Skip to main content

Advertisement

Log in

Cardiac Imaging: Multimodality Advances and Surveillance Strategies in Detection of Cardiotoxicity

  • Cardio-oncology (EH Yang, Section Editor)
  • Published:
Current Oncology Reports Aims and scope Submit manuscript

Abstract

Contemporary cancer management has increased the overall number of cancer survivors, but cardiotoxicity remains a subject of concern, which is a major cause of noncancer mortality among survivors. Among the potential cardiovascular complications, left ventricular (LV) systolic dysfunction is a poor prognostic factor. The importance of its early detection is based on the principle that the likelihood of response to heart failure (HF) treatment is temporally related to the initiation of HF treatment. For these reasons, cardiac monitoring is commonly applied in general practice, based on serial measurements of LV ejection fraction (LVEF); transthoracic echocardiography (TTE) is generally used. However, the LVEF, as a diagnostic and predictive parameter, has significant limitations, which calls for more effective multimodality imaging strategies. This approach requires further study, but there is increasing available data in the literature, encouraging the combination of multimodality imaging parameters and techniques for early cancer therapeutic-related cardiac dysfunction (CTRCD) detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. • Moslehi JJ. Cardiovascular toxic effects of targeted cancer therapies. N Engl J Med. 2016;375(15):1457–67. doi:10.1056/NEJMra1100265. Recent review on the cardiovascular toxic effects associated with new targeted cancer therapies.

    Article  CAS  PubMed  Google Scholar 

  2. Witteles RM, Bosch X. Myocardial protection during cardiotoxic chemotherapy. Circulation. 2015;132(19):1835–45. doi:10.1161/circulationaha.114.010486.

    Article  PubMed  Google Scholar 

  3. Lancellotti P, Moonen M, Jerusalem G. Predicting reversibility of anticancer drugs-related cardiac dysfunction: a new piece to the routine use of deformation imaging. Echocardiography. 2016;33(4):504–9. doi:10.1111/echo.13187.

    Article  PubMed  Google Scholar 

  4. Fanous I, Dillon P. Cancer treatment-related cardiac toxicity: prevention, assessment and management. Med Oncol. 2016;33(8):84. doi:10.1007/s12032-016-0801-5.

    Article  PubMed  Google Scholar 

  5. Ewer MS, Vooletich MT, Durand JB, Woods ML, Davis JR, Valero V, et al. Reversibility of trastuzumab-related cardiotoxicity: new insights based on clinical course and response to medical treatment. J Clin Oncol. 2005;23(31):7820–6. doi:10.1200/JCO.2005.13.300.

    Article  CAS  PubMed  Google Scholar 

  6. Felker GM, Thompson RE, Hare JM, Hruban RH, Clemetson DE, Howard DL, et al. Underlying causes and long-term survival in patients with initially unexplained cardiomyopathy. N Engl J Med. 2000;342(15):1077–84. doi:10.1056/nejm200004133421502.

    Article  CAS  PubMed  Google Scholar 

  7. Ghosh N, Hilton J. Orthotopic heart transplantation and mechanical circulatory support in cancer survivors: challenges and outcomes. J Oncol. 2015;2015:232607. doi:10.1155/2015/232607.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Thavendiranathan P, Abdel-Qadir H, Fischer HD, Camacho X, Amir E, Austin PC, et al. Breast cancer therapy-related cardiac dysfunction in adult women treated in routine clinical practice: a population-based cohort study. J Clin Oncol. 2016;34(19):2239–46. doi:10.1200/jco.2015.65.1505.

    Article  PubMed  Google Scholar 

  9. Cardinale D, Colombo A, Lamantia G, Colombo N, Civelli M, De Giacomi G, et al. Anthracycline-induced cardiomyopathy: clinical relevance and response to pharmacologic therapy. J Am Coll Cardiol. 2010;55(3):213–20. doi:10.1016/j.jacc.2009.03.095.

    Article  CAS  PubMed  Google Scholar 

  10. Gottdiener JS, Mathisen DJ, Borer JS, Bonow RO, Myers CE, Barr LH, et al. Doxorubicin cardiotoxicity: assessment of late left ventricular dysfunction by radionuclide cineangiography. Ann Intern Med. 1981;94(4):430–5.

