Skip to main content

Advertisement

Log in

Lewy Body Dementia: An Overview of Promising Therapeutics

  • Review
  • Published:
Current Neurology and Neuroscience Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Lewy body dementia (LBD) encompasses dementia with Lewy bodies (DLB) and Parkinson’s disease dementia (PDD). This article will emphasize potential disease-modifying therapies as well as investigative symptomatic treatments for non-motor symptoms including cognitive impairment and psychosis that can present a tremendous burden to patients with LBD and their caregivers.

Recent Findings

We review 11 prospective disease-modifying therapies (DMT) including four with phase 2 data (neflamapimod, nilotinib, bosutinib, and E2027); four with some limited data in symptomatic populations including phase 1, open-label, registry, or cohort data (vodabatinib, ambroxol, clenbuterol, and terazosin); and three with phase 1 data in healthy populations (Anle138b, fosgonimeton, and CT1812). We also appraise four symptomatic therapies for cognitive impairment, but due to safety and efficacy concerns, only NYX-458 remains under active investigation. Of symptomatic therapies for psychosis recently investigated, pimavanserin shows promise in LBD, but studies of nelotanserin have been suspended.

Summary

Although the discovery of novel symptomatic and disease-modifying therapeutics remains a significant challenge, recently published and upcoming trials signify promising strides toward that aim.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: •• Of major importance

  1. McKeith IG, Boeve BF, Dickson DW, Halliday G, Taylor JP, Weintraub D, et al. Diagnosis and management of dementia with Lewy bodies: Fourth consensus report of the DLB Consortium. Neurology. 2017;89(1):88–100.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Vasconcellos LFR, Pereira JS. Parkinson’s disease dementia: Diagnostic criteria and risk factor review. J Clin Exp Neuropsychol. 2015;37(9):988–93.

    Article  PubMed  Google Scholar 

  3. Kövari E, Horvath J, Bouras C. Neuropathology of Lewy body disorders. Brain Res Bull. 2009;80(4):203–10.

    Article  PubMed  Google Scholar 

  4. Weintraub D, Burn DJ. Parkinson’s disease: The quintessential neuropsychiatric disorder. Mov Disord. 2011;26(6):1022–31.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Herman T, Weiss A, Brozgol M, Wilf-Yarkoni A, Giladi N, Hausdorff JM. Cognitive function and other non-motor features in non-demented Parkinson’s disease motor subtypes. J Neural Transm. 2015;122(8):1115–24.

    Article  PubMed  Google Scholar 

  6. Aarsland D, Ballard C, Walker Z, Bostrom F, Alves G, Kossakowski K, et al. Memantine in patients with Parkinson’s disease dementia or dementia with Lewy bodies: a double-blind, placebo-controlled, multicentre trial. Lancet Neurol. 2009;8(7):613–8.

    Article  CAS  PubMed  Google Scholar 

  7. Emre M, Tsolaki M, Bonuccelli U, Destée A, Tolosa E, Kutzelnigg A, et al. Memantine for patients with Parkinson’s disease dementia or dementia with Lewy bodies: a randomised, double-blind, placebo-controlled trial. Lancet Neurol. 2010;9(10):969–77.

    Article  CAS  PubMed  Google Scholar 

  8. Jiang Y, Alam JJ, Gomperts SN, Maruff P, Lemstra AW, Germann UA, et al. Preclinical and randomized clinical evaluation of the p38α kinase inhibitor neflamapimod for basal forebrain cholinergic degeneration. Nat Commun. 2022;13(1):5308. In a 16-week phase 2a double-blinded randomized controlled trial (RCT) in 91 participants with mild-moderate DLB (AscenD-LB), there was no difference in the primary endpoint, a neuropsychological test battery in the treatment group compared with the placebo group, but there was a significant difference on a secondary endpoint, the CDR sum of boxes.

  9. Germann UA, Alam JJ. P38α MAPK signaling-a robust therapeutic target for Rab5-mediated neurodegenerative disease. Int J Mol Sci. 2020;21(15):5485.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Corrêa SAL, Eales KL. The role of p38 MAPK and its substrates in neuronal plasticity and neurodegenerative disease. J Signal Transduct. 2012;2012:649079.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Yasuda S, Sugiura H, Tanaka H, Takigami S, Yamagata K. p38 MAP kinase inhibitors as potential therapeutic drugs for neural diseases. Cent Nerv Syst Agents Med Chem. 2011;11(1):45–59.

