Skip to main content

Advertisement

Log in

Tyrosine Kinase Inhibitor-Induced Hypertension

  • Cardio-oncology (EH Yang, Section Editor)
  • Published:
Current Oncology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The purpose of this paper is to identify commonly used tyrosine kinase inhibitors (TKIs) that are associated with hypertension, primarily, vascular endothelial growth factor (VEGF) signaling pathway (VSP) inhibitors. We review the incidence, mechanism, and strategies for management of TKI-induced HTN. We hope to provide clinicians with guidance on how to manage similar clinical scenarios.

Recent Findings

Many of the newer VSP inhibitors are reviewed here, including cediranib, axitinib, pazopanib, and ponatinib. Trials utilizing prophylactic treatment with angiotensin system inhibitors (ASIs) are discussed as well as recent data showing an improvement in overall survival and progression-free survival in patients on ASIs and TKI-induced hypertension.

Summary

The incidence of TKI-induced HTN among the VEGF inhibitors ranges from 5 to 80% and is dose dependent. Newer generation small-molecule TKIs has a lower incidence. The mechanism of action involves VSP inhibition, leading to decreased nitric oxide and increased endothelin production, which causes vasoconstriction, capillary rarefaction, and hypertension. ASIs and calcium channel blockers are first-line therapy for treatment and are associated with improved overall survival. Nitrates and beta-blockers are associated with in vitro cancer regression; however, there is a paucity of trials regarding their use as an anti-hypertensive agent in the TKI-induced HTN patient population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: •• Of major importance

  1. Whelton PK, Carey RM, Aronow WS et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA Guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: Executive Summary: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Hypertension 2017.

  2. Rapsomaniki E, Timmis A, George J, Pujades-Rodriguez M, Shah AD, Denaxas S, et al. Blood pressure and incidence of twelve cardiovascular diseases: lifetime risks, healthy life-years lost, and age-specific associations in 125 million people. Lancet. 2014;383:1899–911.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Danaei G, Ding EL, Mozaffarian D, Taylor B, Rehm J, Murray CJL, et al. The preventable causes of death in the United States: comparative risk assessment of dietary, lifestyle, and metabolic risk factors. PLoS Med. 2009;6:e1000058.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Jain M, Townsend RR. Chemotherapy agents and hypertension: a focus on angiogenesis blockade. Curr Hypertens Rep. 2007;9:320–8.

    Article  PubMed  CAS  Google Scholar 

  5. Izzedine H, Derosa L, Le Teuff G, Albiges L, Escudier B. Hypertension and angiotensin system inhibitors: impact on outcome in sunitinib-treated patients for metastatic renal cell carcinoma. Ann Oncol. 2015;26:1128–33.

    Article  PubMed  CAS  Google Scholar 

  6. Common Terminology Criteria for Adverse Events (CTCAE) V 3.0. .

  7. Maitland ML, Bakris GL, Black HR, Chen HX, Durand JB, Elliott WJ, et al. Initial assessment, surveillance, and management of blood pressure in patients receiving vascular endothelial growth factor signaling pathway inhibitors. J Natl Cancer Inst. 2010;102:596–604.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Yeh ET, Bickford CL. Cardiovascular complications of cancer therapy: incidence, pathogenesis, diagnosis and management. J Am Coll Cardiol. 2009;53:2231–47.

    Article  PubMed  CAS  Google Scholar 

  9. Yang JC, Haworth L, Sherry RM, Hwu P, Schwartzentruber DJ, Topalian SL, et al. A randomized trial of bevacizumab, an anti-vascular endothelial growth factor antibody for metastatic renal cancer. N Engl J Med. 2003;349:427–34.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. An MM, Zou Z, Shen H, Liu P, Chen ML, Cao YB, et al. Incidence and risk of significantly raised blood pressure in cancer patients treated with bevacizumab: an updated meta-analysis. Eur J Clin Pharmacol. 2010;66:813–21.

    Article  PubMed  CAS  Google Scholar 

  11. Chang HM, Okwuosa TM, Scarabelli T, Moudgil R, Yeh ETH. Cardiovascular complications of Cancer therapy: best practices in diagnosis, prevention, and management: part 2. J Am Coll Cardiol. 2017;70:2552–65.

    Article  PubMed  Google Scholar 

  12. Zhu X, Stergiopoulos K, Wu S. Risk of hypertension and renal dysfunction with an angiogenesis inhibitor sunitinib: systematic review and meta-analysis. Acta Oncol. 2009;48:9–17.

