Cardioprotective Strategies to Prevent Cancer Treatment-Related Cardiovascular Toxicity: a Review

Abstract

Purpose of Review

Patients with cancer have an elevated risk of cardiovascular disease. This review describes the cardiovascular risks of different cancer therapies and the evidence for cardioprotective strategies.

Recent Findings

Recent studies have provided additional support for the safety and efficacy of dexrazoxane and liposomal anthracycline formulations in certain high-risk patients receiving anthracyclines and for neurohormonal antagonist therapy in patients with breast cancer receiving sequential anthracyclines and trastuzumab. Ongoing studies are exploring the benefit of: (1) statins for anthracycline cardioprotection; (2) strict blood pressure control during vascular endothelial growth factor inhibitor treatment and; (3) dexrazoxane on long-term cardiac outcomes in pediatric populations. To date, there are no evidence-based cardioprotective strategies specifically for radiation-related heart and vascular disease, immunotherapy myocarditis, fluoropyrimidine cardiotoxicity, vascular endothelial growth factor inhibitor-related hypertension, BCR-Abl multikinase inhibitor vascular disease, and other established and emerging cancer therapeutics with cardiovascular effects.

Summary

Current evidence supports specific cardioprotective strategies for high risk patients receiving anthracyclines or sequential anthracycline-trastuzumab therapy; however, major evidence gaps exist.

This is a preview of subscription content, log in to check access.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. 1.

    Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin. 2019;69(1):7–34.

    Article  Google Scholar 

  2. 2.

    Bluethmann SM, Mariotto AB, Rowland JH. Anticipating the “silver tsunami”: prevalence trajectories and comorbidity burden among older cancer survivors in the United States. Cancer Epidemiol Biomark Prev. 2016;25(7):1029–36.

    Google Scholar 

  3. 3.

    Strongman H, Gadd S, Matthews A, Mansfield KE, Stanway S, Lyon AR, et al. Medium and long-term risks of specific cardiovascular diseases in survivors of 20 adult cancers: a population-based cohort study using multiple linked UK electronic health records databases. Lancet. 2019;394(10203):1041–54.

    PubMed  PubMed Central  Google Scholar 

  4. 4.

    Armstrong GT, Oeffinger KC, Chen Y, et al. Modifiable risk factors and major cardiac events among adult survivors of childhood cancer. J Clin Oncol Off J Am Soc Clin Oncol. 2013;31(29):3673–80.

    Google Scholar 

  5. 5.

    Benjamin EJ, Muntner P, Alonso A, Bittencourt MS, Callaway CW, Carson AP, et al. Heart disease and stroke statistics-2019 update: a report from the American Heart Association. Circulation. 2019;139(10):e56–e528.

    PubMed  Google Scholar 

  6. 6.

    Zhang S, Liu X, Bawa-Khalfe T, Lu LS, Lyu YL, Liu LF, et al. Identification of the molecular basis of doxorubicin-induced cardiotoxicity. Nat Med. 2012;18(11):1639–42.

    PubMed  Google Scholar 

  7. 7.

    Narayan HK, Finkelman B, French B, Plappert T, Hyman D, Smith AM, et al. Detailed echocardiographic phenotyping in breast cancer patients: associations with ejection fraction decline, recovery, and heart failure symptoms over 3 years of follow-up. Circulation. 2017;135(15):1397–412.

    PubMed  PubMed Central  Google Scholar 

  8. 8.

    Finkelman BS, Putt M, Wang T, Wang L, Narayan H, Domchek S, et al. Arginine-nitric oxide metabolites and cardiac dysfunction in patients with breast cancer. J Am Coll Cardiol. 2017;70(2):152–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Swain SM, Whaley FS, Ewer MS. Congestive heart failure in patients treated with doxorubicin: a retrospective analysis of three trials. Cancer. 2003;97(11):2869–79.

    CAS  PubMed  Google Scholar 

  10. 10.

    Narayan HK, French B, Khan AM, Plappert T, Hyman D, Bajulaiye A, et al. Noninvasive measures of ventricular-arterial coupling and circumferential strain predict cancer therapeutics-related cardiac dysfunction. J Am Coll Cardiol Img. 2016;9(10):1131–41.

    Google Scholar 

  11. 11.

    Cardinale D, Colombo A, Bacchiani G, Tedeschi I, Meroni CA, Veglia F, et al. Early detection of anthracycline cardiotoxicity and improvement with heart failure therapy. Circulation. 2015;131(22):1981–8.

    CAS  PubMed  Google Scholar 

  12. 12.

    van Nimwegen FA, Schaapveld M, Janus CP, Krol AD, Petersen EJ, Raemaekers JM, et al. Cardiovascular disease after Hodgkin lymphoma treatment: 40-year disease risk. JAMA Intern Med. 2015;175(6):1007–17.

    PubMed  Google Scholar 

  13. 13.

    • Chow EJ, Chen Y, Kremer LC, et al. Individual prediction of heart failure among childhood cancer survivors. J Clin Oncol Off J Am Soc Clin Oncol. 2015;33(5):394–402 This manuscript reports an externally validated clinical prediction model for heart failure in childhood cancer survivors incorporating treatment-related variables.

    Google Scholar 

  14. 14.

    Ezaz G, Long JB, Gross CP, Chen J. Risk prediction model for heart failure and cardiomyopathy after adjuvant trastuzumab therapy for breast cancer. J Am Heart Assoc. 2014;3(1):e000472.

    PubMed  PubMed Central  Google Scholar 

  15. 15.

    Salz T, Zabor EC, de Nully Brown P, et al. Preexisting cardiovascular risk and subsequent heart failure among non-Hodgkin lymphoma survivors. J Clin Oncol Off J Am Soc Clin Oncol. 2017;35(34):3837–43.

    CAS  Google Scholar 

  16. 16.

    Upshaw JN, Ruthazer R, Miller KD, Parsons SK, Erban JK, O’Neill AM, et al. Personalized decision making in early stage breast cancer: applying clinical prediction models for anthracycline cardiotoxicity and breast cancer mortality demonstrates substantial heterogeneity of benefit-harm trade-off. Clin Breast Cancer. 2019;19:259–267.e1.