    Article  CAS  PubMed  Google Scholar 

  12. Bachstetter AD, Xing B, de Almeida L, Dimayuga ER, Watterson DM, Van Eldik LJ. Microglial p38α MAPK is a key regulator of proinflammatory cytokine up-regulation induced by toll-like receptor (TLR) ligands or beta-amyloid (Aβ). J Neuroinflammation. 2011;6(8):79.

    Article  Google Scholar 

  13. Duffy JP, Harrington EM, Salituro FG, Cochran JE, Green J, Gao H, et al. The Discovery of VX-745: A Novel and Selective p38α Kinase Inhibitor. ACS Med Chem Lett. 2011;2(10):758–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Haddad JJ. VX-745. Vertex pharmaceuticals. Curr Opin Investig Drugs Lond Engl 2000. 2001;2(8):1070–6.

    CAS  Google Scholar 

  15. Andrews JS, Desai U, Kirson NY, Zichlin ML, Ball DE, Matthews BR. Disease severity and minimal clinically important differences in clinical outcome assessments for Alzheimer’s disease clinical trials. Alzheimers Dement Transl Res Clin Interv. 2019;5(1):354–63.

    Article  Google Scholar 

  16. Mouton A, Blanc F, Gros A, Manera V, Fabre R, Sauleau E, et al. Sex ratio in dementia with Lewy bodies balanced between Alzheimer’s disease and Parkinson’s disease dementia: a cross-sectional study. Alzheimers Res Ther. 2018;12(10):92.

    Article  Google Scholar 

  17. Jones SAV, O’Brien JT. The prevalence and incidence of dementia with Lewy bodies: a systematic review of population and clinical studies. Psychol Med. 2014;44(4):673–83.

    Article  Google Scholar 

  18. Ando M, Kotani S, Watanabe N, Fukushima T. [p3–043]: Preclinical characterization of E2027, a novel phosphodiesterase 9 inhibitor. Alzheimers Dement. 2017;13(7S Part 19):P946–P946.

    Google Scholar 

  19. Ando M, Ishikawa Y, Horie K, Mochizuki T, Yamamoto M, Watanabe N, et al. P3–062: Effect of repeated administration of E2027, a novel phosphodiesterase-9 inhibitor, on cyclic gmp levels in rat cerebrospinal fluid. Alzheimers Dement. 2018;14(7S_Part_20):P1088–P1088.

  20. Höllerhage M, Moebius C, Melms J, Chiu WH, Goebel JN, Chakroun T, et al. Protective efficacy of phosphodiesterase-1 inhibition against alpha-synuclein toxicity revealed by compound screening in LUHMES cells. Sci Rep. 2017;13(7):11469.

    Article  Google Scholar 

  21. Schuck EL, Lai RYK, Aluri J, Hussein Z, Ino M, Kotani S, et al. [p1–056]: Population pharmacokinetic-pharmacodynamic (pk/Pd) modeling of E2027, a selective phosphodiesterase-9 (pde9) inhibitor, following single ascending oral doses in healthy volunteers. Alzheimers Dement. 2017;13(7S_Part_5):P258–P258.

  22. Landry IS, Aluri J, Schuck E, Ino M, Horie K, Boyd P, et al. Phase 1 single ascending and multiple ascending dose studies of phosphodiesterase-9 Inhibitor E2027: confirmation of target engagement and selection of phase 2 dose in dementia with lewy bodies trial. Alzheimer Dis Assoc Disord. 2022;36(3):200. Oral administration of E2027 was well-tolerated in a second randomized, double-blind phase I study of 74 healthy older adults published in 2022.

  23. 15th Conference Clinical Trials Alzheimer’s Disease, November 29- December 2, 2022, San Francisco, CA, USA: Symposia - Oral Communications - Late Breaking Abstracts (Clinical Trial Alzheimer’s Disease). J Prev Alzheimers Dis. 2022;9(Suppl 1):8–50.

  24. Mahul-Mellier AL, Fauvet B, Gysbers A, Dikiy I, Oueslati A, Georgeon S, et al. c-Abl phosphorylates α-synuclein and regulates its degradation: implication for α-synuclein clearance and contribution to the pathogenesis of Parkinson’s disease. Hum Mol Genet. 2014;23(11):2858–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hebron ML, Lonskaya I, Moussa CEH. Tyrosine kinase inhibition facilitates autophagic SNCA/α-synuclein clearance. Autophagy. 2013;9(8):1249–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hebron ML, Lonskaya I, Olopade P, Selby ST, Pagan F, Moussa CEH. Tyrosine kinase inhibition regulates early systemic immune changes and modulates the neuroimmune response in α-synucleinopathy. J Clin Cell Immunol. 2014;30(5):259.

    Google Scholar 

  27. Hebron ML, Javidnia M, Moussa CEH. Tau clearance improves astrocytic function and brain glutamate-glutamine cycle. J Neurol Sci. 2018;15(391):90–9.

    Article  Google Scholar 

  28. Heyburn L, Hebron ML, Smith J, Winston C, Bechara J, Li Z, et al. Tyrosine kinase inhibition reverses TDP-43 effects on synaptic protein expression, astrocytic function and amino acid dis-homeostasis. J Neurochem. 2016;139(4):610–23.

    Article  CAS  PubMed  Google Scholar 

  29. Lonskaya I, Hebron ML, Desforges NM, Franjie A, Moussa CEH. Tyrosine kinase inhibition increases functional parkin-Beclin-1 interaction and enhances amyloid clearance and cognitive performance. EMBO Mol Med. 2013;5(8):1247–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Eteläinen TS, Kilpeläinen TP, Ignatius A, Auno S, De Lorenzo F, Uhari-Väänänen JK, et al. Removal of proteinase K resistant αSyn species does not correlate with cell survival in a virus vector-based Parkinson’s disease mouse model. Neuropharmacology. 2022;1(218):109213.

    Article  Google Scholar 

  31. Pagan F, Hebron M, Valadez EH, Torres-Yaghi Y, Huang X, Mills RR, et al. Nilotinib effects in parkinson’s disease and dementia with lewy bodies. J Park Dis. 2016;6(3):503–17.

    CAS  Google Scholar 

  32. Pagan Fernando L, Hebron ML, Wilmarth B, Torres-Yaghi Y, Lawler A, Mundel EE, et al. Nilotinib Effects on Safety, Tolerability, and Potential Biomarkers in Parkinson Disease: A Phase 2 Randomized Clinical Trial. JAMA Neurol. 2020;77(3):309–17.

    Article  CAS  PubMed  Google Scholar 

  33. Masato A, Plotegher N, Boassa D, Bubacco L. Impaired dopamine metabolism in Parkinson’s disease pathogenesis. Mol Neurodegener. 2019;14(1):35.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Lei P, Ayton S, Finkelstein DI, Adlard PA, Masters CL, Bush AI. Tau protein: Relevance to Parkinson’s disease. Int J Biochem Cell Biol. 2010;42(11):1775–8.

    Article  CAS  PubMed  Google Scholar 

  35. Espay AJ, Hauser RA, Armstrong MJ. The narrowing path for nilotinib and other potential disease-modifying therapies for parkinson disease. JAMA Neurol. 2020;77(3):295–7.

    Article  PubMed  Google Scholar 

  36. Pagan FL, Wilmarth B, Torres-Yaghi Y, Hebron ML, Mulki S, Ferrante D, et al. Long-term safety and clinical effects of nilotinib in parkinson’s disease. Mov Disord. 2021;36(3):740–9.

    Article  CAS  PubMed  Google Scholar 

  37. Fowler AJ, Ahn J, Hebron M, Chiu T, Ayoub R, Mulki S, et al. CSF MicroRNAs reveal impairment of angiogenesis and autophagy in parkinson disease. Neurol Genet. 2021;7(6):e633.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Simuni T, Fiske B, Merchant K, Coffey CS, Klingner E, Caspell-Garcia C, et al. Efficacy of nilotinib in patients with moderately advanced parkinson disease: a randomized clinical trial. JAMA Neurol. 2021;78(3):312–20. In a 6-month phase 2a double-blind RCT (NILO-PD) of 76 participants with moderate PD, nilotinib was found to be safe and tolerable (the primary outcome measures.

  39. Mahdavi KD, Jordan SE, Barrows HR, Pravdic M, Habelhah B, Evans NE, et al. Treatment of Dementia With Bosutinib: An Open-Label Study of a Tyrosine Kinase Inhibitor. Neurol Clin Pract. 2021;11(3):e294-302.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Pagan FL, Torres-Yaghi Y, Hebron ML, Wilmarth B, Turner RS, Matar S, et al. Safety, target engagement, and biomarker effects of bosutinib in dementia with Lewy bodies. Alzheimers Dement N Y N. 2022;8(1):e12296.

    Article  Google Scholar 

  41. Ko HS, Lee Y, Shin JH, Karuppagounder SS, Gadad BS, Koleske AJ, et al. Phosphorylation by the c-Abl protein tyrosine kinase inhibits parkin’s ubiquitination and protective function. Proc Natl Acad Sci U S A. 2010;107(38):16691–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Walsh RR, Damle NK, Mandhane S, Piccoli SP, Talluri RS, Love D, et al. Plasma and cerebrospinal fluid pharmacokinetics of vodobatinib, a neuroprotective c-Abl tyrosine kinase inhibitor for the treatment of Parkinson’s disease. Parkinsonism Relat Disord. 2023;1(108):105281.

    Article  Google Scholar 

  43. O’Brien JT, Chouliaras L, Sultana J, Taylor JP, Ballard C, Aarsland D, et al. RENEWAL: repurposing study to find new compounds with activity for lewy body dementia—an international delphi consensus. Alzheimers Res Ther. 2022 Nov 11;14(1):169. The RENEWAL study group identified ambroxol as the most promising therapeutic agent that could be repurposed for LBD as a disease-modifying treatment.

  44. An overview of efficacy and safety of ambroxol for the treatment of acute and chronic respiratory diseases with a special regard to children - PMC [Internet]. [cited 2023 May 14]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7137760/

  45. Cullen V, Sardi SP, Ng J, Xu YH, Sun Y, Tomlinson JJ, et al. Acid β-glucosidase mutants linked to Gaucher disease, Parkinson disease, and Lewy body dementia alter α-synuclein processing. Ann Neurol. 2011;69(6):940–53.

    Article  CAS  PubMed  Google Scholar 

  46. Sardi SP, Clarke J, Kinnecom C, Tamsett TJ, Li L, Stanek LM, et al. CNS expression of glucocerebrosidase corrects alpha-synuclein pathology and memory in a mouse model of Gaucher-related synucleinopathy. Proc Natl Acad Sci U S A. 2011;108(29):12101–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Gegg ME, Burke D, Heales SJR, Cooper JM, Hardy J, Wood NW, et al. Glucocerebrosidase deficiency in substantia nigra of parkinson disease brains. Ann Neurol. 2012;72(3):455–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Chiasserini D, Paciotti S, Eusebi P, Persichetti E, Tasegian A, Kurzawa-Akanbi M, et al. Selective loss of glucocerebrosidase activity in sporadic Parkinson’s disease and dementia with Lewy bodies. Mol Neurodegener. 2015;27(10):15.

    Article  Google Scholar 

  49. Lwin A, Orvisky E, Goker-Alpan O, LaMarca ME, Sidransky E. Glucocerebrosidase mutations in subjects with parkinsonism. Mol Genet Metab. 2004;81(1):70–3.

    Article  CAS  PubMed  Google Scholar 

  50. Mazzulli JR, Xu YH, Sun Y, Knight AL, McLean PJ, Caldwell GA, et al. Gaucher disease glucocerebrosidase and α-synuclein form a bidirectional pathogenic loop in synucleinopathies. Cell. 2011;146(1):37–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Bendikov-Bar I, Maor G, Filocamo M, Horowitz M. Ambroxol as a pharmacological chaperone for mutant glucocerebrosidase. Blood Cells Mol Dis. 2013;50(2):141–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. McNeill A, Magalhaes J, Shen C, Chau KY, Hughes D, Mehta A, et al. Ambroxol improves lysosomal biochemistry in glucocerebrosidase mutation-linked Parkinson disease cells. Brain J Neurol. 2014;137(Pt 5):1481–95.

    Article  Google Scholar 

  53. Sanchez-Martinez A, Beavan M, Gegg ME, Chau KY, Whitworth AJ, Schapira AHV. Parkinson disease-linked GBA mutation effects reversed by molecular chaperones in human cell and fly models. Sci Rep. 2016;19(6):31380.

    Article  Google Scholar 

  54. Migdalska-Richards A, Daly L, Bezard E, Schapira AHV. Ambroxol effects in glucocerebrosidase and α-synuclein transgenic mice. Ann Neurol. 2016;80(5):766–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Mullin S, Smith L, Lee K, D’Souza G, Woodgate P, Elflein J, et al. Ambroxol for the treatment of patients with parkinson disease with and without glucocerebrosidase gene mutations: a nonrandomized. Noncontrolled Trial JAMA Neurol. 2020;77(4):427–34.

    Article  PubMed  Google Scholar 

  56. Istaiti M, Revel-Vilk S, Becker-Cohen M, Dinur T, Ramaswami U, Castillo-Garcia D, et al. Upgrading the evidence for the use of ambroxol in Gaucher disease and GBA related Parkinson: Investigator initiated registry based on real life data. Am J Hematol. 2021;96(5):545–51.

    Article  CAS  PubMed  Google Scholar 

  57. Chwiszczuk LJ, Breitve MH, Kirsebom BEB, Selnes P, Fløvig JChr, Knapskog AB, et al. The ANeED study – ambroxol in new and early dementia with Lewy bodies (DLB): protocol for a phase IIa multicentre, randomised, double-blinded and placebo-controlled trial. Front Aging Neurosci [Internet]. 2023 [cited 2023 Jun 30];15. https://www.frontiersin.org/articles/10.3389/fnagi.2023.1163184

  58. Pasternak SH, Silveira C, Li Z, Bartha R, Borrie M, Wells J, et al. P1–067: Ambroxol as Pharmacological chaperone targeting gba1 as a disease modifying treatment for parkinson’s disease dementia: a phase 2 randomized, double-blind, placebo-controlled trial. Alzheimers Dement. 2018;14(7S Part 5):P296–P296.

    Google Scholar 

  59. Weintraub D, Aarsland D, Biundo R, Dobkin R, Goldman J, Lewis S. Management of psychiatric and cognitive complications in Parkinson’s disease. BMJ. 2022;24:e068718.

    Article  Google Scholar 

  60. Jacobs HIL, Becker JA, Kwong K, Engels-Domínguez N, Prokopiou PC, Papp KV, et al. In vivo and neuropathology data support locus coeruleus integrity as indicator of Alzheimer’s disease pathology and cognitive decline. Sci Transl Med. 2021;13(612):eabj2511.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Li Y, Yuan Y, Li Y, Han D, Liu T, Yang N, et al. Inhibition of α-synuclein accumulation improves neuronal apoptosis and delayed postoperative cognitive recovery in aged mice. Oxid Med Cell Longev. 2021;2021:5572899.

    PubMed  PubMed Central  Google Scholar 

  62. Evans AK, Park HH, Saw NL, Singhal K, Ogawa G, Leib RD, et al. Age-related neuroinflammation and pathology in the locus coeruleus and hippocampus: beta-adrenergic antagonists exacerbate impairment of learning and memory in aged mice. Neurobiol Aging. 2021;106:241–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. O’Neill E, Yssel JD, McNamara C, Harkin A. Pharmacological targeting of β2 -adrenoceptors is neuroprotective in the LPS inflammatory rat model of Parkinson’s disease. Br J Pharmacol. 2020;177(2):282–97.

    Article  PubMed  Google Scholar 

  64. McNamee EN, Ryan KM, Griffin EW, González-Reyes RE, Ryan KJ, Harkin A, et al. Noradrenaline acting at central beta-adrenoceptors induces interleukin-10 and suppressor of cytokine signaling-3 expression in rat brain: implications for neurodegeneration. Brain Behav Immun. 2010;24(4):660–71.

    Article  CAS  PubMed  Google Scholar 

  65. MacDonald S, Shah AS, Tousi B. Current therapies and drug development pipeline in lewy body dementia: an update. Drugs Aging. 2022;39(7):505–22.

    Article  PubMed  Google Scholar 

  66. Cai R, Zhang Y, Simmering JE, Schultz JL, Li Y, Fernandez-Carasa I, et al. Enhancing glycolysis attenuates Parkinson’s disease progression in models and clinical databases. J Clin Invest. 2019;129(10):4539–49.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Simmering JE, Welsh MJ, Liu L, Narayanan NS, Pottegård A. Association of glycolysis-enhancing α-1 blockers with risk of developing parkinson disease. JAMA Neurol. 2021;78(4):407–13.

    Article  PubMed  Google Scholar 

  68. Grundman M, Morgan R, Lickliter JD, Schneider LS, DeKosky S, Izzo NJ, et al. A phase 1 clinical trial of the sigma-2 receptor complex allosteric antagonist CT1812, a novel therapeutic candidate for Alzheimer’s disease. Alzheimers Dement N Y N. 2019;5:20–6.

    Article  Google Scholar 

  69. Izzo NJ, Yuede CM, LaBarbera KM, Limegrover CS, Rehak C, Yurko R, et al. Preclinical and clinical biomarker studies of CT1812: A novel approach to Alzheimer’s disease modification. Alzheimers Dement J Alzheimers Assoc. 2021;17(8):1365–82.

    Article  CAS  Google Scholar 

  70. Moebius HJ, Church KJ. The case for a novel therapeutic approach to dementia: small molecule hepatocyte growth factor (HGF/MET) positive modulators. J Alzheimers Dis JAD. 2023;92(1):1–12.

    Article  PubMed  Google Scholar 

  71. Akimoto M, Baba A, Ikeda-Matsuo Y, Yamada MK, Itamura R, Nishiyama N, et al. Hepatocyte growth factor as an enhancer of nmda currents and synaptic plasticity in the hippocampus. Neuroscience. 2004;128(1):155–62.

    Article  CAS  PubMed  Google Scholar 

  72. Kato T, Funakoshi H, Kadoyama K, Noma S, Kanai M, Ohya-Shimada W, et al. Hepatocyte growth factor overexpression in the nervous system enhances learning and memory performance in mice. J Neurosci Res. 2012;90(9):1743–55.

    Article  CAS  PubMed  Google Scholar 

  73. Moebius HJ, Bernick CB, Winner P, Maalouf J, Ooi KB, Dickson SP, et al. ACT-AD: Fosgonimeton in mild-to-moderate Alzheimer’s disease – first results of a randomized, placebo-controlled, 26-week Phase 2 proof-of-concept trial. Alzheimers Dement. 2022;18(S10):e061572.

    Article  Google Scholar 

  74. Wagner J, Ryazanov S, Leonov A, Levin J, Shi S, Schmidt F, et al. Anle138b: a novel oligomer modulator for disease-modifying therapy of neurodegenerative diseases such as prion and Parkinson’s disease. Acta Neuropathol (Berl). 2013;125(6):795–813.

    Article  CAS  PubMed  Google Scholar 

  75. Wegrzynowicz M, Bar-On D, Calo’ L, Anichtchik O, Iovino M, Xia J, et al. Depopulation of dense α-synuclein aggregates is associated with rescue of dopamine neuron dysfunction and death in a new Parkinson’s disease model. Acta Neuropathol (Berl). 2019;138(4):575–95.

    Article  CAS  PubMed  Google Scholar 

  76. Levin J, Schmidt F, Boehm C, Prix C, Bötzel K, Ryazanov S, et al. The oligomer modulator anle138b inhibits disease progression in a Parkinson mouse model even with treatment started after disease onset. Acta Neuropathol (Berl). 2014;127(5):779–80.

    Article  PubMed  Google Scholar 

  77. Heras-Garvin A, Weckbecker D, Ryazanov S, Leonov A, Griesinger C, Giese A, et al. Anle138b modulates α-synuclein oligomerization and prevents motor decline and neurodegeneration in a mouse model of multiple system atrophy. Mov Disord Off J Mov Disord Soc. 2019;34(2):255–63.

    Article  CAS  Google Scholar 

  78. Levin J, Sing N, Melbourne S, Morgan A, Mariner C, Spillantini MG, et al. Safety, tolerability and pharmacokinetics of the oligomer modulator anle138b with exposure levels sufficient for therapeutic efficacy in a murine Parkinson model: A randomised, double-blind, placebo-controlled phase 1a trial. eBioMedicine. 2022;80:104021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Kuebler L, Buss S, Leonov A, Ryazanov S, Schmidt F, Maurer A, et al. [11C]MODAG-001-towards a PET tracer targeting α-synuclein aggregates. Eur J Nucl Med Mol Imaging. 2021;48(6):1759–72.

    Article  CAS  PubMed  Google Scholar 

  80. Current Therapies and Drug Development Pipeline in Lewy Body Dementia: An Update | SpringerLink [Internet]. [cited 2023 May 14]. https://link.springer.com/article/10.1007/s40266-022-00939-w

  81. Bakker C, Tasker T, Liptrot J, