Skip to main content

Advertisement

Log in

The World of Melanoma: Epidemiologic, Genetic, and Anatomic Differences of Melanoma Across the Globe

  • Melanoma (RJ Sullivan, Section Editor)
  • Published:
Current Oncology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

As cancer remains an increasing problem in industrial countries, the incidence of melanoma has risen rapidly in many populations during the last decades and still continues to rise. Current strategies aiming to control the disease have largely focused on improving the understanding of the interplay of causal factors for this cancer.

Recent Findings

Cutaneous melanoma shows clear differences in incidence, mortality, genomic profile, and anatomic presentation, depending on the country of residence, ethnicity, and socioeconomic status. Known risk factors are multiple atypical nevi, positive family and/or personal history, immune suppressive diseases or treatments, and fair skin phenotype. Besides new adjuvant therapeutic options, changed attitude toward leisure and sun exposure, primary prevention, and early detection are major contributors to disease control.

Summary

Melanoma is a disease of multifactorial causality and heterogeneous presentation. Its subtypes differ in origin, anatomical site, role of UV radiation, and mutational profile. Better understanding of these differences may improve prevention strategies and therapeutic developments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. American Cancer Society. Cancer facts and figures 2018. Atlanta: American Cancer Society; 2018.

    Google Scholar 

  2. Mort RL, Jackson IJ, Patton EE. The melanocyte lineage in development and disease. Development. 2015;142(7):1387.

    Article  CAS  Google Scholar 

  3. • Ugurel S, Rohmel J, Ascierto PA, Flaherty KT, Grob JJ, Hauschild A, et al. Survival of patients with advanced metastatic melanoma: the impact of novel therapies. Eur J Cancer. 2016;53:125–34. An exploratory analysis of survival data from selected clinical trials representative for the new treatment strategies in advanced metastatic melanoma.

    Article  Google Scholar 

  4. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2017. CA Cancer J Clin. 2017;67(1):7–30.

    Article  Google Scholar 

  5. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136(5):E359–86.

    Article  CAS  Google Scholar 

  6. Karimkhani C, Green AC, Nijsten T, Weinstock MA, Dellavalle RP, Naghavi M, et al. The global burden of melanoma: results from the global burden of disease study 2015. Br J Dermatol. 2017;177(1):134–40.

    Article  CAS  Google Scholar 

  7. Whiteman DC, Green AC, Olsen CM. The growing burden of invasive melanoma: projections of incidence rates and numbers of new cases in six susceptible populations through 2031. J Invest Dermatol. 2016;136(6):1161–71.

    Article  CAS  Google Scholar 

  8. Australian Institute of Health and Welfare (AIHW). 2014 Australian Cancer Database pivot table. Canberra: AIHW; 2017. < http://www.aihw.gov.au/cancer-data >

  9. Aitken JF, Youlden DR, Baade PD, Soyer HP, Green AC, Smithers BM. Generational shift in melanoma incidence and mortality in Queensland, Australia, 1995–2014. Int J Cancer. 2018;142(8):1528–35.

    Article  Google Scholar 

  10. Ghiasvand R, Rueegg CS, Weiderpass E, Green AC, Lund E, Veierod MB. Indoor tanning and melanoma risk: long-term evidence from a prospective population-based cohort study. Am J Epidemiol. 2017;185(3):147–56.

    PubMed  Google Scholar 

  11. National Cancer Institute Surveillance, Epidemiology and End Results program. SEER stat fact sheets: melanoma of the skin. Available at: https://seer.cancer.gov/statfacts/html/melan.html.

  12. Mahendraraj K, Sidhu K, Lau CS, McRoy GJ, Chamberlain RS, Smith FO. Malignant melanoma in African-Americans: a population-based clinical outcomes study involving 1106 African-American patients from the surveillance, epidemiology, and end result (SEER) database (1988-2011). Medicine (Baltimore). 2017;96(15):e6258.

    Article  Google Scholar 

  13. Desai A, Ugorji R, Khachemoune A. Acral melanoma foot lesions. Part 1: epidemiology, aetiology, and molecular pathology. Clin Exp Dermatol. 2017;42(8):845–8.

    Article  CAS  Google Scholar 

  14. Steliarova-Foucher E, O’Callaghan M, Ferlay J, Masuyer E, Forman D, Comber H, Bray F: European cancer observatory: cancer incidence, mortality, prevalence and survival in Europe. Version 1.0 (September 2012) European Network of Cancer Registries, International Agency for Research on Cancer. Available from http://eco.iarc.fr.