    Article  PubMed  CAS  Google Scholar 

  13. Azizi M, Chedid A, Oudard S. Home blood-pressure monitoring in patients receiving sunitinib. N Engl J Med. 2008;358:95–7.

    Article  PubMed  CAS  Google Scholar 

  14. Wu S, Chen JJ, Kudelka A, Lu J, Zhu X. Incidence and risk of hypertension with sorafenib in patients with cancer: a systematic review and meta-analysis. Lancet Oncol. 2008;9:117–23.

    Article  PubMed  CAS  Google Scholar 

  15. Maitland ML, Kasza KE, Karrison T, Moshier K, Sit L, Black HR, et al. Ambulatory monitoring detects sorafenib-induced blood pressure elevations on the first day of treatment. Clin Cancer Res. 2009;15:6250–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Pinkhas DHTSS. Assessment of pazopanib-related hypertension, cardiac dysfunction and identification of clinical risk factors for their development. Cardio-Oncology. 2017;3

  17. Qin F, Yu H, Xu CR, Chen HH, Bai JL. Safety of axitinib and sorafenib monotherapy for patients with renal cell carcinoma: a meta-analysis. J Biomed Res. 2018;32:30–8.

    PubMed  Google Scholar 

  18. Robinson ES, Matulonis UA, Ivy P, Berlin ST, Tyburski K, Penson RT, et al. Rapid development of hypertension and proteinuria with cediranib, an oral vascular endothelial growth factor receptor inhibitor. Clin J Am Soc Nephrol. 2010;5:477–83.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Moslehi JJ, Deininger M. Tyrosine kinase inhibitor-associated cardiovascular toxicity in chronic myeloid leukemia. J Clin Oncol. 2015;33:4210–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Kantarjian HM, Shah NP, Cortes JE, Baccarani M, Agarwal MB, Undurraga MS, et al. Dasatinib or imatinib in newly diagnosed chronic-phase chronic myeloid leukemia: 2-year follow-up from a randomized phase 3 trial (DASISION). Blood. 2012;119:1123–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Talpaz M, Shah NP, Kantarjian H, Donato N, Nicoll J, Paquette R, et al. Dasatinib in imatinib-resistant Philadelphia chromosome-positive leukemias. N Engl J Med. 2006;354:2531–41.

    Article  PubMed  CAS  Google Scholar 

  22. Jabbour E, Kantarjian HM, Saglio G, Steegmann JL, Shah NP, Boque C, et al. Early response with dasatinib or imatinib in chronic myeloid leukemia: 3-year follow-up from a randomized phase 3 trial (DASISION). Blood. 2014;123:494–500.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Gale NW, Yancopoulos GD. Growth factors acting via endothelial cell-specific receptor tyrosine kinases: VEGFs, angiopoietins, and ephrins in vascular development. Genes Dev. 1999;13:1055–66.

    Article  PubMed  CAS  Google Scholar 

  24. Avraamides CJ, Garmy-Susini B, Varner JA. Integrins in angiogenesis and lymphangiogenesis. Nat Rev Cancer. 2008;8:604–17.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Murdoch C, Muthana M, Coffelt SB, Lewis CE. The role of myeloid cells in the promotion of tumour angiogenesis. Nat Rev Cancer. 2008;8:618–31.

    Article  PubMed  CAS  Google Scholar 

  26. Veikkola T, Alitalo K. VEGFs, receptors and angiogenesis. Semin Cancer Biol. 1999;9:211–20.

    Article  PubMed  CAS  Google Scholar 

  27. Kuwai T, Kitadai Y, Tanaka S, Onogawa S, Matsutani N, Kaio E, et al. Expression of hypoxia-inducible factor-1alpha is associated with tumor vascularization in human colorectal carcinoma. Int J Cancer. 2003;105:176–81.

    Article  PubMed  CAS  Google Scholar 

  28. Ferrara N, Gerber HP, LeCouter J. The biology of VEGF and its receptors. Nat Med. 2003;9:669–76.

    Article  PubMed  CAS  Google Scholar 

  29. Hicklin DJ, Ellis LM. Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis. J Clin Oncol. 2005;23:1011–27.

    Article  PubMed  CAS  Google Scholar 

  30. Kabbinavar F, Hurwitz HI, Fehrenbacher L, Meropol NJ, Novotny WF, Lieberman G, et al. Phase II, randomized trial comparing bevacizumab plus fluorouracil (FU)/leucovorin (LV) with FU/LV alone in patients with metastatic colorectal cancer. J Clin Oncol. 2003;21:60–5.