    PubMed  Google Scholar 

  17. 17.

    Abdel-Qadir H, Thavendiranathan P, Austin PC, Lee DS, Amir E, Tu JV, et al. Development and validation of a multivariable prediction model for major adverse cardiovascular events after early stage breast cancer: a population-based cohort study. Eur Heart J. 2019;40(48):3913–20.

    PubMed  Google Scholar 

  18. 18.

    Giordano SH, Lin YL, Kuo YF, Hortobagyi GN, Goodwin JS. Decline in the use of anthracyclines for breast cancer. J Clin Oncol Off J Am Soc Clin Oncol. 2012;30(18):2232–9.

    CAS  Google Scholar 

  19. 19.

    Network NCC. NCCN guidelines. www.nccn.org. Published 2019. Accessed.

  20. 20.

    ZINECARD (dexrazoxane) [package insert] U.S. Food and Drug Administration website. URL. https://www.accessdata.fda.gov. Revised April 2014. Accessed Nov 2019.

  21. 21.

    Speyer JL, Green MD, Zeleniuch-Jacquotte A, et al. ICRF-187 permits longer treatment with doxorubicin in women with breast cancer. J Clin Oncol Off J Am Soc Clin Oncol. 1992;10(1):117–27.

    CAS  Google Scholar 

  22. 22.

    Swain SM, Whaley FS, Gerber MC, Weisberg S, York M, Spicer D, et al. Cardioprotection with dexrazoxane for doxorubicin-containing therapy in advanced breast cancer. J Clin Oncol Off J Am Soc Clin Oncol. 1997;15(4):1318–32.

    CAS  Google Scholar 

  23. 23.

    Tebbi CK, London WB, Friedman D, Villaluna D, de Alarcon PA, Constine LS, et al. Dexrazoxane-associated risk for acute myeloid leukemia/myelodysplastic syndrome and other secondary malignancies in pediatric Hodgkin’s disease. J Clin Oncol Off J Am Soc Clin Oncol. 2007;25(5):493–500.

    CAS  Google Scholar 

  24. 24.

    Asselin BL, Devidas M, Chen L, Franco VI, Pullen J, Borowitz MJ, et al. Cardioprotection and safety of dexrazoxane in patients treated for newly diagnosed T-cell acute lymphoblastic leukemia or advanced-stage lymphoblastic non-Hodgkin lymphoma: a report of the children’s oncology group randomized trial pediatric oncology group 9404. J Clin Oncol Off J Am Soc Clin Oncol. 2016;34(8):854–62.

    CAS  Google Scholar 

  25. 25.

    • Chow EJ, Asselin BL, Schwartz CL, et al. Late Mortality After Dexrazoxane treatment: a report from the Children’s Oncology Group. J Clin Oncol Off J Am Soc Clin Oncol. 2015;33(24):2639–45 This long-term outcome study of three randomized trials of dexrazoxane versus placebo in the pediatric and young adult population (n=1,008 in the pooled studies) with a median follow-up time of 12.6 years showed no difference in all cause mortality, cancer-related mortality, or cardiovascular mortality.

    CAS  Google Scholar 

  26. 26.

    Shaikh F, Dupuis LL, Alexander S, Gupta A, Mertens L, Nathan PC. Cardioprotection and second malignant neoplasms associated with dexrazoxane in children receiving anthracycline chemotherapy: a systematic review and meta-analysis. J Natl Cancer Inst. 2016;108(4):djv357.

    PubMed  Google Scholar 

  27. 27.

    Seif AE, Walker DM, Li Y, Huang YS, Kavcic M, Torp K, et al. Dexrazoxane exposure and risk of secondary acute myeloid leukemia in pediatric oncology patients. Pediatr Blood Cancer. 2015;62(4):704–9.

    CAS  PubMed  Google Scholar 

  28. 28.

    Cardioxane (dexrazoxane). European Medicines Agency website. url EMA/424445/2017. 2017_cardioxane-article-13-referral-questions-answers-cardioxane-dexrazoxane-powder-solution-injection_en.pdf>. Updated July 2017. Accessed Nov 2019.

  29. 29.

    Macedo AVS, Hajjar LA, Lyon AR, et al. Efficacy of dexrazoxane in preventing anthracycline cardiotoxicity in breast cancer. JACC: CardioOncol. 2019;1(1):68–79.

    Google Scholar 

  30. 30.

    U.S. National Institutes of Health, National Library of Medicine, Clinicaltrials.gov. Effects of dexrazoxane hydrochloride on biomarkers associated with cardiomyopathy and heart failure after cancer treatment. Available at: https://clinicaltrials.gov/ct2/show/NCT01790152. Accessed Nov 2019.

  31. 31.

    DOXIL (doxorubicin HCl liposome injection) [package insert] U.S. Food and Drug Administration website. URL. https://www.accessdata.fda.gov. Revised May 2007. Accessed Nov 2019.

  32. 32.

    Lancet JE, Uy GL, Cortes JE, Newell LF, Lin TL, Ritchie EK, et al. CPX-351 (cytarabine and daunorubicin) liposome for injection versus conventional cytarabine plus daunorubicin in older patients with newly diagnosed secondary acute myeloid leukemia. J Clin Oncol Off J Am Soc Clin Oncol. 2018;36(26):2684–92.

    CAS  Google Scholar 

  33. 33.

    Batist G, Ramakrishnan G, Rao CS, Chandrasekharan A, Gutheil J, Guthrie T, et al. Reduced cardiotoxicity and preserved antitumor efficacy of liposome-encapsulated doxorubicin and cyclophosphamide compared with conventional doxorubicin and cyclophosphamide in a randomized, multicenter trial of metastatic breast cancer. J Clin Oncol Off J Am Soc Clin Oncol. 2001;19(5):1444–54.

    CAS  Google Scholar 

  34. 34.

    Harris L, Batist G, Belt R, Rovira D, Navari R, Azarnia N, et al. Liposome-encapsulated doxorubicin compared with conventional doxorubicin in a randomized multicenter trial as first-line therapy of metastatic breast carcinoma. Cancer. 2002;94(1):25–36.

    CAS  PubMed  Google Scholar 

  35. 35.