  15. Ferlay J, Steliarova-Foucher E, Lortet-Tieulent J, Rosso S, Coebergh JW, Comber H, et al. Cancer incidence and mortality patterns in Europe: estimates for 40 countries in 2012. Eur J Cancer. 2013;49(6):1374–403.

    Article  CAS  Google Scholar 

  16. Forsea AM, Del Marmol V, de Vries E, Bailey EE, Geller AC. Melanoma incidence and mortality in Europe: new estimates, persistent disparities. Br J Dermatol. 2012;167(5):1124–30.

    Article  CAS  Google Scholar 

  17. Liu F, Bessonova L, Taylor TH, Ziogas A, Meyskens FL Jr, Anton-Culver H. A unique gender difference in early onset melanoma implies that in addition to ultraviolet light exposure other causative factors are important. Pigment Cell Melanoma Res. 2013;26(1):128–35.

    Article  Google Scholar 

  18. Liu-Smith F, Farhat AM, Arce A, Ziogas A, Taylor T, Wang Z, et al. Sex differences in the association of cutaneous melanoma incidence rates and geographic ultraviolet light exposure. J Am Acad Dermatol. 2017;76(3):499–505.e3.

    Article  Google Scholar 

  19. Liu-Smith F, Ziogas A. An age-dependent interaction between sex and geographical UV index in melanoma risk. J Am Acad Dermatol. 2017. https://doi.org/10.1016/j.jaad.2017.11.049.

  20. Howlader N, Noone AM, Krapcho M, Miller D, Bishop K, Kosary CL, Yu M, Ruhl J, Tatalovich Z, Mariotto A, Lewis DR, Chen HS, Feuer EJ, Cronin KA (eds). SEER cancer statistics review, 1975–2014, National Cancer Institute. Bethesda, MD, http://seer.cancer.gov/csr/1975_2014/, based on November 2016 SEER data submission, posted to the SEER web site, April 2017.

  21. Joosse A, Collette S, Suciu S, Nijsten T, Patel PM, Keilholz U, et al. Sex is an independent prognostic indicator for survival and relapse/progression-free survival in metastasized stage III to IV melanoma: a pooled analysis of five European organisation for research and treatment of cancer randomized controlled trials. J Clin Oncol. 2013;31(18):2337–46.

    Article  Google Scholar 

  22. Courtenay WH. Constructions of masculinity and their influence on men's well-being: a theory of gender and health. Soc Sci Med. 2000;50(10):1385–401.

    Article  CAS  Google Scholar 

  23. Baade P, Meng X, Youlden D, Aitken J, Youl P. Time trends and latitudinal differences in melanoma thickness distribution in Australia, 1990-2006. Int J Cancer. 2012;130(1):170–8.

    Article  CAS  Google Scholar 

  24. de Vries E, Bray FI, Eggermont AM, Coebergh JW, European Network of Cancer R. Monitoring stage-specific trends in melanoma incidence across Europe reveals the need for more complete information on diagnostic characteristics. Eur J Cancer Prev. 2004;13(5):387–95.

    Article  Google Scholar 

  25. Geller AC, Clapp RW, Sober AJ, Gonsalves L, Mueller L, Christiansen CL, et al. Melanoma epidemic: an analysis of six decades of data from the Connecticut Tumor Registry. J Clin Oncol. 2013;31(33):4172–8.

    Article  Google Scholar 

  26. •• Gershenwald JE, Scolyer RA, Hess KR, Sondak VK, Long GV, Ross MI, et al. Melanoma staging: evidence-based changes in the American Joint Committee on Cancer eighth edition cancer staging manual. CA Cancer J Clin. 2017;67(6):472–92. An evidence-based revision of the AJCC melanoma staging for 2017.

    Article  Google Scholar 

  27. Whiteman DC, Baade PD, Olsen CM. More people die from thin melanomas (1 mm) than from thick melanomas (>4 mm) in Queensland. Australia J Invest Dermatol. 2015;135(4):1190–3.

    Article  CAS  Google Scholar 

  28. Criscione VD, Weinstock MA. Melanoma thickness trends in the United States, 1988-2006. J Invest Dermatol. 2010;130(3):793–7.

