Skip to main content
Log in

Single-Cell RNA-Sequencing in Glioma

  • Neuro-oncology (S Nagpal, Section Editor)
  • Published:
Current Oncology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

In this review, we seek to summarize the literature concerning the use of single-cell RNA-sequencing for CNS gliomas.

Recent Findings

Single-cell analysis has revealed complex tumor heterogeneity, subpopulations of proliferating stem-like cells and expanded our view of tumor microenvironment influence in the disease process.

Summary

Although bulk RNA-sequencing has guided our initial understanding of glioma genetics, this method does not accurately define the heterogeneous subpopulations found within these tumors. Single-cell techniques have appealing applications in cancer research, as diverse cell types and the tumor microenvironment have important implications in therapy. High cost and difficult protocols prevent widespread use of single-cell RNA-sequencing; however, continued innovation will improve accessibility and expand our of knowledge gliomas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Wang Z, Gerstein M, Snyder M. RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet. 2009;10:57–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Berger MF, Levin JZ, Vijayendran K, Sivachenko A, Adiconis X, Maguire J, et al. Integrative analysis of the melanoma transcriptome. Genome Res. 2010;20(4):413–27. https://doi.org/10.1101/gr.103697.109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol. 2010;28(5):511–5. https://doi.org/10.1038/nbt.1621.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. • Tirosh I, Venteicher AS, Hebert C, et al. Single-cell RNA-seq supports a developmental hierarchy in human oligodendroglioma. Nature. 2016;539:309–13. This paper provides evidence that a subpopulation of proliferating stem-like cells may drive growth of IDH-A and IDH-O gliomas.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Griffith M, Griffith OL, Mwenifumbo J, Goya R, Morrissy AS, Morin RD, et al. Alternative expression analysis by RNA sequencing. Nat Methods. 2010;7(10):843–7. https://doi.org/10.1038/nmeth.1503.

    Article  CAS  PubMed  Google Scholar 

  6. Wang L, Xi Y, Yu J, Dong L, Yen L, Li W. A statistical method for the detection of alternative splicing using RNA-seq. PLoS One. 2010;5(1):e8529. https://doi.org/10.1371/journal.pone.0008529.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Hedlund E, Deng Q. Single-cell RNA sequencing: technical advancements and biological applications. Mol Asp Med. 2017;59:36–46. https://doi.org/10.1016/j.mam.2017.07.003.

    Article  Google Scholar 

  8. Louis DN, Perry A, Burger P, et al. International society of neuropathology—Haarlem consensus guidelines for nervous system tumor classification and grading. Brain Pathol. 2014;24:429–35.

    Article  PubMed  Google Scholar 

  9. Mack SC, Northcott PA. Genomic analysis of childhood brain tumors: methods for genome-wide discovery and precision medicine become mainstream. J Clin Oncol. 2017;35(21):2346–54. https://doi.org/10.1200/JCO.2017.72.9921.

    Article  PubMed  Google Scholar 

  10. Nikiforova MN, Wald AI, Melan MA, Roy S, Zhong S, Hamilton RL, et al. Targeted next-generation sequencing panel (GlioSeq) provides comprehensive genetic profiling of central nervous system tumors. Neuro-Oncology. 2016;18(3):379–87. https://doi.org/10.1093/neuonc/nov289.

    Article  CAS  PubMed  Google Scholar 

  11. Pomeroy SL, Tamayo P, Gaasenbeek M, et al. Prediction of central nervous system embryonal tumour outcome based on gene expression. Nature. 2002;415:436–42.

    Article  CAS  PubMed  Google Scholar 

  12. Tirosh I, Suva ML. Dissecting human gliomas by single-cell RNA sequencing. Neuro-Oncology. 2017;20(1):37–43. https://doi.org/10.1093/neuonc/nox126.

    Article  Google Scholar 

  13. Huse JT, Aldape KD. The evolving role of molecular markers in the diagnosis and management of diffuse glioma. Clin Cancer Res. 2014;20(22):5601–11. https://doi.org/10.1158/1078-0432.CCR-14-0831.