    Myocet (doxorubicin). European Medicines Agency website. url https://www.ema.europa.eu/en/medicines/human/EPAR/myocet. Updated August 2018. Accessed Nov 2019.

  36. 36.

    • Salvi F, Luminari S, Tucci A, et al. Bleomycin, vinblastine and dacarbazine combined with nonpegylated liposomal doxorubicin (MBVD) in elderly (>/=70 years) or cardiopathic patients with Hodgkin lymphoma: a phase-II study from Fondazione Italiana Linfomi (FIL). Leuk Lymphoma. 2019;60(12):2890–2898. This small phase II study of 47 patients with Hodgkin lymphoma who were high risk for cardiac toxicity due to age greater than 69 or the presence of established cardiac disease suggested safety and efficacy with substitution of non-pegylated liposomal doxorubicin for conventional doxorubicin. Further randomized studies should be considered.

  37. 37.

    Fridrik MA, Jaeger U, Petzer A, Willenbacher W, Keil F, Lang A, et al. Cardiotoxicity with rituximab, cyclophosphamide, non-pegylated liposomal doxorubicin, vincristine and prednisolone compared to rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisolone in frontline treatment of patients with diffuse large B-cell lymphoma: a randomised phase-III study from the Austrian Cancer Drug Therapy Working Group [Arbeitsgemeinschaft Medikamentose Tumortherapie AGMT](NHL-14). Eur J Cancer. 2016;58:112–21.

    CAS  PubMed  Google Scholar 

  38. 38.

    Armenian SH, Lacchetti C, Barac A, Carver J, Constine LS, Denduluri N, et al. Prevention and monitoring of cardiac dysfunction in survivors of adult cancers: American society of clinical oncology clinical practice guideline. J Clin Oncol Off J Am Soc Clin Oncol. 2017;35(8):893–911.

    Google Scholar 

  39. 39.

    Shapira J, Gotfried M, Lishner M, Ravid M. Reduced cardiotoxicity of doxorubicin by a 6-hour infusion regimen. A prospective randomized evaluation. Cancer. 1990;65(4):870–3.

    CAS  PubMed  Google Scholar 

  40. 40.

    Casper ES, Gaynor JJ, Hajdu SI, Magill GB, Tan C, Friedrich C, et al. A prospective randomized trial of adjuvant chemotherapy with bolus versus continuous infusion of doxorubicin in patients with high-grade extremity soft tissue sarcoma and an analysis of prognostic factors. Cancer. 1991;68(6):1221–9.

    CAS  PubMed  Google Scholar 

  41. 41.

    Lipshultz SE, Giantris AL, Lipsitz SR, Kimball Dalton V, Asselin BL, Barr RD, et al. Doxorubicin administration by continuous infusion is not cardioprotective: the Dana-Farber 91-01 acute lymphoblastic leukemia protocol. J Clin Oncol Off J Am Soc Clin Oncol. 2002;20(6):1677–82.

    CAS  Google Scholar 

  42. 42.

    Lipshultz SE, Miller TL, Lipsitz SR, Neuberg DS, Dahlberg SE, Colan SD, et al. Continuous versus bolus infusion of doxorubicin in children with ALL: long-term cardiac outcomes. Pediatrics. 2012;130(6):1003–11.

    PubMed  PubMed Central  Google Scholar 

  43. 43.

    Yancy CW, Jessup M, Bozkurt B, et al. 2017 ACC/AHA/HFSA Focused Update of the 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology/American Heart Association task force on clinical practice guidelines and the Heart Failure Society of America. J Card Fail. 2017;70:776–803.

  44. 44.

    Vaynblat M, Shah HR, Bhaskaran D, Ramdev G, Davis WJ 3rd, Cunningham JN Jr, et al. Simultaneous angiotensin converting enzyme inhibition moderates ventricular dysfunction caused by doxorubicin. Eur J Heart Fail. 2002;4(5):583–6.

    CAS  PubMed  Google Scholar 

  45. 45.

    Wittayanukorn S, Qian J, Westrick SC, Billor N, Johnson B, Hansen RA. Prevention of trastuzumab and anthracycline-induced cardiotoxicity using angiotensin-converting enzyme inhibitors or beta-blockers in older adults with breast cancer. Am J Clin Oncol. 2018;41(9):909–18.

  46. 46.

    Gulati G, Heck SL, Ree AH, Hoffmann P, Schulz-Menger J, Fagerland MW, et al. Prevention of cardiac dysfunction during adjuvant breast cancer therapy (PRADA): a 2 x 2 factorial, randomized, placebo-controlled, double-blind clinical trial of candesartan and metoprolol. Eur Heart J. 2016;37(21):1671–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Kalay N, Basar E, Ozdogru I, Er O, Cetinkaya Y, Dogan A, et al. Protective effects of carvedilol against anthracycline-induced cardiomyopathy. J Am Coll Cardiol. 2006;48(11):2258–62.

    CAS  PubMed  Google Scholar 

  48. 48.

    Bosch X, Rovira M, Sitges M, Domènech A, Ortiz-Pérez JT, de Caralt TM, et al. Enalapril and carvedilol for preventing chemotherapy-induced left ventricular systolic dysfunction in patients with malignant hemopathies: the OVERCOME trial (preventiOn of left ventricular dysfunction with Enalapril and caRvedilol in patients submitted to intensive ChemOtherapy for the treatment of malignant hEmopathies). J Am Coll Cardiol. 2013;61(23):2355–62.

    CAS  PubMed  Google Scholar 

  49. 49.

    Avila MS, Ayub-Ferreira SM, de Barros Wanderley MR, et al. Carvedilol for prevention of chemotherapy-related cardiotoxicity: the CECCY trial. J Am Coll Cardiol. 2018;71(20):2281–90.

    CAS  PubMed  Google Scholar 

  50. 50.

    • Guglin M, Krischer J, Tamura R, et al. Randomized trial of lisinopril versus carvedilol to prevent trastuzumab cardiotoxicity in patients with breast cancer. J Am Coll Cardiol. 2019;73(22):2859–68 This is the largest randomized cardioprotection trial in breast cancer to date. A total of 468 trastuzumab-treated participants were randomized 1:1:1 to carvedilol, lisinopril, or placebo prior to trastuzumab initiation. The study was negative for the primary endpoint of LVEF declines, but a prespecified subgroup analysis in anthracycline+trastuzumab-treated patients suggests benefit to either carvedilol or lisinopril for prevention of LVEF declines and trastuzumab treatment interruptions.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. 51.

