;373:726–36. https://doi.org/10.1056/NEJMoa1502309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Schneider TC, de Wit D, Links TP, van Erp NP, van der Hoeven JJ, Gelderblom H, et al. Everolimus in patients with advanced follicular-derived thyroid cancer: Results of a phase II clinical trial. J Clin Endocrinol Metab. 2017;102:698–707. https://doi.org/10.1210/jc.2016-2525.

    Article  PubMed  Google Scholar 

  99. Harris EJ, Hanna GJ, Chau N, Rabinowits G, Haddad R, Margalit DN, et al. Everolimus in Anaplastic Thyroid Cancer: A Case Series. Front Oncol. 2019;9:106. https://doi.org/10.3389/fonc.2019.00106.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Wakeling AE, Guy SP, Woodburn JR, Ashton SE, Curry BJ, Barker AJ, et al. ZD1839 (Iressa): an orally active inhibitor of epidermal growth factor signaling with potential for cancer therapy. Cancer Res. 2002;62:5749–54.

    CAS  PubMed  Google Scholar 

  101. Nobuhara Y, Onoda N, Yamashita Y, Yamasaki M, Ogisawa K, Takashima T, et al. Efficacy of epidermal growth factor receptor-targeted molecular therapy in anaplastic thyroid cancer cell lines. Br J Cancer. 2005;92:1110–6. https://doi.org/10.1038/sj.bjc.6602461.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Druker BJ, Talpaz M, Resta DJ, Peng B, Buchdunger E, Ford JM, et al. Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N Engl J Med. 2001;344:1031–7. https://doi.org/10.1056/NEJM200104053441401.

    Article  CAS  PubMed  Google Scholar 

  103. Krystal GW, Honsawek S, Litz J, Buchdunger E. The selective tyrosine kinase inhibitor STI571 inhibits small cell lung cancer growth. Clin Cancer Res. 2000;6:3319–26.

    CAS  PubMed  Google Scholar 

  104. Podtcheko A, Ohtsuru A, Tsuda S, Namba H, Saenko V, Nakashima M, et al. The selective tyrosine kinase inhibitor, STI571, inhibits growth of anaplastic thyroid cancer cells. J Clin Endocrinol Metab. 2003;88:1889–96. https://doi.org/10.1210/jc.2002-021230.

    Article  CAS  PubMed  Google Scholar 

  105. Dziba JM, Ain KB. Imatinib mesylate (gleevec; STI571) monotherapy is ineffective in suppressing human anaplastic thyroid carcinoma cell growth in vitro. J Clin Endocrinol Metab. 2004;89:2127–35. https://doi.org/10.1210/jc.2003-031734.

    Article  CAS  PubMed  Google Scholar 

  106. Heldin NE, Gustavsson B, Claesson-Welsh L, Hammacher A, Mark J, Heldin CH, et al. Aberrant expression of receptors for platelet-derived growth factor in an anaplastic thyroid carcinoma cell line. Proc Natl Acad Sci U S A. 1988;85:9302–6. https://doi.org/10.1073/pnas.85.23.9302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Sloan B, Scheinfeld NS. Pazopanib, a VEGF receptor tyrosine kinase inhibitor for cancer therapy. Curr Opin Investig Drugs. 2008;9:1324–35.

    CAS  PubMed  Google Scholar 

  108. Sonpavde G, Hutson TE. Pazopanib: A novel multitargeted tyrosine kinase inhibitor. Curr Oncol Rep. 2007;9:115–9. https://doi.org/10.1007/s11912-007-0007-2.

    Article  CAS  PubMed  Google Scholar 

  109. Bhargava P, Robinson MO. Development of second-generation VEGFR tyrosine kinase inhibitors: current status. Curr Oncol Rep. 2011;13:103–11. https://doi.org/10.1007/s11912-011-0154-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Potapova O, Laird AD, Nannini MA, Barone A, Li G, Moss KG, et al. Contribution of individual targets to the antitumor efficacy of the multitargeted receptor tyrosine kinase inhibitor SU11248. Mol Cancer Ther. 2006;5:1280–9. https://doi.org/10.1158/1535-7163.MCT-03-0156.