    Article  CAS  Google Scholar 

  29. Koh HK, Geller AC, Miller DR, Grossbart TA, Lew RA. Prevention and early detection strategies for melanoma and skin cancer. Current status Arch Dermatol. 1996;132(4):436–43.

    Article  CAS  Google Scholar 

  30. Armstrong BK, Cust AE. Sun exposure and skin cancer, and the puzzle of cutaneous melanoma: a perspective on Fears et al. mathematical models of age and ultraviolet effects on the incidence of skin cancer among whites in the United States. Am J Epidemiol. 1977;105:420–7. Cancer Epidemiol. 2017;48:147–56

    Article  Google Scholar 

  31. D'Orazio J, Jarrett S, Amaro-Ortiz A, Scott T. UV radiation and the skin. Int J Mol Sci. 2013;14(6):12222–48.

    Article  Google Scholar 

  32. Colantonio S, Bracken MB, Beecker J. The association of indoor tanning and melanoma in adults: systematic review and meta-analysis. J Am Acad Dermatol. 2014;70(5):847–57. e1–18

    Article  Google Scholar 

  33. Pawlak MT, Bui M, Amir M, Burkhardt DL, Chen AK, Dellavalle RP. Legislation restricting access to indoor tanning throughout the world. Arch Dermatol. 2012;148(9):1006–12.

    Article  Google Scholar 

  34. Bevona C, Goggins W, Quinn T, Fullerton J, Tsao H. Cutaneous melanomas associated with nevi. Arch Dermatol. 2003;139(12):1620–4. discussion 4

    Article  Google Scholar 

  35. Haenssle HA, Mograby N, Ngassa A, Buhl T, Emmert S, Schon MP, et al. Association of patient risk factors and frequency of nevus-associated cutaneous melanomas. JAMA Dermatol. 2016;152(3):291–8.

    Article  Google Scholar 

  36. Whiteman DC, Stickley M, Watt P, Hughes MC, Davis MB, Green AC. Anatomic site, sun exposure, and risk of cutaneous melanoma. J Clin Oncol. 2006;24(19):3172–7.

    Article  Google Scholar 

  37. Whiteman DC, Pavan WJ, Bastian BC. The melanomas: a synthesis of epidemiological, clinical, histopathological, genetic, and biological aspects, supporting distinct subtypes, causal pathways, and cells of origin. Pigment Cell Melanoma Res. 2011;24(5):879–97.

    Article  CAS  Google Scholar 

  38. • Shain AH, Bastian BC. From melanocytes to melanomas. Nat Rev Cancer. 2016;16(6):345–58. A review analysis of tumour evolution that integrate genetic, histopathological, clinical and biological insights for melanoma.

    Article  CAS  Google Scholar 

  39. Demierre MF, Chung C, Miller DR, Geller AC. Early detection of thick melanomas in the United States: beware of the nodular subtype. Arch Dermatol. 2005;141(6):745–50.

    Article  Google Scholar 

  40. Lino-Silva LS, Dominguez-Rodriguez JA, Aguilar-Romero JM, Martinez-Said H, Salcedo-Hernandez RA, Garcia-Perez L, et al. Melanoma in Mexico: clinicopathologic features in a population with predominance of acral lentiginous subtype. Ann Surg Oncol. 2016;23(13):4189–94.

    Article  Google Scholar 

  41. Watts CG, Madronio C, Morton RL, Goumas C, Armstrong BK, Curtin A, et al. Clinical features associated with individuals at higher risk of melanoma: a population-based study. JAMA Dermatol. 2017;153(1):23–9.

    Article  Google Scholar 

  42. Barysch MJ, Levesque MP, Cheng P, Karpova MB, Mihic-Probst D, Civenni G, et al. Coexpression of SOX10/CD271 (p75(NTR)) and beta-galactosidase in large to giant congenital melanocytic nevi of pediatric patients. Dermatopathology (Basel). 2014;1(1):35–46.

    Article  Google Scholar 

  43. Krengel S, Hauschild A, Schafer T. Melanoma risk in congenital melanocytic naevi: a systematic review. Br J Dermatol. 2006;155(1):1–8.

    Article  CAS  Google Scholar 

  44. van der Leest RJ, Flohil SC, Arends LR, de Vries E, Nijsten T. Risk of subsequent cutaneous malignancy in patients with prior melanoma: a systematic review and meta-analysis. J Eur Acad Dermatol Venereol. 2015;29(6):1053–62.

