Diagnostic and Therapeutic Considerations for Extramedullary Leukemia


Purpose of Review

The purpose of this review is to summarize the current literature on the presentation, diagnosis, and treatment options available for extramedullary (EM) manifestations of leukemia including myeloid sarcoma (MS) and leukemia cutis (LC).

Recent Findings

Advanced imaging using 18FDG-PET/CT is an effective screening tool for EM manifestations of leukemia. The role of radiation therapy has been more clearly delineated in the treatment of both MS and LC. FDA-approved targeted agents have improved outcomes in patients with AML but have not demonstrated improvements specifically for EM; however, a checkpoint inhibitor, Ipilimumab, holds promise in impacting local control for the treatment of AML-related EM.


EM manifestations of leukemia pose significant therapeutic challenges. Treatment of EM is predicated on multiple factors including the presence of concomitant bone marrow involvement, AML-risk classification, and timing of presentation at initial diagnosis or relapse following systemic therapy.

This is a preview of subscription content, log in to check access.

Fig. 1


Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.

    Reardon G, Moloney WC. Chloroma and related myeloblastic neoplasms. JAMA Intern Med. 1961;108(6):864–71.

    CAS  Google Scholar 

  2. 2.

    Burns A, Pattison GS. Observations on the surgical anatomy of the head and neck, illustrated by cases and engravings. Baltimore: F. Lucas, jr., E.J. Coale, and Cushing & Jewett; Philadelphia, H Carey & I Lea; 1823.

    Google Scholar 

  3. 3.

    Dock G, Warthin A. A new case of chloroma with leukemia. Trans Assoc Am Phys. 1904;19:64–115.

    Google Scholar 

  4. 4.

    Rappaport H. Tumors of the hematopoietic system. Atlas of tumor pathology. 1966.

  5. 5.

    Liu PI, et al. Autopsy study of granulocytic sarcoma (chloroma) in patients with myelogenous leukemia, Hiroshima-Nagasaki 1949-1969. Cancer. 1973;31(4):948–55.

    CAS  PubMed  Google Scholar 

  6. 6.

    Neiman RS, Barcos M, Berard C, Bonner H, Mann R, Rydell RE, et al. Granulocytic sarcoma: a clinicopathologic study of 61 biopsied cases. Cancer. 1981;48(6):1426–37.

    CAS  PubMed  Google Scholar 

  7. 7.

    Wiernik PH, SERPICK AA. Granulocytic sarcoma (chloroma). Blood. 1970;35(3):361–9.

    CAS  PubMed  Google Scholar 

  8. 8.

    Eshghabadi M, Shojania AM, Carr I. Isolated granulocytic sarcoma: report of a case and review of the literature. J Clin Oncol. 1986;4(6):912–7.

    CAS  PubMed  Google Scholar 

  9. 9.

    Szomor A, Passweg JR, Tichelli A, Hoffmann T, Speck B, Gratwohl A. Myeloid leukemia and myelodysplastic syndrome relapsing as granulocytic sarcoma (chloroma) after allogeneic bone marrow transplantation. Ann Hematol. 1997;75(5–6):239–41.

    CAS  PubMed  Google Scholar 

  10. 10.

    Bekassy A, et al. Granulocytic sarcoma after allogeneic bone marrow transplantation: a retrospective European multicenter survey. Acute and chronic leukemia working parties of the European Group for Blood and Marrow Transplantation. Bone Marrow Transplant. 1996;17(5):801–8.

    CAS  PubMed  Google Scholar 

  11. 11.

    Byrd JC, Edenfield WJ, Shields DJ, Dawson NA. Extramedullary myeloid cell tumors in acute nonlymphocytic leukemia: a clinical review. J Clin Oncol. 1995;13(7):1800–16.

    CAS  PubMed  Google Scholar 

  12. 12.

    Paydas S, Zorludemir S, Ergin M. Granulocytic sarcoma: 32 cases and review of the literature. Leukemia & Lymphoma. 2006;47(12):2527–41.

    Google Scholar 

  13. 13.

    Pui MH, Fletcher BD, Langston JW. Granulocytic sarcoma in childhood leukemia: imaging features. Radiology. 1994;190(3):698–702.