    Article  CAS  PubMed  Google Scholar 

  14. Zeisel A, Munoz-Manchado AB, Codeluppi S, et al. Brain structure. Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq. Science. 2015;347(6226):1138–42. https://doi.org/10.1126/science.aaa1934.

    Article  CAS  PubMed  Google Scholar 

  15. Buenrostro JD, Wu B, Litzenburger UM, Ruff D, Gonzales ML, Snyder MP, et al. Single-cell chromatin accessibility reveals principles of regulatory variation. Nature. 2015;523(7561):486–90. https://doi.org/10.1038/nature14590.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Treutlein B, Brownfield DG, Wu AR, Neff NF, Mantalas GL, Espinoza FH, et al. Reconstructing lineage hierarchies of the distal lung epithelium using single-cell RNA-seq. Nature. 2014;509(7500):371–5. https://doi.org/10.1038/nature13173.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lohr JG, Adalsteinsson VA, Cibulskis K, Choudhury AD, Rosenberg M, Cruz-Gordillo P, et al. Whole-exome sequencing of circulating tumor cells provides a window into metastatic prostate cancer. Nat Biotechnol. 2014;32(5):479–84. https://doi.org/10.1038/nbt.2892.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hashimshony T, Wagner F, Sher N, Yanai I. CEL-Seq: single-cell RNA-Seq by multiplexed linear amplification. Cell Rep. 2012;2(3):666–73. https://doi.org/10.1016/j.celrep.2012.08.003.

    Article  CAS  PubMed  Google Scholar 

  19. Smallwood SA, Lee HJ, Angermueller C, Krueger F, Saadeh H, Peat J, et al. Single-cell genome-wide bisulfite sequencing for assessing epigenetic heterogeneity. Nat Methods. 2014;11(8):817–20. https://doi.org/10.1038/nmeth.3035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Shalek AK, Satija R, Adiconis X, et al. Single-cell transcriptomics reveals bimodality in expression and splicing in immune cells. Nature. 2013;498:236–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Shalek AK, Satija R, Shuga J, et al. Single-cell RNA-seq reveals dynamic paracrine control of cellular variation. Nature. 2014;510:363–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Tirosh I, Izar B, Prakadan SM, et al. Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq. Science. 2016;352:189–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gierahn TM, Wadsworth MH 2nd, Hughes TK, Bryson BD, Butler A, Satija R, et al. Seq-well: portable, low-cost RNA sequencing of single cells at high throughput. Nat Methods. 2017;14(4):395–8. https://doi.org/10.1038/nmeth.4179.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Shin J, Berg DA, Zhu Y, Shin JY, Song J, Bonaguidi MA, et al. Single-cell RNA-Seq with waterfall reveals molecular cascades underlying adult neurogenesis. Cell Stem Cell. 2015;17(3):360–72. https://doi.org/10.1016/j.stem.2015.07.013.

    Article  CAS  PubMed  Google Scholar 

  25. Llorens-Bobadilla E, Zhao S, Baser A, Saiz-Castro G, Zwadlo K, Martin-Villalba A. Single-cell transcriptomics reveals a population of dormant neural stem cells that become activated upon brain injury. Cell Stem Cell. 2015;17(3):329–40. https://doi.org/10.1016/j.stem.2015.07.002.

    Article  CAS  PubMed  Google Scholar 

  26. Gokce O, Stanley GM, Treutlein B, Neff NF, Camp JG, Malenka RC, et al. Cellular taxonomy of the mouse striatum as revealed by single-cell RNA-Seq. Cell Rep. 2016;16(4):1126–37. https://doi.org/10.1016/j.celrep.2016.06.059.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Tasic B, Menon V, Nguyen TN, et al. Adult mouse cortical cell taxonomy revealed by single cell transcriptomics. Nat Neurosci. 2016;19:335–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. • Darmanis S, Sloan SA, Zhang Y, Enge M, Caneda C, Shuer LM, Hayden Gephart MG, Barres BA, Quake SR. A survey of human brain transcriptome diversity at the single cell level. Proc Natl Acad Sci USA. 2015;112:7285–90. https://doi.org/10.1073/pnas.1507125112. This paper successfully showed the efficacy of scRNA-seq in normal adult and fetal brain.