    Article  CAS  PubMed  Google Scholar 

  11. •• Plana JC, Galderisi M, Barac A, Ewer MS, Ky B, Scherrer-Crosbie M, et al. Expert consensus for multimodality imaging evaluation of adult patients during and after cancer therapy: a report from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging. 2014;15(10):1063–93. doi:10.1093/ehjci/jeu192. Outlines intersociety recommendations for imaging of adult cancer patients and survivors.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Otterstad JE, Froeland G, St John Sutton M, Holme I. Accuracy and reproducibility of biplane two-dimensional echocardiographic measurements of left ventricular dimensions and function. Eur Heart J. 1997;18(3):507–13.

    Article  CAS  PubMed  Google Scholar 

  13. Thavendiranathan P, Grant AD, Negishi T, Plana JC, Popovic ZB, Marwick TH. Reproducibility of echocardiographic techniques for sequential assessment of left ventricular ejection fraction and volumes: application to patients undergoing cancer chemotherapy. J Am Coll Cardiol. 2013;61(1):77–84. doi:10.1016/j.jacc.2012.09.035.

    Article  PubMed  Google Scholar 

  14. Senior R, Becher H, Monaghan M, Agati L, Zamorano J, Vanoverschelde JL, et al. Contrast echocardiography: evidence-based recommendations by European Association of Echocardiography. Eur J Echocardiogr. 2009;10(2):194–212. doi:10.1093/ejechocard/jep005.

    Article  PubMed  Google Scholar 

  15. Mulvagh SL, Rakowski H, Vannan MA, Abdelmoneim SS, Becher H, Bierig SM, et al. American Society of Echocardiography consensus statement on the clinical applications of ultrasonic contrast agents in echocardiography. J Am Soc Echocardiogr. 2008;21(11):1179–201. doi:10.1016/j.echo.2008.09.009.

    Article  PubMed  Google Scholar 

  16. Jenkins C, Chan J, Hanekom L, Marwick TH. Accuracy and feasibility of online 3-dimensional echocardiography for measurement of left ventricular parameters. J Am Soc Echocardiogr. 2006;19(9):1119–28. doi:10.1016/j.echo.2006.04.002.

    Article  PubMed  Google Scholar 

  17. Jenkins C, Moir S, Chan J, Rakhit D, Haluska B, Marwick TH. Left ventricular volume measurement with echocardiography: a comparison of left ventricular opacification, three-dimensional echocardiography, or both with magnetic resonance imaging. Eur Heart J. 2009;30(1):98–106. doi:10.1093/eurheartj/ehn484.

    Article  PubMed  Google Scholar 

  18. Armstrong GT, Plana JC, Zhang N, Srivastava D, Green DM, Ness KK, et al. Screening adult survivors of childhood cancer for cardiomyopathy: comparison of echocardiography and cardiac magnetic resonance imaging. J Clin Oncol. 2012;30(23):2876–84. doi:10.1200/jco.2011.40.3584.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Walker J, Bhullar N, Fallah-Rad N, Lytwyn M, Golian M, Fang T, et al. Role of three-dimensional echocardiography in breast cancer: comparison with two-dimensional echocardiography, multiple-gated acquisition scans, and cardiac magnetic resonance imaging. J Clin Oncol. 2010;28(21):3429–36. doi:10.1200/jco.2009.26.7294.

    Article  PubMed  Google Scholar 

  20. Mignot A, Donal E, Zaroui A, Reant P, Salem A, Hamon C, et al. Global longitudinal strain as a major predictor of cardiac events in patients with depressed left ventricular function: a multicenter study. J Am Soc Echocardiogr. 2010;23(10):1019–24. doi:10.1016/j.echo.2010.07.019.

    Article  PubMed  Google Scholar 

  21. Ho E, Brown A, Barrett P, Morgan RB, King G, Kennedy MJ, et al. Subclinical anthracycline- and trastuzumab-induced cardiotoxicity in the long-term follow-up of asymptomatic breast cancer survivors: a speckle tracking echocardiographic study. Heart. 2010;96(9):701–7. doi:10.1136/hrt.2009.173997.

    Article  CAS  PubMed  Google Scholar 

  22. Sawaya H, Sebag IA, Plana JC, Januzzi JL, Ky B, Cohen V, et al. Early detection and prediction of cardiotoxicity in chemotherapy-treated patients. Am J Cardiol. 2011;107(9):1375–80. doi:10.1016/j.amjcard.2011.01.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Fallah-Rad N, Walker JR, Wassef A, Lytwyn M, Bohonis S, Fang T, et al. The utility of cardiac biomarkers, tissue velocity and strain imaging, and cardiac magnetic resonance imaging in predicting early left ventricular dysfunction in patients with human epidermal growth factor receptor II-positive breast cancer treated with adjuvant trastuzumab therapy. J American Coll Cardiol. 2011;57(22):2263–70. doi:10.1016/j.jacc.2010.11.063.