    Article  PubMed  CAS  Google Scholar 

  31. Verheul HM, Lolkema MP, Qian DZ, et al. Platelets take up the monoclonal antibody bevacizumab. Clin Cancer Res. 2007;13:5341–7.

    Article  PubMed  CAS  Google Scholar 

  32. Jain RK. Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science. 2005;307:58–62.

    Article  PubMed  CAS  Google Scholar 

  33. Kamba T, McDonald DM. Mechanisms of adverse effects of anti-VEGF therapy for cancer. Br J Cancer. 2007;96:1788–95.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Facemire CS, Nixon AB, Griffiths R, Hurwitz H, Coffman TM. Vascular endothelial growth factor receptor 2 controls blood pressure by regulating nitric oxide synthase expression. Hypertension. 2009;54:652–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Dincer M, Altundag K. Angiotensin-converting enzyme inhibitors for bevacizumab-induced hypertension. Ann Pharmacother. 2006;40:2278–9.

    Article  PubMed  Google Scholar 

  36. Bohm F, Pernow J. The importance of endothelin-1 for vascular dysfunction in cardiovascular disease. Cardiovasc Res. 2007;76:8–18.

    Article  PubMed  CAS  Google Scholar 

  37. Kappers MH, van Esch JH, Sluiter W, Sleijfer S, Danser AH, van den Meiracker AH. Hypertension induced by the tyrosine kinase inhibitor sunitinib is associated with increased circulating endothelin-1 levels. Hypertension. 2010;56:675–81.

    Article  PubMed  CAS  Google Scholar 

  38. de Jesus-Gonzalez N, Robinson E, Penchev R, von Mehren M, Heinrich MC, Tap W, et al. Regorafenib induces rapid and reversible changes in plasma nitric oxide and endothelin-1. Am J Hypertens. 2012;25:1118–23.

    Article  PubMed  CAS  Google Scholar 

  39. Kappers MH, de Beer VJ, Zhou Z, et al. Sunitinib-induced systemic vasoconstriction in swine is endothelin mediated and does not involve nitric oxide or oxidative stress. Hypertension. 2012;59:151–7.

    Article  PubMed  CAS  Google Scholar 

  40. Baffert F, Le T, Sennino B, et al. Cellular changes in normal blood capillaries undergoing regression after inhibition of VEGF signaling. Am J Phys Heart Circ Phys. 2006;290:H547–59.

    CAS  Google Scholar 

  41. Mourad JJ, des Guetz G, Debbabi H, Levy BI. Blood pressure rise following angiogenesis inhibition by bevacizumab. A crucial role for microcirculation. Ann Oncol. 2008;19:927–34.

    Article  PubMed  Google Scholar 

  42. Stillman IE, Karumanchi SA. The glomerular injury of preeclampsia. J Am Soc Nephrol. 2007;18:2281–4.

    Article  PubMed  Google Scholar 

  43. Patel TV, Morgan JA, Demetri GD, George S, Maki RG, Quigley M, et al. A preeclampsia-like syndrome characterized by reversible hypertension and proteinuria induced by the multitargeted kinase inhibitors sunitinib and sorafenib. J Natl Cancer Inst. 2008;100:282–4.

    Article  PubMed  CAS  Google Scholar 

  44. Zhu X, Wu S, Dahut WL, Parikh CR. Risks of proteinuria and hypertension with bevacizumab, an antibody against vascular endothelial growth factor: systematic review and meta-analysis. Am J Kidney Dis. 2007;49:186–93.

    Article  PubMed  CAS  Google Scholar 

  45. •• Rini BI, Cohen DP, Lu DR, et al. Hypertension as a biomarker of efficacy in patients with metastatic renal cell carcinoma treated with sunitinib. J Natl Cancer Inst. 2011;103:763–73. This article is the largest study to highlight that hypertension can be used as a biomarker for VSP inhibition success in treating a cancer. It lends to further research questions of treatment success, failures, and possible relation to dosing.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Chu TF, Rupnick MA, Kerkela R, Dallabrida SM, Zurakowski D, Nguyen L, et al. Cardiotoxicity associated with tyrosine kinase inhibitor sunitinib. Lancet. 2007;370:2011–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Schmidinger M, Zielinski CC, Vogl UM, Bojic A, Bojic M, Schukro C, et al. Cardiac toxicity of sunitinib and sorafenib in patients with metastatic renal cell carcinoma. J Clin Oncol. 2008;26:5204–12.