    Cardinale D, Colombo A, Lamantia G, et al. Anthracycline-induced cardiomyopathy: clinical relevance and response to pharmacologic therapy. J Am Coll Cardiol. 2010;55(3):213–20.

    CAS  PubMed  Google Scholar 

  52. 52.

    Negishi T, Thavendiranathan P, Negishi K, Marwick TH, Investigators S. Rationale and design of the strain surveillance of chemotherapy for improving cardiovascular outcomes: the SUCCOUR trial. J Am Coll Cardiol Img. 2018;11(8):1098–105.

    Google Scholar 

  53. 53.

    Vaduganathan M, Hirji SA, Qamar A, et al. Efficacy of neurohormonal therapies in preventing cardiotoxicity in patients with cancer undergoing chemotherapy. JACC: CardioOncol. 2019;1(1):54–65.

    Google Scholar 

  54. 54.

    Riad A, Bien S, Westermann D, Becher PM, Loya K, Landmesser U, et al. Pretreatment with statin attenuates the cardiotoxicity of doxorubicin in mice. Cancer Res. 2009;69(2):695–9.

    CAS  PubMed  Google Scholar 

  55. 55.

    Acar Z, Kale A, Turgut M, et al. Efficiency of atorvastatin in the protection of anthracycline-induced cardiomyopathy. J Am Coll Cardiol. 2011;58(9):988–9.

    PubMed  Google Scholar 

  56. 56.

    Seicean S, Seicean A, Plana JC, Budd GT, Marwick TH. Effect of statin therapy on the risk for incident heart failure in patients with breast cancer receiving anthracycline chemotherapy: an observational clinical cohort study. J Am Coll Cardiol. 2012;60(23):2384–90.

    CAS  PubMed  Google Scholar 

  57. 57.

    U.S. National Institutes of Health, National Library of Medicine, Clinicaltrials.gov. Preventing anthracycline cardiovascular toxicity with statins (PREVENT). Available at: https://clinicaltrials.gov/ct2/show/NCT01988571. Accessed 4 Nov 2019.

  58. 58.

    U.S. National Institutes of Health, National Library of Medicine, Clinicaltrials.gov. STOP-CA (statins to prevent the cardiotoxicity from anthracyclines). Available at: https://clinicaltrials.gov/ct2/show/NCT02943590. Accessed 4 Nov 2019.

  59. 59.

    Eijsvogels TM, Molossi S, Lee DC, Emery MS, Thompson PD. Exercise at the extremes: the amount of exercise to reduce cardiovascular events. J Am Coll Cardiol. 2016;67(3):316–29.

    PubMed  Google Scholar 

  60. 60.

    Wen CP, Wai JP, Tsai MK, Yang YC, Cheng TY, Lee MC, et al. Minimum amount of physical activity for reduced mortality and extended life expectancy: a prospective cohort study. Lancet. 2011;378(9798):1244–53.

    PubMed  Google Scholar 

  61. 61.

    Holmes MD, Chen WY, Feskanich D, Kroenke CH, Colditz GA. Physical activity and survival after breast cancer diagnosis. JAMA. 2005;293(20):2479–86.

    CAS  PubMed  Google Scholar 

  62. 62.

    Irwin ML, Smith AW, McTiernan A, Ballard-Barbash R, Cronin K, Gilliland FD, et al. Influence of pre- and postdiagnosis physical activity on mortality in breast cancer survivors: the health, eating, activity, and lifestyle study. J Clin Oncol Off J Am Soc Clin Oncol. 2008;26(24):3958–64.

    Google Scholar 

  63. 63.

    Jones LW, Habel LA, Weltzien E, et al. Exercise and risk of cardiovascular events in women with nonmetastatic breast cancer. J Clin Oncol Off J Am Soc Clin Oncol. 2016;34(23):2743–9.

    CAS  Google Scholar 

  64. 64.

    Okwuosa TM, Ray RM, Palomo A, et al. Pre-diagnosis exercise and cardiovascular events in primary breast cancer. JACC CardioOncol. 2019;1(1):41–50.

    Google Scholar 

  65. 65.

    • Scott JM, Zabor EC, Schwitzer E, et al. Efficacy of exercise therapy on cardiorespiratory fitness in patients with cancer: a systematic review and meta-analysis. J Clin Oncol Off J Am Soc Clin Oncol. 2018;36(22):2297–305 Meta-analysis of 48 RCTs of exercise therapy versus control including 3,632 patients with various cancers with significant improvement in cardiorespiratory fitness with exercise therapy.

    CAS  Google Scholar 

  66. 66.

    Rock CL, Doyle C, Demark-Wahnefried W, Meyerhardt J, Courneya KS, Schwartz AL, et al. Nutrition and physical activity guidelines for cancer survivors. CA Cancer J Clin. 2012;62(4):243–74.

    PubMed  Google Scholar 

  67. 67.

    Arnett DK, Blumenthal RS, Albert MA, Buroker AB, Goldberger ZD, Hahn EJ, et al. 2019 ACC/AHA guideline on the primary prevention of cardiovascular disease: executive summary: a report of the American College of Cardiology/American Heart Association task force on clinical practice guidelines. J Am Coll Cardiol. 2019;74(10):1376–414.

    PubMed  Google Scholar 

  68. 68.

    Powell KE, King AC, Buchner DM, et al. The scientific foundation for the physical activity guidelines for Americans, 2nd edition. J Phys Act Health. 2018:1–11. https://doi.org/10.1123/jpah.2018-0618.

  69. 69.

    Slamon DJ, Leyland-Jones B, Shak S, et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med. 2001;344(11):783–92.

    CAS  PubMed  Google Scholar 

  70. 70.

    Baselga J, Cortes J, Kim SB, et al. Pertuzumab plus trastuzumab plus docetaxel for metastatic breast cancer. N Engl J Med. 2012;366(2):109–19.

    CAS  Google Scholar 

  71. 71.