    Article  CAS  Google Scholar 

  24. Sawaya H, Sebag IA, Plana JC, Januzzi JL, Ky B, Tan TC, et al. Assessment of echocardiography and biomarkers for the extended prediction of cardiotoxicity in patients treated with anthracyclines, taxanes, and trastuzumab. Circ Cardiovasc Imaging. 2012;5(5):596–603. doi:10.1161/circimaging.112.973321.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Stoodley PW, Richards DA, Boyd A, Hui R, Harnett PR, Meikle SR, et al. Left ventricular systolic function in HER2/neu negative breast cancer patients treated with anthracycline chemotherapy: a comparative analysis of left ventricular ejection fraction and myocardial strain imaging over 12 months. Eur J Cancer. 2013;49(16):3396–403. doi:10.1016/j.ejca.2013.06.046.

    Article  CAS  PubMed  Google Scholar 

  26. Negishi K, Negishi T, Hare JL, Haluska BA, Plana JC, Marwick TH. Independent and incremental value of deformation indices for prediction of trastuzumab-induced cardiotoxicity. J Am Soc Echocardiogr. 2013;26(5):493–8. doi:10.1016/j.echo.2013.02.008.

    Article  PubMed  Google Scholar 

  27. Fei HW, Ali MT, Tan TC, Cheng KH, Salama L, Hua L, et al. Left ventricular global longitudinal strain in HER-2 + breast cancer patients treated with anthracyclines and trastuzumab who develop cardiotoxicity is associated with subsequent recovery of left ventricular ejection fraction. Echocardiography. 2016;33(4):519–26. doi:10.1111/echo.13168.

    Article  PubMed  Google Scholar 

  28. Grothues F, Smith GC, Moon JC, Bellenger NG, Collins P, Klein HU, et al. Comparison of interstudy reproducibility of cardiovascular magnetic resonance with two-dimensional echocardiography in normal subjects and in patients with heart failure or left ventricular hypertrophy. Am J Cardiol. 2002;90(1):29–34.

    Article  PubMed  Google Scholar 

  29. Hundley WG, Bluemke DA, Finn JP, Flamm SD, Fogel MA, Friedrich MG, et al. ACCF/ACR/AHA/NASCI/SCMR 2010 expert consensus document on cardiovascular magnetic resonance: a report of the American College of Cardiology Foundation Task Force on expert consensus documents. Circulation. 2010;121(22):2462–508. doi:10.1161/CIR.0b013e3181d44a8f.

    Article  PubMed  Google Scholar 

  30. •• Curigliano G, Cardinale D, Suter T, Plataniotis G, de Azambuja E, Sandri MT, et al. Cardiovascular toxicity induced by chemotherapy, targeted agents and radiotherapy: ESMO Clinical Practice Guidelines. Ann Oncol. 2012;23(Suppl 7):vii155–66. doi:10.1093/annonc/mds293. European society for medical oncology practice guidelines.

    Article  PubMed  Google Scholar 

  31. Neilan TG, Coelho-Filho OR, Pena-Herrera D, Shah RV, Jerosch-Herold M, Francis SA, et al. Left ventricular mass in patients with a cardiomyopathy after treatment with anthracyclines. Am J Cardiol. 2012;110(11):1679–86. doi:10.1016/j.amjcard.2012.07.040.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Drafts BC, Twomley KM, D'Agostino R Jr, Lawrence J, Avis N, Ellis LR, et al. Low to moderate dose anthracycline-based chemotherapy is associated with early noninvasive imaging evidence of subclinical cardiovascular disease. JACC Cardiovasc Imaging. 2013;6(8):877–85. doi:10.1016/j.jcmg.2012.11.017.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Tham EB, Haykowsky MJ, Chow K, Spavor M, Kaneko S, Khoo NS, et al. Diffuse myocardial fibrosis by T1-mapping in children with subclinical anthracycline cardiotoxicity: relationship to exercise capacity, cumulative dose and remodeling. J Cardiovasc Magn Reson. 2013;15:48. doi:10.1186/1532-429x-15-48.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Cheung YF, Lam WW, Ip JJ, Cheuk DK, Cheng FW, Yang JY, et al. Myocardial iron load and fibrosis in long term survivors of childhood leukemia. Pediatr Blood Cancer. 2015;62(4):698–703. doi:10.1002/pbc.25369.