    Article  Google Scholar 

  45. Kubica AW, Brewer JD. Melanoma in immunosuppressed patients. Mayo Clin Proc. 2012;87(10):991–1003.

    Article  CAS  Google Scholar 

  46. Bonilla X, Parmentier L, King B, Bezrukov F, Kaya G, Zoete V, et al. Genomic analysis identifies new drivers and progression pathways in skin basal cell carcinoma. Nat Genet. 2016;48(4):398–406.

    Article  CAS  Google Scholar 

  47. Lawrence MS, Stojanov P, Polak P, Kryukov GV, Cibulskis K, Sivachenko A, et al. Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature. 2013;499(7457):214–8.

    Article  CAS  Google Scholar 

  48. Alexandrov LB, Nik-Zainal S, Wedge DC, Campbell PJ, Stratton MR. Deciphering signatures of mutational processes operative in human cancer. Cell Rep. 2013;3(1):246–59.

    Article  CAS  Google Scholar 

  49. •• Cancer Genome Atlas N. Genomic classification of cutaneous melanoma. Cell. 2015;161(7):1681–96. Clinicopathological and multi-dimensional analysis of the genomic alterations in cutaneous melanomas.

    Article  Google Scholar 

  50. Berger MF, Hodis E, Heffernan TP, Deribe YL, Lawrence MS, Protopopov A, et al. Melanoma genome sequencing reveals frequent PREX2 mutations. Nature. 2012;485(7399):502–6.

    Article  CAS  Google Scholar 

  51. Sullivan RJ, Flaherty K. MAP kinase signaling and inhibition in melanoma. Oncogene. 2013;32(19):2373–9.

    Article  CAS  Google Scholar 

  52. Nissan MH, Pratilas CA, Jones AM, Ramirez R, Won H, Liu C, et al. Loss of NF1 in cutaneous melanoma is associated with RAS activation and MEK dependence. Cancer Res. 2014;74(8):2340–50.

    Article  CAS  Google Scholar 

  53. • Hayward NK, Wilmott JS, Waddell N, Johansson PA, Field MA, Nones K, et al. Whole-genome landscapes of major melanoma subtypes. Nature. 2017;545(7653):175–80. An analysis of whole-genome sequences from cutaneous, acral and mucosal subtypes of melanoma

    Article  CAS  Google Scholar 

  54. Kulikova K, Kibardin A, Gnuchev NV, Georgiev GP, Larin S. Wnt signaling pathway and its significance for melanoma development. CTM Modern Technologies in Medicine. 2012:107–11.

  55. Sullivan RJ. The role of mitogen-activated protein targeting in melanoma beyond BRAFV600. Curr Opin Oncol. 2016;28(2):185–91.

    Article  CAS  Google Scholar 

  56. Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S, et al. Mutations of the BRAF gene in human cancer. Nature. 2002;417(6892):949–54.

    Article  CAS  Google Scholar 

  57. Lee JJ, Sholl LM, Lindeman NI, Granter SR, Laga AC, Shivdasani P, et al. Targeted next-generation sequencing reveals high frequency of mutations in epigenetic regulators across treatment-naive patient melanomas. Clin Epigenetics. 2015;7:59.

    Article  Google Scholar 

  58. Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz LA Jr, Kinzler KW. Cancer genome landscapes. Science. 2013;339(6127):1546–58.

    Article  CAS  Google Scholar 

  59. Klein O, Clements A, Menzies AM, O'Toole S, Kefford RF, Long GV. BRAF inhibitor activity in V600R metastatic melanoma--response. Eur J Cancer. 2013;49(7):1797–8.

    Article  CAS  Google Scholar 

  60. Dahlman KB, Xia J, Hutchinson K, Ng C, Hucks D, Jia P, et al. BRAF (L597) mutations in melanoma are associated with sensitivity to MEK inhibitors. Cancer Discov. 2012;2(9):791–7.

    Article  CAS  Google Scholar 

  61. Damsky WE, Bosenberg M. Melanocytic nevi and melanoma: unraveling a complex relationship. Oncogene. 2017;36(42):5771–92.

    Article  CAS  Google Scholar 

  62. Damsky W, Micevic G, Meeth K, Muthusamy V, Curley DP, Santhanakrishnan M, et al. mTORC1 activation blocks BrafV600E-induced growth arrest but is insufficient for melanoma formation. Cancer Cell. 2015;27(1):41–56.