    Cameron D, Piccart-Gebhart MJ, Gelber RD, et al. 11 years’ follow-up of trastuzumab after adjuvant chemotherapy in HER2-positive early breast cancer: final analysis of the HERceptin Adjuvant (HERA) trial. Lancet. 2017;389(10075):1195–205.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. 72.

    Romond EH, Perez EA, Bryant J, Suman VJ, Geyer CE Jr, Davidson NE, et al. Trastuzumab plus adjuvant chemotherapy for operable HER2-positive breast cancer. N Engl J Med. 2005;353(16):1673–84.

    CAS  PubMed  Google Scholar 

  73. 73.

    Slamon D, Eiermann W, Robert N, et al. Adjuvant trastuzumab in HER2-positive breast cancer. N Engl J Med. 2011;365(14):1273–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. 74.

    Oh DY, Bang YJ. HER2-targeted therapies - a role beyond breast cancer. Nat Rev Clin Oncol. 2020;17:33–48.

  75. 75.

    Kitani T, Ong SG, Lam CK, Rhee JW, Zhang JZ, Oikonomopoulos A, et al. Human-induced pluripotent stem cell model of trastuzumab-induced cardiac dysfunction in patients with breast cancer. Circulation. 2019;139(21):2451–65.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. 76.

    Procter M, Suter TM, de Azambuja E, Dafni U, van Dooren V, Muehlbauer S, et al. Longer-term assessment of trastuzumab-related cardiac adverse events in the Herceptin Adjuvant (HERA) trial. J Clin Oncol Off J Am Soc Clin Oncol. 2010;28(21):3422–8.

    Google Scholar 

  77. 77.

    Tan-Chiu E, Yothers G, Romond E, Geyer CE Jr, Ewer M, Keefe D, et al. Assessment of cardiac dysfunction in a randomized trial comparing doxorubicin and cyclophosphamide followed by paclitaxel, with or without trastuzumab as adjuvant therapy in node-positive, human epidermal growth factor receptor 2-overexpressing breast cancer: NSABP B-31. J Clin Oncol Off J Am Soc Clin Oncol. 2005;23(31):7811–9.

    CAS  Google Scholar 

  78. 78.

    Perez EA, Suman VJ, Davidson NE, Sledge GW, Kaufman PA, Hudis CA, et al. Cardiac safety analysis of doxorubicin and cyclophosphamide followed by paclitaxel with or without trastuzumab in the North Central Cancer Treatment Group N9831 adjuvant breast cancer trial. J Clin Oncol Off J Am Soc Clin Oncol. 2008;26(8):1231–8.

    CAS  Google Scholar 

  79. 79.

    Chavez-MacGregor M, Zhang N, Buchholz TA, et al. Trastuzumab-related cardiotoxicity among older patients with breast cancer. J Clin Oncol Off J Am Soc Clin Oncol. 2013;31(33):4222–8.

    CAS  Google Scholar 

  80. 80.

    Pituskin E, Mackey JR, Koshman S, Jassal D, Pitz M, Haykowsky MJ, et al. Multidisciplinary approach to novel therapies in cardio-oncology research (MANTICORE 101-breast): a randomized trial for the prevention of trastuzumab-associated cardiotoxicity. J Clin Oncol Off J Am Soc Clin Oncol. 2017;35(8):870–7.

    CAS  Google Scholar 

  81. 81.

    Boekhout AH, Gietema JA, Milojkovic Kerklaan B, van Werkhoven E, Altena R, Honkoop A, et al. Angiotensin II-receptor inhibition with candesartan to prevent trastuzumab-related cardiotoxic effects in patients with early breast cancer: a randomized clinical trial. JAMA Oncol. 2016;2(8):1030–7.

    PubMed  Google Scholar 

  82. 82.

    • Lynce F, Barac A, Geng X, et al. Prospective evaluation of the cardiac safety of HER2-targeted therapies in patients with HER2-positive breast cancer and compromised heart function: the SAFE-HEaRt study. Breast Cancer Res Treat. 2019;175(3):595–603 This is the first study of anti-HER2 treatment in patients with LVEF 40–49% and no HF symptoms (stage B HF) with HF therapy optimization and close monitoring. Out of 30 patients included, 90% completed planned anti-HER2 therapy, and 10% of patients had a cardiac event or significant reduction in LVEF. This pilot study supports the need for randomized trials to assess net clinical benefit with anti-HER2 therapy in patients with existing cardiomyopathy.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. 83.

    Leong DP, Cosman T, Alhussein MM, et al. Safety of continuing trastuzumab despite mild cardiotoxicity. JACC CardioOncol. 2019;1(1):1–10.

    Google Scholar 

  84. 84.

    Stewart FA, Seemann I, Hoving S, Russell NS. Understanding radiation-induced cardiovascular damage and strategies for intervention. Clin Oncol. 2013;25(10):617–24.

    CAS  Google Scholar 

  85. 85.

    Saiki H, Petersen IA, Scott CG, et al. Risk of heart failure with preserved ejection fraction in older women after contemporary radiotherapy for breast cancer. Circulation. 2017;135(15):1388–96.

    PubMed  PubMed Central  Google Scholar 

  86. 86.

    Darby SC, Ewertz M, Hall P. Ischemic heart disease after breast cancer radiotherapy. N Engl J Med. 2013;368(26):2527.

    CAS  PubMed  Google Scholar 

  87. 87.

    Taylor C, McGale P, Bronnum D, et al. Cardiac structure injury after radiotherapy for breast cancer: cross-sectional study with individual patient data. J Clin Oncol Off J Am Soc Clin Oncol. 2018;36(22):2288–96.

    Google Scholar 

  88. 88.

    • Atkins KM, Rawal B, Chaunzwa TL, et al. Cardiac radiation dose, cardiac disease, and mortality in patients with lung cancer. J Am Coll Cardiol. 2019;73(23):2976–87 This large retrospective study of 748 patients with locally advanced lung cancer treated with radiation therapy demonstrate that mean heart dose is associated with significantly increased risk of major adverse cardiac events despite the competing risk of cancer-specific death.

    PubMed  PubMed Central  Google Scholar 

  89. 89.