    Article  CAS  PubMed  Google Scholar 

  35. Neilan TG, Coelho-Filho OR, Shah RV, Feng JH, Pena-Herrera D, Mandry D, et al. Myocardial extracellular volume by cardiac magnetic resonance imaging in patients treated with anthracycline-based chemotherapy. Am J Cardiol. 2013;111(5):717–22. doi:10.1016/j.amjcard.2012.11.022.

    Article  CAS  PubMed  Google Scholar 

  36. Jordan JH, D'Agostino RB Jr, Hamilton CA, Vasu S, Hall ME, Kitzman DW, et al. Longitudinal assessment of concurrent changes in left ventricular ejection fraction and left ventricular myocardial tissue characteristics after administration of cardiotoxic chemotherapies using T1-weighted and T2-weighted cardiovascular magnetic resonance. Circ Cardiovasc Imaging. 2014;7(6):872–9. doi:10.1161/circimaging.114.002217.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Ylanen K, Poutanen T, Savikurki-Heikkila P, Rinta-Kiikka I, Eerola A, Vettenranta K. Cardiac magnetic resonance imaging in the evaluation of the late effects of anthracyclines among long-term survivors of childhood cancer. J Am Coll Cardiol. 2013;61(14):1539–47. doi:10.1016/j.jacc.2013.01.019.

    Article  PubMed  Google Scholar 

  38. de Ville de Goyet M, Brichard B, Robert A, Renard L, Veyckemans F, Vanhoutte L, et al. Prospective cardiac MRI for the analysis of biventricular function in children undergoing cancer treatments. Pediatr Blood Cancer. 2015;62(5):867–74. doi:10.1002/pbc.25381.

    Article  PubMed  Google Scholar 

  39. Lunning MA, Kutty S, Rome ET, Li L, Padiyath A, Loberiza F, et al. Cardiac magnetic resonance imaging for the assessment of the myocardium after doxorubicin-based chemotherapy. Am J Clin Oncol. 2015;38(4):377–81. doi:10.1097/COC.0b013e31829e19be.

    Article  CAS  PubMed  Google Scholar 

  40. Greenwood JP, Maredia N, Younger JF, Brown JM, Nixon J, Everett CC, et al. Cardiovascular magnetic resonance and single-photon emission computed tomography for diagnosis of coronary heart disease (CE-MARC): a prospective trial. Lancet. 2012;379(9814):453–60. doi:10.1016/s0140-6736(11)61335-4.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Greenwood JP, Motwani M, Maredia N, Brown JM, Everett CC, Nixon J, et al. Comparison of cardiovascular magnetic resonance and single-photon emission computed tomography in women with suspected coronary artery disease from the Clinical Evaluation of Magnetic Resonance Imaging in Coronary Heart Disease (CE-MARC) Trial. Circulation. 2014;129(10):1129–38. doi:10.1161/circulationaha.112.000071.

    Article  PubMed  Google Scholar 

  42. Haykowsky MJ, Mackey JR, Thompson RB, Jones LW, Paterson DI. Adjuvant trastuzumab induces ventricular remodeling despite aerobic exercise training. Clin Cancer Res. 2009;15(15):4963–7. doi:10.1158/1078-0432.ccr-09-0628.

    Article  CAS  PubMed  Google Scholar 

  43. Cardinale D, Sandri MT, Martinoni A, Tricca A, Civelli M, Lamantia G, et al. Left ventricular dysfunction predicted by early troponin I release after high-dose chemotherapy. J Am Coll Cardiol. 2000;36(2):517–22.

    Article  CAS  PubMed  Google Scholar 

  44. Sandri MT, Cardinale D, Zorzino L, Passerini R, Lentati P, Martinoni A, et al. Minor increases in plasma troponin I predict decreased left ventricular ejection fraction after high-dose chemotherapy. Clin Chem. 2003;49(2):248–52.

    Article  CAS  PubMed  Google Scholar 

  45. Cardinale D, Sandri MT, Martinoni A, Borghini E, Civelli M, Lamantia G, et al. Myocardial injury revealed by plasma troponin I in breast cancer treated with high-dose chemotherapy. Ann Oncol. 2002;13(5):710–5.