  29. Cuevas-Diaz Duran R, Wei H, Wu JQ. Single-cell RNA-sequencing of the brain. Clin Transl Med. 2017;6(1):20. https://doi.org/10.1186/s40169-017-0150-9.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Patel AP, Tirosh I, Trombetta JJ, et al. Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science. 2014;344:1396–140124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Müller S, Liu SJ, Di Lullo E, et al. Single-cell sequencing maps gene expression to mutational phylogenies in PDGF- and EGF-driven gliomas. Mol Syst Biol. 2016;12:889. https://doi.org/10.15252/msb.20166969.

  32. • Wang Q, Hu B, Hu X, et al. Tumor evolution of glioma-intrinsic gene expression subtypes associates with immunological changes in the microenvironment. Cancer Cell. 2017;32:42–56.e6. This paper examines the immunologic effects of the TME on GBM by subtype.

    Article  PubMed  Google Scholar 

  33. •• Darmanis S, Sloan SA, Croote D, et al. Single-cell RNA-Seq analysis of infiltrating neoplastic cells at the migrating front of human glioblastoma. Cell Rep. 2017;21:1399–410. This paper provides the most comprehensive analysis of GBM at the single-cell level.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. •• Venteicher AS, Tirosh I, Hebert C, et al. Decoupling genetics, lineages, and microenvironment in IDH-mutant gliomas by single-cell RNA-seq. Science. 2017; https://doi.org/10.1126/science.aai8478. This paper reports a strong influence of the TME, and common developmental lineages in IDH-A and IDH-O gliomas using a large sample size.

  35. Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK, et al. The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol. 2016;131(6):803–20. https://doi.org/10.1007/s00401-016-1545-1.

    Article  PubMed  Google Scholar 

  36. Cheng Y-K, Beroukhim R, Levine RL, Mellinghoff IK, Holland EC, Michor F. A mathematical methodology for determining the temporal order of pathway alterations arising during gliomagenesis. PLoS Comput Biol. 2012;8(1):e1002337. https://doi.org/10.1371/journal.pcbi.1002337.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Brat DJ, Verhaak RGW, Aldape KD, et al. Comprehensive, integrative genomic analysis of diffuse lower-grade gliomas. N Engl J Med. 2015;372(26):2481–98. https://doi.org/10.1056/NEJMoa1402121.

    Article  CAS  PubMed  Google Scholar 

  38. Verhaak RGW, Hoadley KA, Purdom E, et al. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell. 2010;17(1):98–110. https://doi.org/10.1016/j.ccr.2009.12.020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Filbin MG, Suvà ML. Gliomas genomics and epigenomics: arriving at the start and knowing it for the first time. Annu Rev Pathol Mech Dis. 2016;11(1):497–521. https://doi.org/10.1146/annurev-pathol-012615-044208.

    Article  CAS  Google Scholar 

  40. Brennan CW, Verhaak RGW, McKenna A, Campos B, Noushmehr H, Salama SR, et al. The somatic genomic landscape of glioblastoma. Cell. 2013;155(2):462–77. https://doi.org/10.1016/j.cell.2013.09.034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Chen J, Li Y, Yu T-S, McKay RM, Burns DK, Kernie SG, et al. A restricted cell population propagates glioblastoma growth after chemotherapy. Nature. 2012;488(7412):522–6. https://doi.org/10.1038/nature11287.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Melanie Hayden Gephart.

Ethics declarations

Conflict of Interest

Eli Johnson, Katherine L. Dickerson, Ian D. Connolly, and Melanie Hayden Gephart declare they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Neuro-oncology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Johnson, E., Dickerson, K.L., Connolly, I.D. et al. Single-Cell RNA-Sequencing in Glioma. Curr Oncol Rep 20, 42 (2018). https://doi.org/10.1007/s11912-018-0673-2

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11912-018-0673-2

Keywords

Navigation