    CAS  PubMed  Google Scholar 

  14. 14.

    •• Stölzel F, et al. The prevalence of extramedullary acute myeloid leukemia detected by 18FDG-PET/CT: final results from the Prospective PETAML Trial. Haematologica. 2019. https://doi.org/10.3324/haematol.2019.223032. This is the first prospective trial to study the role of 18FDG-PET/CT imaging as a screening tool for EM manifestations of leukemia. The authors assess 93 patients with AML and determined the prevalence of EM to be 22% in this cohort and 18FDG-PET/CT imaging detected EM manifestations of AML in 19% of patients. The authors concluded that the sensitivity and specificity of 18FDG-PET/CT imaging for detecting EM manifestations of AML to be 77% and 97%, respectively.

  15. 15.

    Breccia M, Mandelli F, Petti MC, D’Andrea M, Pescarmona E, Pileri SA, et al. Clinico-pathological characteristics of myeloid sarcoma at diagnosis and during follow-up: report of 12 cases from a single institution. Leuk Res. 2004;28(11):1165–9.

    PubMed  Google Scholar 

  16. 16.

    Ngu IW, Sinclair EC, Greenaway S, Greenberg ML. Unusual presentation of granulocytic sarcoma in the breast: a case report and review of the literature. Diagn Cytopathol. 2001;24(1):53–7.

    CAS  PubMed  Google Scholar 

  17. 17.

    Lan T-Y, Lin DT, Tien HF, Yang RS, Chen CY, Wu K. Prognostic factors of treatment outcomes in patients with granulocytic sarcoma. Acta Haematol. 2009;122(4):238–46.

    PubMed  Google Scholar 

  18. 18.

    Tsimberidou AM, Kantarjian HM, Estey E, Cortes JE, Verstovsek S, Faderl S, et al. Outcome in patients with nonleukemic granulocytic sarcoma treated with chemotherapy with or without radiotherapy. Leukemia. 2003;17(6):1100–3.

    PubMed  Google Scholar 

  19. 19.

    Tsimberidou AM, et al. Myeloid sarcoma is associated with superior event-free survival and overall survival compared with acute myeloid leukemia. Cancer: Interdisciplinary International Journal of the American Cancer Society. 2008;113(6):1370–8.

    Google Scholar 

  20. 20.

    Movassaghian M, Brunner AM, Blonquist TM, Sadrzadeh H, Bhatia A, Perry AM, et al. Presentation and outcomes among patients with isolated myeloid sarcoma: a surveillance, epidemiology, and end results database analysis. Leukemia & Lymphoma. 2015;56(6):1698–703.

    Google Scholar 

  21. 21.

    Pileri S, Ascani S, Cox MC, Campidelli C, Bacci F, Piccioli M, et al. Myeloid sarcoma: clinico-pathologic, phenotypic and cytogenetic analysis of 92 adult patients. Leukemia. 2007;21(2):340–50.

    CAS  PubMed  Google Scholar 

  22. 22.

    Chevallier P, Mohty M, Lioure B, Michel G, Contentin N, Deconinck E, et al. Allogeneic hematopoietic stem-cell transplantation for myeloid sarcoma: a retrospective study from the SFGM-TC. J Clin Oncol. 2008;26(30):4940–3.

    PubMed  Google Scholar 

  23. 23.

    •• Kaur V, et al. Clinical characteristics, molecular profile and outcomes of myeloid sarcoma: a single institution experience over 13 years. Hematology. 2018;23(1):17. This is a retrospective review of 23 patients with diagnosed MS over a 13 year period (2002–2015) that examines the clinical characteristics, epidemiology, pathologic findings, and treatment outcomes in MS. This study determined that failure to achieve complete remission with induction chemotherapy, and age <65 are associated with poor outcomes in patients with MS.

    CAS  PubMed  Google Scholar 

  24. 24.

    Löwenberg B, Pabst T, Vellenga E, van Putten W, Schouten HC, Graux C, et al. Cytarabine dose for acute myeloid leukemia. N Engl J Med. 2011;364(11):1027–36.

    PubMed  Google Scholar 

  25. 25.