    Article  CAS  PubMed  Google Scholar 

  46. Cardinale D, Sandri MT, Colombo A, Colombo N, Boeri M, Lamantia G, et al. Prognostic value of troponin I in cardiac risk stratification of cancer patients undergoing high-dose chemotherapy. Circulation. 2004;109(22):2749–54. doi:10.1161/01.cir.0000130926.51766.cc.

    Article  CAS  PubMed  Google Scholar 

  47. Cardinale D, Colombo A, Sandri MT, Lamantia G, Colombo N, Civelli M, et al. Prevention of high-dose chemotherapy-induced cardiotoxicity in high-risk patients by angiotensin-converting enzyme inhibition. Circulation. 2006;114(23):2474–81. doi:10.1161/circulationaha.106.635144.

    Article  CAS  PubMed  Google Scholar 

  48. Cardinale D, Colombo A, Torrisi R, Sandri MT, Civelli M, Salvatici M, et al. Trastuzumab-induced cardiotoxicity: clinical and prognostic implications of troponin I evaluation. J Clin Oncol. 2010;28(25):3910–6. doi:10.1200/jco.2009.27.3615.

    Article  CAS  PubMed  Google Scholar 

  49. Soker M, Kervancioglu M. Plasma concentrations of NT-pro-BNP and cardiac troponin-I in relation to doxorubicin-induced cardiomyopathy and cardiac function in childhood malignancy. Saudi Med J. 2005;26(8):1197–202.

    PubMed  Google Scholar 

  50. Mathew P, Suarez W, Kip K, Bayar E, Jasty R, Matloub Y, et al. Is there a potential role for serum cardiac troponin I as a marker for myocardial dysfunction in pediatric patients receiving anthracycline-based therapy? A pilot study. Cancer Investig. 2001;19(4):352–9.

    Article  CAS  Google Scholar 

  51. Kismet E, Varan A, Ayabakan C, Alehan D, Portakal O, Buyukpamukcu M. Serum troponin T levels and echocardiographic evaluation in children treated with doxorubicin. Pediatr Blood Cancer. 2004;42(3):220–4. doi:10.1002/pbc.10368.

    Article  PubMed  Google Scholar 

  52. Gimeno E, Gomez M, Gonzalez JR, Comin J, Alvarez-Larran A, Sanchez-Gonzalez B, et al. NT-proBNP: a cardiac biomarker to assess prognosis in non-Hodgkin lymphoma. Leuk Res. 2011;35(6):715–20. doi:10.1016/j.leukres.2011.01.018.

    Article  CAS  PubMed  Google Scholar 

  53. Sandri MT, Salvatici M, Cardinale D, Zorzino L, Passerini R, Lentati P, et al. N-terminal pro-B-type natriuretic peptide after high-dose chemotherapy: a marker predictive of cardiac dysfunction? Clin Chem. 2005;51(8):1405–10. doi:10.1373/clinchem.2005.050153.

    Article  CAS  PubMed  Google Scholar 

  54. De Iuliis F, Salerno G, Taglieri L, De Biase L, Lanza R, Cardelli P, et al. Serum biomarkers evaluation to predict chemotherapy-induced cardiotoxicity in breast cancer patients. Tumour Biol. 2016;37(3):3379–87. doi:10.1007/s13277-015-4183-7.

    Article  PubMed  Google Scholar 

  55. Roziakova L, Bojtarova E, Mistrik M, Dubrava J, Gergel J, Lenkova N, et al. Serial measurements of cardiac biomarkers in patients after allogeneic hematopoietic stem cell transplantation. J Exp Clin Cancer Res. 2012;31:13. doi:10.1186/1756-9966-31-13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Skovgaard D, Hasbak P, Kjaer A. BNP predicts chemotherapy-related cardiotoxicity and death: comparison with gated equilibrium radionuclide ventriculography. PLoS One. 2014;9(5):e96736. doi:10.1371/journal.pone.0096736.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Cardinale D, Sandri MT. Role of biomarkers in chemotherapy-induced cardiotoxicity. Prog Cardiovasc Dis. 2010;53(2):121–9. doi:10.1016/j.pcad.2010.04.002.

    Article  CAS  PubMed  Google Scholar 

  58. Witteles RM. Biomarkers as predictors of cardiac toxicity from targeted cancer therapies. J Card Fail. 2016;22(6):459–64. doi:10.1016/j.cardfail.2016.03.016.