    Article  CAS  PubMed  Google Scholar 

  111. Quek R, George S. Gastrointestinal stromal tumor: a clinical overview. Hematol Oncol Clin North Am. 2009;23:69–78. https://doi.org/10.1016/j.hoc.2008.11.006.

    Article  PubMed  Google Scholar 

  112. Di Desidero T, Fioravanti A, Orlandi P, Canu B, Giannini R, Borrelli N, et al. Antiproliferative and proapoptotic activity of sunitinib on endothelial and anaplastic thyroid cancer cells via inhibition of Akt and ERK1/2 phosphorylation and by down-regulation of cyclin-D1. J Clin Endocrinol Metab. 2013;98:E1465–73. https://doi.org/10.1210/jc.2013-1364.

    Article  CAS  PubMed  Google Scholar 

  113. Wilhelm SM, Carter C, Tang L, Wilkie D, McNabola A, Rong H, et al. BAY 43-9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res. 2004;64:7099–109. https://doi.org/10.1158/0008-5472.CAN-04-1443.

    Article  CAS  PubMed  Google Scholar 

  114. Kim S, Yazici YD, Calzada G, Wang ZY, Younes MN, Jasser SA, et al. Sorafenib inhibits the angiogenesis and growth of orthotopic anaplastic thyroid carcinoma xenografts in nude mice. Mol Cancer Ther. 2007;6:1785–92. https://doi.org/10.1158/1535-7163.MCT-06-0595.

    Article  CAS  PubMed  Google Scholar 

  115. Ishihara S, Onoda N, Noda S, Asano Y, Tauchi Y, Morisaki T, et al. Sorafenib inhibits vascular endothelial cell proliferation stimulated by anaplastic thyroid cancer cells regardless of BRAF mutation status. Int J Oncol. 2019;55:1069–76. https://doi.org/10.3892/ijo.2019.4881.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Lorusso L, Newbold K. Lenvatinib: a new option for the treatment of advanced iodine refractory differentiated thyroid cancer? Future Oncol. 2015;11:1719–27. https://doi.org/10.2217/fon.15.68.

    Article  CAS  PubMed  Google Scholar 

  117. Ferrari SM, Bocci G, Di Desidero T, Elia G, Ruffilli I, Ragusa F, et al. Lenvatinib exhibits antineoplastic activity in anaplastic thyroid cancer in vitro and in vivo. Oncol Rep. 2018;39:2225–34. https://doi.org/10.3892/or.2018.6306.

    Article  CAS  PubMed  Google Scholar 

  118. Kim G, McKee AE, Ning YM, Hazarika M, Theoret M, Johnson JR, et al. FDA approval summary: vemurafenib for treatment of unresectable or metastatic melanoma with the BRAFV600E mutation. Clin Cancer Res. 2014;20:4994–5000. https://doi.org/10.1158/1078-0432.CCR-14-0776.

    Article  CAS  PubMed  Google Scholar 

  119. Liu W, Kelly JW, Trivett M, Murray WK, Dowling JP, Wolfe R, et al. Distinct clinical and pathological features are associated with the BRAF(T1799A(V600E)) mutation in primary melanoma. J Invest Dermatol. 2007;127:900–5. https://doi.org/10.1038/sj.jid.5700632.

    Article  CAS  PubMed  Google Scholar 

  120. Zhang L, Gaskins K, Yu Z, Xiong Y, Merino MJ, Kebebew E. An in vivo mouse model of metastatic human thyroid cancer. Thyroid. 2014;24:695–704. https://doi.org/10.1089/thy.2013.0149.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Kurata K, Onoda N, Noda S, Kashiwagi S, Asano Y, Hirakawa K, et al. Growth arrest by activated BRAF and MEK inhibition in human anaplastic thyroid cancer cells. Int J Oncol. 2016;49:2303–8. https://doi.org/10.3892/ijo.2016.3723.