    Arthurs E, Hanna TP, Zaza K, Peng Y, Hall SF. Stroke after radiation therapy for head and neck cancer: what is the risk? Int J Radiat Oncol Biol Phys. 2016;96(3):589–96.

    PubMed  Google Scholar 

  90. 90.

    van Nimwegen FA, Ntentas G, Darby SC, Schaapveld M, Hauptmann M, Lugtenburg PJ, et al. Risk of heart failure in survivors of Hodgkin lymphoma: effects of cardiac exposure to radiation and anthracyclines. Blood. 2017;129(16):2257–65.

    PubMed  PubMed Central  Google Scholar 

  91. 91.

    • Chow EJ, Chen Y, Hudson MM, et al. Prediction of ischemic heart disease and stroke in survivors of childhood cancer. J Clin Oncol Off J Am Soc Clin Oncol. 2018;36(1):44–52 This manuscript reports an externally validated clinical prediction model for ischemic heart disease and stroke in childhood cancer survivors incorporating treatment-related variables.

    CAS  Google Scholar 

  92. 92.

    Lai J, Hu S, Luo Y, et al. Meta-analysis of deep inspiration breath hold (DIBH) versus free breathing (FB) in postoperative radiotherapy for left-side breast cancer. Breast Cancer. 2020;27(2):299–307.

  93. 93.

    Everett AS, Hoppe BS, Louis D, McDonald A, Morris CG, Mendenhall NP, et al. Comparison of techniques for involved-site radiation therapy in patients with lower mediastinal lymphoma. Pract Radiat Oncol. 2019;9(6):426–34.

    PubMed  Google Scholar 

  94. 94.

    Chun SG, Hu C, Choy H, et al. Impact of intensity-modulated radiation therapy technique for locally advanced non-small-cell lung cancer: a secondary analysis of the NRG Oncology RTOG 0617 randomized clinical trial. J Clin Oncol Off J Am Soc Clin Oncol. 2017;35(1):56–62.

    Google Scholar 

  95. 95.

    Lin SH, Zhang N, Godby J, Wang J, Marsh GD, Liao Z, et al. Radiation modality use and cardiopulmonary mortality risk in elderly patients with esophageal cancer. Cancer. 2016;122(6):917–28.

    PubMed  PubMed Central  Google Scholar 

  96. 96.

    Baselet B, Rombouts C, Benotmane AM, Baatout S, Aerts A. Cardiovascular diseases related to ionizing radiation: the risk of low-dose exposure (review). Int J Mol Med. 2016;38(6):1623–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. 97.

    Boulet J, Pena J, Hulten EA, et al. Statin use and risk of vascular events among cancer patients after radiotherapy to the thorax, head, and neck. J Am Heart Assoc. 2019;8(13):e005996.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. 98.

    Grundy SM, Stone NJ, Bailey AL, Beam C, Birtcher KK, Blumenthal RS, et al. 2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA guideline on the management of blood cholesterol: a report of the American College of Cardiology/American Heart Association task force on clinical practice guidelines. Circulation. 2019;139(25):e1082–143.

    PubMed  Google Scholar 

  99. 99.

    Sternberg CN, Davis ID, Mardiak J, Szczylik C, Lee E, Wagstaff J, et al. Pazopanib in locally advanced or metastatic renal cell carcinoma: results of a randomized phase III trial. J Clin Oncol Off J Am Soc Clin Oncol. 2010;28(6):1061–8.

    CAS  Google Scholar 

  100. 100.

    Ferrara N, Adamis AP. Ten years of anti-vascular endothelial growth factor therapy. Nat Rev Drug Discov. 2016;15(6):385–403.

    CAS  PubMed  Google Scholar 

  101. 101.

    Touyz RM, Lang NN, Herrmann J, van den Meiracker AH, Danser AHJ. Recent advances in hypertension and cardiovascular toxicities with vascular endothelial growth factor inhibition. Hypertension. 2017;70(2):220–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  102. 102.

    Narayan V, Keefe S, Haas N, Wang L, Puzanov I, Putt M, et al. Prospective evaluation of sunitinib-induced cardiotoxicity in patients with metastatic renal cell carcinoma. Clin Cancer Res. 2017;23(14):3601–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  103. 103.

    Waliany S, Sainani KL, Park LS, Zhang CA, Srinivas S, Witteles RM. Increase in blood pressure associated with tyrosine kinase inhibitors targeting vascular endothelial growth factor. JACC CardioOncol. 2019;1(1):24–36.

    Google Scholar 

  104. 104.

    Bottinor WJ, Shuey MM, Manouchehri A, et al. Renin-angiotensin-aldosterone system modulates blood pressure response during vascular endothelial growth factor receptor inhibition. JACC CardioOncol. 2019;1(1):14–23.

    Google Scholar 

  105. 105.

    Wirth LJ, Tahara M, Robinson B, Francis S, Brose MS, Habra MA, et al. Treatment-emergent hypertension and efficacy in the phase 3 study of (E7080) lenvatinib in differentiated cancer of the thyroid (SELECT). Cancer. 2018;124(11):2365–72.

    CAS  PubMed  Google Scholar 

  106. 106.

    Mahmood SS, Fradley MG, Cohen JV, Nohria A, Reynolds KL, Heinzerling LM, et al. Myocarditis in patients treated with immune checkpoint inhibitors. J Am Coll Cardiol. 2018;71(16):1755–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  107. 107.

    Johnson DB, Balko JM, Compton ML, Chalkias S, Gorham J, Xu Y, et al. Fulminant myocarditis with combination immune checkpoint blockade. N Engl J Med. 2016;375(18):1749–55.

    PubMed  PubMed Central  Google Scholar 

  108. 108.

    Escudier M, Cautela J, Malissen N, et al. Clinical features, management, and outcomes of immune checkpoint inhibitor-related cardiotoxicity. Circulation. 2017;136(21):2085–7.

    PubMed  Google Scholar 

  109. 109.

    Reuben A, Petacciade Macedo M, McQuade J, et al. Comparative immunologic characterization of autoimmune giant cell myocarditis with ipilimumab. Oncoimmunology. 2017;6(12):e1361097.

    PubMed  PubMed Central  Google Scholar 

  110. 110.