    Article  CAS  PubMed  Google Scholar 

  59. Yu AF, Ky B. Roadmap for biomarkers of cancer therapy cardiotoxicity. Heart. 2016;102(6):425–30. doi:10.1136/heartjnl-2015-307894.

    Article  CAS  PubMed  Google Scholar 

  60. Henri C, Heinonen T, Tardif JC. The role of biomarkers in decreasing risk of cardiac toxicity after cancer therapy. Biomark Cancer. 2016;8(2):39–45. doi:10.4137/BIC.S31798.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Putt M, Hahn VS, Januzzi JL, Sawaya H, Sebag IA, Plana JC, et al. Longitudinal changes in multiple biomarkers are associated with cardiotoxicity in breast cancer patients treated with doxorubicin, taxanes, and trastuzumab. Clin Chem. 2015;61(9):1164–72. doi:10.1373/clinchem.2015.241232.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Ky B, Putt M, Sawaya H, French B, Januzzi JL Jr, Sebag IA, et al. Early increases in multiple biomarkers predict subsequent cardiotoxicity in patients with breast cancer treated with doxorubicin, taxanes, and trastuzumab. J Am Coll Cardiol. 2014;63(8):809–16. doi:10.1016/j.jacc.2013.10.061.

    Article  CAS  PubMed  Google Scholar 

  63. Wood PW, Choy JB, Nanda NC, Becher H. Left ventricular ejection fraction and volumes: it depends on the imaging method. Echocardiography. 2014;31(1):87–100. doi:10.1111/echo.12331.

    Article  PubMed  Google Scholar 

  64. Bellenger NG, Davies LC, Francis JM, Coats AJ, Pennell DJ. Reduction in sample size for studies of remodeling in heart failure by the use of cardiovascular magnetic resonance. J Cardiovasc Magn Reson. 2000;2(4):271–8.

    Article  CAS  PubMed  Google Scholar 

  65. Romond EH, Jeong JH, Rastogi P, Swain SM, Geyer CE Jr, Ewer MS, et al. Seven-year follow-up assessment of cardiac function in NSABP B-31, a randomized trial comparing doxorubicin and cyclophosphamide followed by paclitaxel (ACP) with ACP plus trastuzumab as adjuvant therapy for patients with node-positive, human epidermal growth factor receptor 2-positive breast cancer. J Clinical Oncol. 2012;30(31):3792–9. doi:10.1200/jco.2011.40.0010.

    Article  CAS  Google Scholar 

  66. de Azambuja E, Procter MJ, van Veldhuisen DJ, Agbor-Tarh D, Metzger-Filho O, Steinseifer J, et al. Trastuzumab-associated cardiac events at 8 years of median follow-up in the Herceptin Adjuvant trial (BIG 1-01). J Clinical Oncol. 2014;32(20):2159–65. doi:10.1200/jco.2013.53.9288.

    Article  Google Scholar 

  67. •• Zamorano JL, Lancellotti P, Rodriguez Munoz D, Aboyans V, Asteggiano R, Galderisi M, et al. 2016 ESC position paper on cancer treatments and cardiovascular toxicity developed under the auspices of the ESC committee for practice guidelines: the task force for cancer treatments and cardiovascular toxicity of the European Society of Cardiology (ESC). European Heart J. 2016;37(36):2768–801. doi:10.1093/eurheartj/ehw211. Position Paper on cancer treatments and cardiovascular toxicity from the European Society of Cardiology.

    Article  Google Scholar 

  68. Cardinale D, Biasillo G, Cipolla CM. Curing cancer, saving the heart: a challenge that Cardioncology should not miss. Curr Cardiol Rep. 2016;18(6):51. doi:10.1007/s11886-016-0731-z.

    Article  PubMed  Google Scholar 

  69. Jerusalem G, Moonen M, Freres P, Lancellotti P. The European Association of Cardiovascular Imaging/Heart Failure Association Cardiac Oncology Toxicity Registry: long-term benefits for breast cancer treatment. Future Oncol. 2015;11(20):2791–4. doi:10.2217/fon.15.227.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrizio Lancellotti.

Ethics declarations

Conflict of Interest

Marie Moonen, Cécile Oury, and Patrizio Lancellotti declare they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Cardio-oncology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moonen, M., Oury, C. & Lancellotti, P. Cardiac Imaging: Multimodality Advances and Surveillance Strategies in Detection of Cardiotoxicity. Curr Oncol Rep 19, 63 (2017). https://doi.org/10.1007/s11912-017-0622-5

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11912-017-0622-5

Keywords

Navigation