    Article  CAS  Google Scholar 

  63. Shain AH, Yeh I, Kovalyshyn I, Sriharan A, Talevich E, Gagnon A, et al. The genetic evolution of melanoma from precursor lesions. N Engl J Med. 2015;373(20):1926–36.

    Article  Google Scholar 

  64. Dong M, Liu X, Evert K, Utpatel K, Peters M, Zhang S, et al. Efficacy of MEK inhibition in a K-Ras-driven cholangiocarcinoma preclinical model. Cell Death Dis. 2018;9(2):31.

    Article  Google Scholar 

  65. Sosman JA, Kittaneh M, Lolkema MPJK, Postow MA, Schwartz G, Franklin C, et al. A phase 1b/2 study of LEE011 in combination with binimetinib (MEK162) in patients with NRAS-mutant melanoma: early encouraging clinical activity. J Clin Oncol. 2014;32(15_suppl):9009.

    Google Scholar 

  66. Ascierto PA, Schadendorf D, Berking C, Agarwala SS, van Herpen CM, Queirolo P, et al. MEK162 for patients with advanced melanoma harbouring NRAS or Val600 BRAF mutations: a non-randomised, open-label phase 2 study. Lancet Oncol. 2013;14(3):249–56.

    Article  CAS  Google Scholar 

  67. Dummer R, Schadendorf D, Ascierto PA, Arance A, Dutriaux C, Di Giacomo AM, et al. Binimetinib versus dacarbazine in patients with advanced NRAS-mutant melanoma (NEMO): a multicentre, open-label, randomised, phase 3 trial. Lancet Oncol. 2017;18(4):435–45.

    Article  CAS  Google Scholar 

  68. Krauthammer M, Kong Y, Bacchiocchi A, Evans P, Pornputtapong N, Wu C, et al. Exome sequencing identifies recurrent mutations in NF1 and RASopathy genes in sun-exposed melanomas. Nat Genet. 2015;47(9):996–1002.

    Article  CAS  Google Scholar 

  69. Hodis E, Watson IR, Kryukov GV, Arold ST, Imielinski M, Theurillat JP, et al. A landscape of driver mutations in melanoma. Cell. 2012;150(2):251–63.

    Article  CAS  Google Scholar 

  70. Tran A, Tawbi HA. A potential role for nilotinib in KIT-mutated melanoma. Expert Opin Investig Drugs. 2012;21(6):861–9.

    Article  CAS  Google Scholar 

  71. Hodi FS, Corless CL, Giobbie-Hurder A, Fletcher JA, Zhu M, Marino-Enriquez A, et al. Imatinib for melanomas harboring mutationally activated or amplified KIT arising on mucosal, acral, and chronically sun-damaged skin. J Clin Oncol. 2013;31(26):3182–90.

    Article  CAS  Google Scholar 

  72. •• Hodi FS, Chesney J, Pavlick AC, Robert C, Grossmann KF, DF MD, et al. Combined nivolumab and ipilimumab versus ipilimumab alone in patients with advanced melanoma: 2-year overall survival outcomes in a multicentre, randomised, controlled, phase 2 trial. Lancet Oncol. 2016;17(11):1558–68. This study reports a 3-year overall survival outcomes of a phase 3 clinical trial of nivolumab combined with ipilimumab in patients with advanced melanoma and shows that significantly longer overall survival occurred with combination therapy with nivolumab plus ipilimumab or with nivolumab alone than with ipilimumab alone.

    Article  CAS  Google Scholar 

  73. • Robert C, Long GV, Brady B, Dutriaux C, Maio M, Mortier L, et al. Nivolumab in previously untreated melanoma without BRAF mutation. N Engl J Med. 2015;372(4):320–30. This phase 3 clinical trial showed that nivolumab was associated with significant improvements in overall survival and progression-free survival compared with dacarbazine.

    Article  CAS  Google Scholar 

  74. • Ribas A, Puzanov I, Dummer R, Schadendorf D, Hamid O, Robert C, et al. Pembrolizumab versus investigator-choice chemotherapy for ipilimumab-refractory melanoma (KEYNOTE-002): a randomised, controlled, phase 2 trial. Lancet Oncol. 2015;16(8):908–18. The results of this phase 2 clinical trial establish pembrolizumab as a new standard of care for the treatment of ipilimumab-refractory melanoma.