    Article  CAS  PubMed  Google Scholar 

  122. • Subbiah V, Kreitman RJ, Wainberg ZA, Cho JY, Schellens JHM, Soria JC, et al. Trametinib treatment in patients with locally advanced or metastatic BRAF V600-Mutant anaplastic thyroid cancer. J Clin Oncol. 2018;36:7–13. https://doi.org/10.1200/JCO.2017.73.6785. The FDA approved the combination therapy of dabrafenib and trametinib for treatment in patients with anaplastic thyroid carcinoma having BRAF V600E mutations considering this study.

    Article  CAS  PubMed  Google Scholar 

  123. Alqurashi N, Gopalan V, Smith RA, Lam AK. Clinical impacts of mammalian target of rapamycin expression in human colorectal cancers. Hum Pathol. 2013;44:2089–96. https://doi.org/10.1016/j.humpath.2013.03.014.

    Article  CAS  PubMed  Google Scholar 

  124. Pópulo H, Lopes JM, Soares P. The mTOR signalling pathway in human cancer. Int J Mol Sci. 2012;13:1886–918. https://doi.org/10.3390/ijms13021886.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Papewalis C, Wuttke M, Schinner S, Willenberg HS, Baran AM, Scherbaum WA, et al. Role of the novel mTOR inhibitor RAD001 (everolimus) in anaplastic thyroid cancer. Horm Metab Res. 2009;41:752–6. https://doi.org/10.1055/s-0029-1224116.

    Article  CAS  PubMed  Google Scholar 

  126. Godbert Y, Henriques de Figueiredo B, Bonichon F, Chibon F, Hostein I, Pérot G, et al. Remarkable response to crizotinib in woman with anaplastic lymphoma kinase-rearranged anaplastic thyroid carcinoma. J Clin Oncol. 2015;33:e84–7. https://doi.org/10.1200/JCO.2013.49.6596.

    Article  PubMed  Google Scholar 

  127. Leroy L, Bonhomme B, Le Moulec S, Soubeyran I, Italiano A, Godbert Y. Remarkable Response to Ceritinib and Brigatinib in an Anaplastic Lymphoma Kinase-Rearranged Anaplastic Thyroid Carcinoma Previously Treated with Crizotinib. Thyroid. 2020;30:343–4. https://doi.org/10.1089/thy.2019.0202.

    Article  PubMed  Google Scholar 

  128. Dias-Santagata D, Lennerz JK, Sadow PM, Frazier RP, Raju SG, Henry D, et al. Response to RET-Specific Therapy in RET Fusion-Positive Anaplastic Thyroid Carcinoma. Thyroid. 2020;30:1384–9. https://doi.org/10.1089/thy.2019.0477.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Goldstein DA, Chen Q, Ayer T, Chan KKW, Virik K, Hammerman A, et al. Bevacizumab for Metastatic Colorectal Cancer: A Global Cost-Effectiveness Analysis. Oncologist. 2017;22:694–9. https://doi.org/10.1634/theoncologist.2016-0455.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Rossi L, Verrico M, Zaccarelli E, Papa A, Colonna M, Strudel M, et al. Bevacizumab in ovarian cancer: A critical review of phase III studies. Oncotarget. 2017;8:12389–405. https://doi.org/10.18632/oncotarget.13310.

    Article  PubMed  Google Scholar 

  131. Wakelee HA, Dahlberg SE, Keller SM, Tester WJ, Gandara DR, Graziano SL, et al. Adjuvant chemotherapy with or without bevacizumab in patients with resected non-small-cell lung cancer (E1505): an open-label, multicentre, randomised, phase 3 trial. Lancet Oncol. 2017;18:1610–23. https://doi.org/10.1016/S1470-2045(17)30691-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Garg M, Okamoto R, Nagata Y, Kanojia D, Venkatesan S, Anand MT, et al. Establishment and characterisation of novel human primary and metastatic anaplastic thyroid cancer cell lines and their genomic evolution over a year as a primagraft. J Clin Endocrinol Metab. 2015;100:725–35. https://doi.org/10.1210/jc.2014-2359.