    Burnett A, Wetzler M, Lowenberg B. Therapeutic advances in acute myeloid leukemia. J Clin Oncol. 2011;29(5):487–94.

    PubMed  Google Scholar 

  26. 26.

    Fernandez HF, Sun Z, Yao X, Litzow MR, Luger SM, Paietta EM, et al. Anthracycline dose intensification in acute myeloid leukemia. N Engl J Med. 2009;361(13):1249–59.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Meis JM, et al. Granulocytic sarcoma in nonleukemic patients. Cancer. 1986;58(12):2697–709.

    CAS  PubMed  Google Scholar 

  28. 28.

    Yamauchi K, Yasuda M. Comparison in treatments of nonleukemic granulocytic sarcoma: report of two cases and a review of 72 cases in the literature. Cancer. 2002;94(6):1739–46.

    PubMed  Google Scholar 

  29. 29.

    Imrie KR, Kovacs MJ, Selby D, Lipton J, Patterson BJ, Pantalony D, et al. Isolated chloroma: the effect of early antileukemic therapy. Ann Intern Med. 1995;123(5):351–3.

    CAS  PubMed  Google Scholar 

  30. 30.

    Reinhardt D, Creutzig U. Isolated myelosarcoma in children--update and review. Leukemia & Lymphoma. 2002;43(3):565–74.

    CAS  Google Scholar 

  31. 31.

    Döhner H, Estey EH, Amadori S, Appelbaum FR, Büchner T, Burnett AK, et al. Diagnosis and management of acute myeloid leukemia in adults: recommendations from an international expert panel, on behalf of the European LeukemiaNet. Blood. 2010;115(3):453–74.

    Google Scholar 

  32. 32.

    •• Bakst RL, et al. Use of radiation in extramedullary leukemia/chloroma: guidelines from the International Lymphoma Radiation Oncology Group. International Journal of Radiation Oncology* Biology* Physics. 2018;102(2):314–9. Updated guidelines from the International Lymphoma Radiation Oncology Group published in 2018 highlight the current role of radiation therapy for patients with leukemia and EM manifestationsof leukemia. Low dose radiation (20-24 Gy in 2 Gy/fraction) is very effective in achieving local, durable tumor control with response rates of 97% and symptom relief in 95%.

    Google Scholar 

  33. 33.

    Longacre TA, Smoller BR. Leukemia cutis: analysis of 50 biopsy-proven cases with an emphasis on occurrence in myelodysplastic syndromes. Am J Clin Pathol. 1993;100(3):276–84.

    CAS  PubMed  Google Scholar 

  34. 34.

    Cho-Vega JH, Medeiros LJ, Prieto VG, Vega F. Leukemia cutis. Am J Clin Pathol. 2008;129(1):130–42.

    PubMed  Google Scholar 

  35. 35.

    Agis H, Weltermann A, Fonatsch C, Haas O, Mitterbauer G, Müllauer L, et al. A comparative study on demographic, hematological, and cytogenetic findings and prognosis in acute myeloid leukemia with and without leukemia cutis. Ann Hematol. 2002;81(2):90–5.

    CAS  PubMed  Google Scholar 

  36. 36.

    Kaddu S, et al. Specific cutaneous infiltrates in patients with myelogenous leukemia: a clinicopathologic study of 26 patients with assessment of diagnostic criteria. J Am Acad Dermatol. 1999;40(6):966–78.

    CAS  PubMed  Google Scholar 

  37. 37.

    Tobelem G, Jacquillat C, Chastang C, Auclerc MF, Lechevallier T, Weil M, et al. Acute monoblastic leukemia: a clinical and biologic study of 74 cases. Blood. 1980;55(1):71–6.

    CAS  PubMed  Google Scholar 

  38. 38.

    Resnik KS, Brod BB. Leukemia cutis in congenital leukemia: analysis and review of the world literature with report of an additional case. Arch Dermatol. 1993;129(10):1301–6.

    CAS  PubMed  Google Scholar 

  39. 39.

    Su W. Clinical, histopathologic, and immunohistochemical correlations in leukemia cutis. In Seminars in dermatology. 1994;13(3):223–230.

  40. 40.