    Article  CAS  Google Scholar 

  75. Rizvi NA, Hellmann MD, Snyder A, Kvistborg P, Makarov V, Havel JJ, et al. Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science. 2015;348(6230):124–8.

    Article  CAS  Google Scholar 

  76. Moran B, Silva R, Perry AS, Gallagher WM. Epigenetics of malignant melanoma. Semin Cancer Biol. 2018;51:80–8.

    Article  CAS  Google Scholar 

  77. Dawson MA, Kouzarides T. Cancer epigenetics: from mechanism to therapy. Cell. 2012;150(1):12–27.

    Article  CAS  Google Scholar 

  78. Eroglu Z, Zaretsky JM, Hu-Lieskovan S, Kim DW, Algazi A, Johnson DB, et al. High response rate to PD-1 blockade in desmoplastic melanomas. Nature. 2018;553(7688):347–50.

    Article  CAS  Google Scholar 

  79. • Weber J, Mandala M, Del Vecchio M, Gogas HJ, Arance AM, Cowey CL, et al. Adjuvant nivolumab versus ipilimumab in resected stage III or IV melanoma. N Engl J Med. 2017;377(19):1824–35. This randomized, double-blind, phase 3 trial of adjuvant nivolumab versus ipilimumab in resected stage III or IV melanoma showed that nivolumab resulted in significantly longer recurrence-free survival and lower rate of grade 3 or 4 adverse events than ipilimumab.

    Article  CAS  Google Scholar 

  80. Sullivan R, LoRusso P, Boerner S, Dummer R. Achievements and challenges of molecular targeted therapy in melanoma. Am Soc Clin Oncol Educ Book. 2015;35:177–86.

    Article  Google Scholar 

  81. Curtin JA, Busam K, Pinkel D, Bastian BC. Somatic activation of KIT in distinct subtypes of melanoma. J Clin Oncol. 2006;24(26):4340–6.

    Article  CAS  Google Scholar 

  82. Munoz-Couselo E, Adelantado EZ, Ortiz C, Garcia JS, Perez-Garcia J. NRAS-mutant melanoma: current challenges and future prospect. Onco Targets Ther. 2017;10:3941–7.

    Article  Google Scholar 

  83. Lee B, Sandhu S, McArthur G. Cell cycle control as a promising target in melanoma. Curr Opin Oncol. 2015;27(2):141–50.

    Article  CAS  Google Scholar 

  84. Sullivan RJ, Fisher DE. Understanding the biology of melanoma and therapeutic implications. Hematol Oncol Clin North Am. 2014;28(3):437–53.

    Article  Google Scholar 

  85. Jiang X, Zhou J, Giobbie-Hurder A, Wargo J, Hodi FS. The activation of MAPK in melanoma cells resistant to BRAF inhibition promotes PD-L1 expression that is reversible by MEK and PI3K inhibition. Clin Cancer Res. 2013;19(3):598–609.

    Article  CAS  Google Scholar 

  86. Guo J, Si L, Kong Y, Flaherty KT, Xu X, Zhu Y, et al. Phase II, open-label, single-arm trial of imatinib mesylate in patients with metastatic melanoma harboring c-Kit mutation or amplification. J Clin Oncol. 2011;29(21):2904–9.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simone M. Goldinger.

Ethics declarations

Conflict of Interest

Florentia Dimitriou declares that she has no conflict of interest.

Regina Krattinger declares that she has no conflict of interest.

Egle Ramelyte declares that she has no conflict of interest.

Marjam J. Barysch declares that she has no conflict of interest.

Sara Micaletto declares that she has no conflict of interest.

Reinhard Dummer has intermittent, project-focused consulting and/or advisory relationships with Novartis, Merck Sharp & Dhome (MSD), Bristol-Myers Squibb (BMS), Roche, Amgen, Takeda, Pierre Fabre, and Sun Pharmaceutical Industries Ltd. outside the submitted work.

Simone M. Goldinger has intermittent advisory board relationship with and has received travel grant support from MSD, BMS, Roche, and Novartis. Research time was supported by the University of Zurich and medAlumni.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Melanoma

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dimitriou, F., Krattinger, R., Ramelyte, E. et al. The World of Melanoma: Epidemiologic, Genetic, and Anatomic Differences of Melanoma Across the Globe. Curr Oncol Rep 20, 87 (2018). https://doi.org/10.1007/s11912-018-0732-8

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11912-018-0732-8

Keywords

Navigation