    Salem JE, Manouchehri A, Moey M, Lebrun-Vignes B, Bastarache L, Pariente A, et al. Cardiovascular toxicities associated with immune checkpoint inhibitors: an observational, retrospective, pharmacovigilance study. Lancet Oncol. 2018;19(12):1579–89.

    CAS  PubMed  PubMed Central  Google Scholar 

  111. 111.

    Esfahani K, Buhlaiga N, Thebault P, Lapointe R, Johnson NA, Miller WH Jr. Alemtuzumab for immune-related myocarditis due to PD-1 therapy. N Engl J Med. 2019;380(24):2375–6.

    PubMed  Google Scholar 

  112. 112.

    Salem JE, Allenbach Y, Vozy A, Brechot N, Johnson DB, Moslehi JJ, et al. Abatacept for severe immune checkpoint inhibitor-associated myocarditis. N Engl J Med. 2019;380(24):2377–9.

    PubMed  Google Scholar 

  113. 113.

    Neelapu SS, Locke FL, Bartlett NL, Lekakis LJ, Miklos DB, Jacobson CA, et al. Axicabtagene ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma. N Engl J Med. 2017;377(26):2531–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  114. 114.

    Maude SL, Laetsch TW, Buechner J, et al. Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. N Engl J Med. 2018;378(5):439–48.

    CAS  PubMed  PubMed Central  Google Scholar 

  115. 115.

    Burstein DS, Maude S, Grupp S, Griffis H, Rossano J, Lin K. Cardiac profile of chimeric antigen receptor T cell therapy in children: a single-institution experience. Biol Blood Marrow Transplant. 2018;24(8):1590–5.

    PubMed  Google Scholar 

  116. 116.

    Alvi RM, Frigault MJ, Fradley MG, Jain MD, Mahmood SS, Awadalla M, et al. Cardiovascular events among adults treated with chimeric antigen receptor T-cells (CAR-T). J Am Coll Cardiol. 2019;74(25):3099–108.

    CAS  PubMed  Google Scholar 

  117. 117.

    Polk A, Vaage-Nilsen M, Vistisen K, Nielsen DL. Cardiotoxicity in cancer patients treated with 5-fluorouracil or capecitabine: a systematic review of incidence, manifestations and predisposing factors. Cancer Treat Rev. 2013;39(8):974–84.

    CAS  PubMed  Google Scholar 

  118. 118.

    Upshaw JN, O'Neill A, Carver JR, Dimond EP, Denlinger CS, Kircher SM, et al. Fluoropyrimidine cardiotoxicity: time for a contemporaneous appraisal. Clin Colorectal Cancer. 2019;18(1):44–51.

    PubMed  Google Scholar 

  119. 119.

    de Forni M, Malet-Martino MC, Jaillais P, et al. Cardiotoxicity of high-dose continuous infusion fluorouracil: a prospective clinical study. J Clin Oncol Off J Am Soc Clin Oncol. 1992;10(11):1795–801.

    Google Scholar 

  120. 120.

    Wacker A, Lersch C, Scherpinski U, Reindl L, Seyfarth M. High incidence of angina pectoris in patients treated with 5-fluorouracil. A planned surveillance study with 102 patients. Oncology. 2003;65(2):108–12.

    CAS  PubMed  Google Scholar 

  121. 121.

    Kosmas C, Kallistratos MS, Kopterides P, Syrios J, Skopelitis H, Mylonakis N, et al. Cardiotoxicity of fluoropyrimidines in different schedules of administration: a prospective study. J Cancer Res Clin Oncol. 2008;134(1):75–82.

    CAS  PubMed  Google Scholar 

  122. 122.

    • Clasen SC, Ky B, O'Quinn R, Giantonio B, Teitelbaum U, Carver JR. Fluoropyrimidine-induced cardiac toxicity: challenging the current paradigm. J Gastrointest Oncol. 2017;8(6):970–9 This single-center case series reported successful fluoropyrimidine rechallenge and treatment using the following: (1) concomitant nitrates and calcium channel blockers; (2) bolus instead of continuous infusion 5-fluorouracil and; (3) close monitoring.

    PubMed  PubMed Central  Google Scholar 

  123. 123.

    Grundy SM, Stone NJ, Bailey AL, Beam C, Birtcher KK, Blumenthal RS, et al. 2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA guideline on the Management of blood cholesterol: executive summary: a report of the American College of Cardiology/American Heart Association task force on clinical practice guidelines. Circulation. 2019;139(25):e1046–81.

    PubMed  Google Scholar 

  124. 124.

    Whelton PK, Carey RM, Aronow WS, Casey de Jr, Collins KJ, Dennison Himmelfarb C, et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: executive summary: a report of the American College of Cardiology/American Heart Association task force on clinical practice guidelines. Circulation. 2018;138(17):e426–83.

    PubMed  Google Scholar 

  125. 125.

    Fihn SD, Blankenship JC, Alexander KP, et al. 2014 ACC/AHA/AATS/PCNA/SCAI/STS focused update of the guideline for the diagnosis and management of patients with stable ischemic heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines, and the American Association for Thoracic Surgery, Preventive Cardiovascular Nurses Association, Society for Cardiovascular Angiography and Interventions, and Society of Thoracic Surgeons. J Am Coll Cardiol. 2014;64(18):1929–49.

    PubMed  Google Scholar 

  126. 126.

    Levine GN, Bates ER, Blankenship JC, Bailey SR, Bittl JA, Cercek B, et al. 2015 ACC/AHA/SCAI focused update on primary percutaneous coronary intervention for patients with ST-elevation myocardial infarction: an update of the 2011 ACCF/AHA/SCAI guideline for percutaneous coronary intervention and the 2013 ACCF/AHA guideline for the management of ST-elevation myocardial infarction. J Am Coll Cardiol. 2016;67(10):1235–50.

    PubMed  Google Scholar 

  127. 127.

    Ma WW, Saif MW, El-Rayes BF, et al. Emergency use of uridine triacetate for the prevention and treatment of life-threatening 5-fluorouracil and capecitabine toxicity. Cancer. 2017;123(2):345–56.

    CAS  PubMed  Google Scholar 

  128. 128.