    Tomasini C, Quaglino P, Novelli M, Fierro MT. “Aleukemic” granulomatous leukemia cutis. Am J Dermatopathol. 1998;20(4):417–21.

    CAS  PubMed  Google Scholar 

  41. 41.

    Watson K, et al. Spectrum of clinical presentation, treatment and prognosis in a series of eight patients with leukaemia cutis. Clinical and Experimental Dermatology: Clinical Dermatology. 2006;31(2):218–21.

    CAS  Google Scholar 

  42. 42.

    Ratnam KV, Khor CJ, Su WD. Leukemia cutis. Dermatol Clin. 1994;12(2):419–31.

    CAS  PubMed  Google Scholar 

  43. 43.

    Cronin DM, George TI, Sundram UN. An updated approach to the diagnosis of myeloid leukemia cutis. Am J Clin Pathol. 2009;132(1):101–10.

    PubMed  Google Scholar 

  44. 44.

    Verra WC, Snijders TJ, Seute T, Han KS, Nieuwenhuis HK, Rutten GJ. Myeloid sarcoma presenting as a recurrent, multifocal nerve root entrapment syndrome. J Neuro-Oncol. 2009;91(1):59–62.

    Google Scholar 

  45. 45.

    Michel G, Boulad F, Small TN, Black P, Heller G, Castro-Malaspina H, et al. Risk of extramedullary relapse following allogeneic bone marrow transplantation for acute myelogenous leukemia with leukemia cutis. Bone Marrow Transplant. 1997;20(2):107–12.

    CAS  PubMed  Google Scholar 

  46. 46.

    Bakst R, Yahalom J. Radiation therapy for leukemia cutis. Practical radiation oncology. 2011;1(3):182–7.

    PubMed  Google Scholar 

  47. 47.

    Evans G, Grimwade D. Extramedullary disease in acute promyelocytic leukemia. Leukemia & lymphoma. 1999;33(3–4):219–29.

    CAS  Google Scholar 

  48. 48.

    Vega-Ruiz A, Faderl S, Estrov Z, Pierce S, Cortes J, Kantarjian H, et al. Incidence of extramedullary disease in patients with acute promyelocytic leukemia: a single-institution experience. Int J Hematol. 2009;89(4):489–96.

    PubMed  PubMed Central  Google Scholar 

  49. 49.

    Montesinos P, Díaz-Mediavilla J, Debén G, Prates V, Tormo M, Rubio V, et al. Central nervous system involvement at first relapse in patients with acute promyelocytic leukemia treated with all-trans retinoic acid and anthracycline monochemotherapy without intrathecal prophylaxis. Haematologica. 2009;94(9):1242–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Bonig H, Gobel U, Nurnberger W. Bilateral exophthalmus due to retro-orbital chloromas in a boy with t (8; 21)-positive acute myeloblastic leukemia. Pediatr Hematol Oncol. 2002;19(8):597–600.

    CAS  PubMed  Google Scholar 

  51. 51.

    Zhang X-H, Zhang R, Li Y. Granulocytic sarcoma of abdomen in acute myeloid leukemia patient with inv (16) and t (6; 17) abnormal chromosome: case report and review of literature. Leuk Res. 2010;34(7):958–61.

    PubMed  Google Scholar 

  52. 52.

    Sugimoto Y, Nishii K, Sakakura M, Araki H, Usui E, Lorenzo VF, et al. Acute myeloid leukemia with t (8; 21)(q22; q22) manifesting as granulocytic sarcomas in the rhinopharynx and external acoustic meatus at relapse after high-dose cytarabine: case report and review of the literature. Hematol J. 2004;5(1):84–9.

    PubMed  Google Scholar 

  53. 53.

    Tallman MS, Hakimian D, Shaw JM, Lissner GS, Russell EJ, Variakojis D. Granulocytic sarcoma is associated with the 8; 21 translocation in acute myeloid leukemia. J Clin Oncol. 1993;11(4):690–7.

    CAS  PubMed  Google Scholar 

  54. 54.

    Schwyzer R, et al. Granulocytic sarcoma in children with acute myeloblastic leukemia and t (8; 21). Medical and Pediatric Oncology. 1998;31(3):144–9.