    Article  CAS  PubMed  Google Scholar 

  133. Gomez-Rivera F, Santillan-Gomez AA, Younes MN, Kim S, Fooshee D, Zhao M, et al. The tyrosine kinase inhibitor, AZD2171, inhibits vascular endothelial growth factor receptor signaling and growth of anaplastic thyroid cancer in an orthotopic nude mouse model. Clin Cancer Res. 2007;13:4519–27. https://doi.org/10.1158/1078-0432.CCR-06-2636.

    Article  CAS  PubMed  Google Scholar 

  134. Mooney CJ, Nagaiah G, Fu P, Wasman JK, Cooney MM, Savvides PS, et al. A phase II trial of fosbretabulin in advanced anaplastic thyroid carcinoma and correlation of baseline serum-soluble intracellular adhesion molecule-1 with outcome. Thyroid. 2009;19:233–40. https://doi.org/10.1089/thy.2008.0321.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Grommes C, Landreth GE, Heneka MT. Antineoplastic effects of peroxisome proliferator-activated receptor gamma agonists. Lancet Oncol. 2004;5:419–29. https://doi.org/10.1016/S1470-2045(04)01509-8.

    Article  CAS  PubMed  Google Scholar 

  136. Hayashi N, Nakamori S, Hiraoka N, Tsujie M, Xundi X, Takano T, et al. Antitumor effects of peroxisome proliferator activate receptor gamma ligands on anaplastic thyroid carcinoma. Int J Oncol. 2004;24:89–95.

    CAS  PubMed  Google Scholar 

  137. Smallridge RC, Copland JA, Brose MS, Wadsworth JT, Houvras Y, Menefee ME, et al. Efatutazone, an oral PPAR-γ agonist, in combination with paclitaxel in anaplastic thyroid cancer: results of a multicenter phase 1 trial. J Clin Endocrinol Metab. 2013;98:2392–400. https://doi.org/10.1210/jc.2013-1106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Ng HY, Li J, Tao L, Lam AK, Chan KW, Ko JMY, et al. Chemotherapeutic Treatments Increase PD-L1 expression in esophageal squamous cell carcinoma through EGFR/ERK Activation. Transl Oncol. 2018;11:1323–33. https://doi.org/10.1016/j.tranon.2018.08.005.

    Article  PubMed  PubMed Central  Google Scholar 

  139. Mei Z, Huang J, Qiao B, Lam AK. Immune checkpoint pathways in immunotherapy for head and neck squamous cell carcinoma. Int J Oral Sci. 2020;12:16. https://doi.org/10.1038/s41368-020-0084-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Syn NL, Teng MWL, Mok TSK, Soo RA. De-novo and acquired resistance to immune checkpoint targeting. Lancet Oncol. 2017;18:e731–41. https://doi.org/10.1016/S1470-2045(17)30607-1.

    Article  Google Scholar 

  141. Kasem K, Lam AK. Immunohistochemistry for protein detection in esophageal squamous cell carcinoma. Methods Mol Biol. 2020;2129:279–94. https://doi.org/10.1007/978-1-0716-0377-2_21.

    Article  CAS  PubMed  Google Scholar 

  142. Ahn S, Kim TH, Kim SW, Ki CS, Jang HW, Kim JS, et al. Comprehensive screening for PD-L1 expression in thyroid cancer. Endocr Relat Cancer. 2017;24:97–106. https://doi.org/10.1530/ERC-16-0421.

    Article  CAS  PubMed  Google Scholar 

  143. Cantara S, Bertelli E, Occhini R, Regoli M, Brilli L, Pacini F, et al. Blockade of the programmed death ligand 1 (PD-L1) as potential therapy for anaplastic thyroid cancer. Endocrine. 2019;64:122–9. https://doi.org/10.1007/s12020-019-01865-5.

    Article  CAS  PubMed  Google Scholar 

  144. Iyer PC, Dadu R, Gule-Monroe M, Busaidy NL, Ferrarotto R, Habra MA, et al. Salvage pembrolizumab added to kinase inhibitor therapy for the treatment of anaplastic thyroid carcinoma. J Immunother Cancer. 2018;6:68. https://doi.org/10.1186/s40425-018-0378-y.