    Lee JL, Kang YK, Kang HJ, Lee KH, Zang DY, Ryoo BY, et al. A randomised multicentre phase II trial of capecitabine vs S-1 as first-line treatment in elderly patients with metastatic or recurrent unresectable gastric cancer. Br J Cancer. 2008;99(4):584–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  129. 129.

    Wiczer TE, Levine LB, Brumbaugh J, Coggins J, Zhao Q, Ruppert AS, et al. Cumulative incidence, risk factors, and management of atrial fibrillation in patients receiving ibrutinib. Blood Adv. 2017;1(20):1739–48.

    CAS  PubMed  PubMed Central  Google Scholar 

  130. 130.

    Yun S, Vincelette ND, Acharya U, Abraham I. Risk of atrial fibrillation and bleeding diathesis associated with ibrutinib treatment: a systematic review and pooled analysis of four randomized controlled trials. Clin Lymphoma Myeloma Leuk. 2017;17(1):31–7 e13.

    PubMed  Google Scholar 

  131. 131.

    Guha A, Derbala MH, Zhao Q, Wiczer TE, Woyach JA, Byrd JC, et al. Ventricular arrhythmias following ibrutinib initiation for lymphoid malignancies. J Am Coll Cardiol. 2018;72(6):697–8.

    PubMed  Google Scholar 

  132. 132.

    Lampson BL, Yu L, Glynn RJ, Barrientos JC, Jacobsen ED, Banerji V, et al. Ventricular arrhythmias and sudden death in patients taking ibrutinib. Blood. 2017;129(18):2581–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  133. 133.

    Salem JE, Manouchehri A, Bretagne M, Lebrun-Vignes B, Groarke JD, Johnson DB, et al. Cardiovascular toxicities associated with ibrutinib. J Am Coll Cardiol. 2019;74(13):1667–78.

    CAS  PubMed  Google Scholar 

  134. 134.

    McMullen JR, Boey EJ, Ooi JY, Seymour JF, Keating MJ, Tam CS. Ibrutinib increases the risk of atrial fibrillation, potentially through inhibition of cardiac PI3K-Akt signaling. Blood. 2014;124(25):3829–30.

    CAS  PubMed  Google Scholar 

  135. 135.

    Wang ML, Rule S, Martin P, Goy A, Auer R, Kahl BS, et al. Targeting BTK with ibrutinib in relapsed or refractory mantle-cell lymphoma. N Engl J Med. 2013;369(6):507–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  136. 136.

    Shatzel JJ, Olson SR, Tao DL, McCarty OJT, Danilov AV, DeLoughery TG. Ibrutinib-associated bleeding: pathogenesis, management and risk reduction strategies. J Thromb Haemost. 2017;15(5):835–47.

    CAS  PubMed  PubMed Central  Google Scholar 

  137. 137.

    Cortes JE, Saglio G, Kantarjian HM, Baccarani M, Mayer J, Boqué C, et al. Final 5-year study results of DASISION: the dasatinib versus imatinib study in treatment-naive chronic myeloid leukemia patients trial. J Clin Oncol Off J Am Soc Clin Oncol. 2016;34(20):2333–40.

    CAS  Google Scholar 

  138. 138.

    Hochhaus A, Saglio G, Hughes TP, Larson RA, Kim DW, Issaragrisil S, et al. Long-term benefits and risks of frontline nilotinib vs imatinib for chronic myeloid leukemia in chronic phase: 5-year update of the randomized ENESTnd trial. Leukemia. 2016;30(5):1044–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  139. 139.

    Cortes JE, Kim DW, Pinilla-Ibarz J, le Coutre P, Paquette R, Chuah C, et al. A phase 2 trial of ponatinib in Philadelphia chromosome-positive leukemias. N Engl J Med. 2013;369(19):1783–96.

    CAS  PubMed  Google Scholar 

  140. 140.

    Kantarjian H, Giles F, Wunderle L, Bhalla K, O'Brien S, Wassmann B, et al. Nilotinib in imatinib-resistant CML and Philadelphia chromosome-positive ALL. N Engl J Med. 2006;354(24):2542–51.

    PubMed  Google Scholar 

  141. 141.

    Hadzijusufovic E, Albrecht-Schgoer K, Huber K, Hoermann G, Grebien F, Eisenwort G, et al. Nilotinib-induced vasculopathy: identification of vascular endothelial cells as a primary target site. Leukemia. 2017;31(11):2388–97.

    CAS  PubMed  PubMed Central  Google Scholar 

  142. 142.

    Hamadi A, Grigg AP, Dobie G, Burbury KL, Schwarer AP, Kwa FA, et al. Ponatinib tyrosine kinase inhibitor induces a thromboinflammatory response. Thromb Haemost. 2019;119(7):1112–23.

    PubMed  Google Scholar 

  143. 143.

    Rea D, Mirault T, Cluzeau T, Gautier JF, Guilhot F, Dombret H, et al. Early onset hypercholesterolemia induced by the 2nd-generation tyrosine kinase inhibitor nilotinib in patients with chronic phase-chronic myeloid leukemia. Haematologica. 2014;99(7):1197–203.

    PubMed  PubMed Central  Google Scholar 

  144. 144.

    Minasian LM, Dimond E, Davis M, et al. The evolving design of NIH-funded cardio-oncology studies to address cancer treatment-related cardiovascular toxicity. JACC: CardioOncol. 2019;1(1):105–13.

    Google Scholar 

  145. 145.

    Shelburne N, Simonds NI, Adhikari B, Alley M, Desvigne-Nickens P, Dimond E, et al. Changing hearts and minds: improving outcomes in cancer treatment-related cardiotoxicity. Curr Oncol Rep. 2019;21(1):9.

    PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jenica N. Upshaw.

Ethics declarations

Conflict of Interest

Jenica N. Upshaw declares that she has no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Cardio-oncology

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Upshaw, J.N. Cardioprotective Strategies to Prevent Cancer Treatment-Related Cardiovascular Toxicity: a Review. Curr Oncol Rep 22, 72 (2020). https://doi.org/10.1007/s11912-020-00923-w

Download citation

Keywords

  • Cardio-oncology
  • Heart failure
  • Chemotherapy
  • Anthracyclines
  • Radiation
  • Cardiovascular disease