    CAS  PubMed  Google Scholar 

  55. 55.

    Byrd JC, Weiss RB, Arthur DC, Lawrence D, Baer MR, Davey F, et al. Extramedullary leukemia adversely affects hematologic complete remission rate and overall survival in patients with t (8; 21)(q22; q22): results from cancer and leukemia group B 8461. J Clin Oncol. 1997;15(2):466–75.

    CAS  PubMed  Google Scholar 

  56. 56.

    Grignani F, Ferrucci PF, Testa U, Talamo G, Fagioli M, Alcalay M, et al. The acute promyelocytic leukemia-specific PML-RARα fusion protein inhibits differentiation and promotes survival of myeloid precursor cells. Cell. 1993;74(3):423–31.

    CAS  PubMed  Google Scholar 

  57. 57.

    Maseki N, Miyoshi H, Shimizu K, Homma C, Ohki M, Sakurai M, et al. The 8; 21 chromosome translocation in acute myeloid leukemia is always detectable by molecular analysis using AML1. Blood. 1993;81(6):1573–9.

    CAS  PubMed  Google Scholar 

  58. 58.

    Xavier SG, Fagundes EM, Hassan R, Bacchi C, Conchon M, Tabak DG, et al. Granulocytic sarcoma of the small intestine with CBFβ/MYH11 fusion gene: report of an aleukaemic case and review of the literature. Leuk Res. 2003;27(11):1063–6.

    CAS  PubMed  Google Scholar 

  59. 59.

    Park KU, Lee DS, Lee HS, Kim CJ, Cho HI. Granulocytic sarcoma in MLL-positive infant acute myelogenous leukemia: fluorescence in situ hybridization study of childhood acute myelogenous leukemia for detecting MLL rearrangement. Am J Pathol. 2001;159(6):2011–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. 60.

    Leblanc T, le Coniat M, Flexor M, Baruchel A, Daniel MT, Berger R. An interstitial 11q23 deletion proven to be a rearrangement interrupting the MLL gene in an infant with acute myeloblastic leukemia. Leukemia. 1996;10(11):1844–6.

    CAS  PubMed  Google Scholar 

  61. 61.

    Hagemeijer A, Hählen K, Sizoo W, Abels J. Translocation (9; 11)(p21; q23) in three cases of acute monoblastic leukemia. Cancer Genet Cytogenet. 1982;5(2):95–105.

    CAS  PubMed  Google Scholar 

  62. 62.

    Dachary D, Bernard P, Lacombe F, Reiffers J, David B, Marit G, et al. Acute myeloid leukemia with marrow hypereosinophilia and chromosome 16 abnormality. Cancer Genet Cytogenet. 1986;20(3–4):241–6.

    CAS  PubMed  Google Scholar 

  63. 63.

    Miura I, Nishinari T, Hashimoto K, Nimura T, Miura S, Miura AB. Translocation (8; 17)(p21; q21), a possible variant of t (15; 17), in acute promyelocytic leukemia. Cancer Genet Cytogenet. 1994;72(1):75–7.

    CAS  PubMed  Google Scholar 

  64. 64.

    Bernstein R, Pinto MR, Spector I, Macdougall LG. A unique 8; 16 translocation in two infants with poorly differentiated monoblastic leukemia. Cancer Genet Cytogenet. 1987;24(2):213–20.

    CAS  PubMed  Google Scholar 

  65. 65.

    Douet-Guilbert N, Morel F, le Bris MJ, Sassolas B, Giroux JD, de Braekeleer M. Rearrangement of MLL in a patient with congenital acute monoblastic leukemia and granulocytic sarcoma associated with at (1; 11)(p36; q23) translocation. Leukemia & Lymphoma. 2005;46(1):143–6.

    CAS  Google Scholar 

  66. 66.

    Baer MR, et al. Acute myelogenous leukemia with leukemia cutis. Eighteen cases seen between 1969 and 1986. Cancer. 1989;63(11):2192–200.

    CAS  PubMed  Google Scholar 

  67. 67.

    Ferrara F, et al. Tetrasomy 8 and t (1; 11)(p32; q24) in acute myelo-monocytic leukemia with extensive leukemic cutaneous involvement. Leukemia & Lymphoma. 1996;20(5–6):513–5.