    Article  PubMed  Google Scholar 

  48. Piccirillo JF, Tierney RM, Costas I, Grove L, Spitznagel EL Jr. Prognostic importance of comorbidity in a hospital-based cancer registry. Jama. 2004;291:2441–7.

    Article  PubMed  CAS  Google Scholar 

  49. de Jesus-Gonzalez N, Robinson E, Moslehi J, Humphreys BD. Management of antiangiogenic therapy-induced hypertension. Hypertension. 2012;60:607–15.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. •• McKay RR, Rodriguez GE, Lin X, et al. Angiotensin system inhibitors and survival outcomes in patients with metastatic renal cell carcinoma. Clin Cancer Res. 2015;21:2471–9. Largest meta-analysis that shows an association with use of a specific anti-hypertensive medication and improvement in overall survival during therapy with a VSP inhibitor. Validates the importance of treatment of hypertension and modifies how future trials of TKI inhibitors may be run.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Mir O, Coriat R, Ropert S, Cabanes L, Blanchet B, Camps S, et al. Treatment of bevacizumab-induced hypertension by amlodipine. Investig New Drugs. 2012;30:702–7.

    Article  CAS  Google Scholar 

  52. Miura S, Fujino M, Matsuo Y, Tanigawa H, Saku K. Nifedipine-induced vascular endothelial growth factor secretion from coronary smooth muscle cells promotes endothelial tube formation via the kinase insert domain-containing receptor/fetal liver kinase-1/NO pathway. Hypertens Res. 2005;28:147–53.

    Article  PubMed  CAS  Google Scholar 

  53. Curwen JO, Musgrove HL, Kendrew J, Richmond GH, Ogilvie DJ, Wedge SR. Inhibition of vascular endothelial growth factor-a signaling induces hypertension: examining the effect of cediranib (recentin; AZD2171) treatment on blood pressure in rat and the use of concomitant antihypertensive therapy. Clin Cancer Res. 2008;14:3124–31.

    Article  PubMed  CAS  Google Scholar 

  54. Langenberg MH, van Herpen CM, De Bono J, et al. Effective strategies for management of hypertension after vascular endothelial growth factor signaling inhibition therapy: results from a phase II randomized, factorial, double-blind study of Cediranib in patients with advanced solid tumors. J Clin Oncol. 2009;27:6152–9.

    Article  PubMed  CAS  Google Scholar 

  55. Nazer B, Humphreys BD, Moslehi J. Effects of novel angiogenesis inhibitors for the treatment of cancer on the cardiovascular system: focus on hypertension. Circulation. 2011;124:1687–91.

    Article  PubMed  Google Scholar 

  56. Dirix LY, Maes H, Sweldens C. Treatment of arterial hypertension (AHT) associated with angiogenesis inhibitors. Ann Oncol. 2007;18:1121–2.

    Article  PubMed  CAS  Google Scholar 

  57. Cooke JP, Losordo DW. Nitric oxide and angiogenesis. Circulation. 2002;105:2133–5.

    Article  PubMed  Google Scholar 

  58. Mason RP, Jacob RF, Corbalan JJ, Szczesny D, Matysiak K, Malinski T. The favorable kinetics and balance of nebivolol-stimulated nitric oxide and peroxynitrite release in human endothelial cells. BMC Pharmacol Toxicol. 2013;14:48.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Pasquier E, Street J, Pouchy C, Carre M, Gifford AJ, Murray J, et al. Beta-blockers increase response to chemotherapy via direct antitumour and anti-angiogenic mechanisms in neuroblastoma. Br J Cancer. 2013;108:2485–94.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Lankhorst S, Kappers MH, van Esch JH, Danser AH, van den Meiracker AH. Mechanism of hypertension and proteinuria during angiogenesis inhibition: evolving role of endothelin-1. J Hypertens. 2013;31:444–54. discussion 454

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Megha Agarwal.

Ethics declarations

Conflict of Interest

Megha Agarwal, Nidhi Thareja, Melody Benjamin, Andre Akhondi, and George D. Mitchell declare they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Cardio-oncology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agarwal, M., Thareja, N., Benjamin, M. et al. Tyrosine Kinase Inhibitor-Induced Hypertension. Curr Oncol Rep 20, 65 (2018). https://doi.org/10.1007/s11912-018-0708-8

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11912-018-0708-8

Keywords

Navigation