    Article  PubMed  PubMed Central  Google Scholar 

  145. • Wang JR, Zafereo ME, Dadu R, Ferrarotto R, Busaidy NL, Lu C, et al. Complete Surgical Resection Following Neoadjuvant Dabrafenib Plus Trametinib in BRAF(V600E)-Mutated Anaplastic Thyroid Carcinoma. Thyroid. 2019;29:1036–43. https://doi.org/10.1089/thy.2019.0133. This study indicated the immunotherapy with the combination of dabrafenib and trametinib could be more effective in patients with anaplastic thyroid carcinoma having BRAF V600E mutations.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Abe I, Karasaki S, Matsuda Y, Sakamoto S, Nakashima T, Yamamoto H, et al. Complete remission of anaplastic thyroid carcinoma after concomitant treatment with docetaxel and radiotherapy. Case Rep Endocrinol. 2015;2015:726085–4. https://doi.org/10.1155/2015/726085.

    Article  PubMed  PubMed Central  Google Scholar 

  147. Shinohara S, Kikuchi M, Naito Y, Fujiwara K, Hori S, Tona Y, et al. Successful treatment of locally advanced anaplastic thyroid carcinoma by chemotherapy and hyperfractionated radiotherapy. Auris Nasus Larynx. 2009;36:729–32. https://doi.org/10.1016/j.anl.2009.02.001.

    Article  PubMed  Google Scholar 

  148. Noguchi H, Yamashita H, Murakami T, Hirai K, Noguchi Y, Maruta J, et al. Successful treatment of anaplastic thyroid carcinoma with a combination of oral valproic acid, chemotherapy, radiation and surgery. Endocr J. 2009;56:245–9. https://doi.org/10.1507/endocrj.k08e-016.

    Article  PubMed  Google Scholar 

  149. Zanirato Rambaldi G, Monari F, Fiorentino M, Cammelli S, Repaci A, Cremonini N, et al. Complete pathological response after chemo-radiation in anaplastic thyroid cancer: A report of two cases. Acta Oncol. 2016;55:530–2. https://doi.org/10.3109/0284186X.2015.1102966.

    Article  PubMed  Google Scholar 

  150. Pichardo-Lowden A, Durvesh S, Douglas S, Todd W, Bruno M, Goldenberg D. Anaplastic thyroid carcinoma in a young woman: a rare case of survival. Thyroid. 2009;19:775–9. https://doi.org/10.1089/thy.2009.0025.

    Article  PubMed  Google Scholar 

  151. Xing JC, Bishop JA, Mathioudakis N, Agrawal N, Tufano RP. A large nonmetastatic anaplastic thyroid cancer with complete thyroidal confinement. Case Rep Med. 2011;2011:583978–4. https://doi.org/10.1155/2011/583978.

    Article  PubMed  PubMed Central  Google Scholar 

  152. Koussis H, Giorgi CA, Di Liso E, Carlucci MC, Fassina A, Marioni G, et al. Complete response to weekly carboplatin-docetaxel chemotherapy in a 91-year-old woman with anaplastic thyroid cancer. Am J Otolaryngol. 2015;36:268–72. https://doi.org/10.1016/j.amjoto.2014.03.006.

    Article  PubMed  Google Scholar 

  153. Kurukahvecioglu O, Ege B, Poyraz A, Tezel E, Taneri F. Anaplastic thyroid carcinoma with long term survival after combined treatment: case report. Endocr Regul. 2007;41:41–4.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfred King-yin Lam.

Ethics declarations

Conflict of Interest

None of the authors has any potential conflicts of interest to disclose.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Ichiro Abe and Alfred King-yin Lam contributes equally as co-principal authors

This article is part of the Topical Collection on Head and Neck Cancers

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abe, I., Lam, A.Ky. Anaplastic Thyroid Carcinoma: Current Issues in Genomics and Therapeutics. Curr Oncol Rep 23, 31 (2021). https://doi.org/10.1007/s11912-021-01019-9

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11912-021-01019-9

Keywords

Navigation