    CAS  Google Scholar 

  68. 68.

    Gould J, Iqbal A, Heath M, Monk A, Russell NH, Davies JM. Pentasomy 8 in acute monoblastic leukemia. Cancer Genet Cytogenet. 2000;117(2):146–8.

    CAS  PubMed  Google Scholar 

  69. 69.

    Small D Targeting FLT3 for the treatment of leukemia. In Seminars in hematology. 2008. Elsevier.

  70. 70.

    • Davis JR, Benjamin DJ, Jonas BA. New and emerging therapies for acute myeloid leukaemia. J Investig Med. 2018;66(8):1088–95. This review highlights three new biologic therapies approved by the FDA in 2017 to treat AML.

  71. 71.

    • Stone RM, et al. Midostaurin plus chemotherapy for acute myeloid leukemia with a FLT3 mutation. New England Journal of Medicine. 2017;377(5):454–64. This is a randomized, double-blinded, placebo controlled phase III study, the CALGB 10603/RATIFY trial,evaluating the efficacy of midostaurin in combination with 7+3 chemotherapy compared to 7+3 chemotherapy with placebo for treatment of newly diagnosed FLT3-mutated AML. The study demostrated improved median overall survival of 74.7 months (95%CI, 31.5 to not reached) in the midostaurin arm compared to 25.6 months (95%CI, 18.6 to 42.9) in the placebo arm.

    CAS  PubMed  Google Scholar 

  72. 72.

    • Castaigne S, et al. Effect of gemtuzumab ozogamicin on survival of adult patients with de-novo acute myeloid leukaemia (ALFA-0701): a randomised, open-label, phase 3 study. The Lancet. 2012;379(9825):1508–16. This is a phase 3, open-label study comparing treatment with 5 doses of IV gemtuzumab ozogamicin to standard of care with event-free survival (EFS) as the primary endpoint and relapse-free survival (RFS), overall survival (OS), and safety as secondary endpoint. The EFS was 17.1% (10.8-27.1) in the control group versus 40.8% (32.8-50.8) in the gemtuzumab ozogamicin group (HR 0.58, 0.43-0.78; p=0.0003), RFS 22.7% (14.5-35.7) in control group versus 50.3% (41.0-61.6) in gemtuzumab ozogamicin group (0.52, 0.36-0.75; p=0.0003), and OS 41.9% (33.1-53.1) in the control group versus 53.2% (44.6-63.5) in the gemtuzumab ozogamicin group (0.69, 0.49-0.98; p=0.0368).

  73. 73.

    • Stein EM, et al. Enasidenib in mutant IDH2 relapsed or refractory acute myeloid leukemia. Blood. 2017;130(6):722–31 This is a phase 1/2 study evaluating enasidenib in patients with IDH2-mutant leukemias. The overall response rate in patients with relapsed or refractory IDH2 mutant AML was 40.3% with a median response duration of 5.8 months, and median overall survival was 19.7 months.

  74. 74.

    • Davids MS, et al. Ipilimumab for patients with relapse after allogeneic transplantation. New England Journal of Medicine. 2016;375(2):143–53. This study is a phase 1/1b multicenter assessing the safety and efficiacy of ipilimumab in 28 patients with relapsed hematologic cancers after allogeneic HSCT and of the 22 patients who received the 10mg/kg dose, 23% had a complete response, including 3 patients with LC and 1 with MS, 9% had a partial response, and 27% had decreased tumor burden. Four patients with EM manifestations of leukemia were found to have a complete response to Ipilimumab.

    CAS  PubMed  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Richard Bakst.

Ethics declarations

Conflict of Interest

Richard Bakst, Ann Powers, and Joachim Yahalom declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Leukemia

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bakst, R., Powers, A. & Yahalom, J. Diagnostic and Therapeutic Considerations for Extramedullary Leukemia. Curr Oncol Rep 22, 75 (2020). https://doi.org/10.1007/s11912-020-00919-6

Download citation


  • Chloroma
  • Myeloid sarcoma
  • Extramedullary leukemia
  • Acute myeloid leukemia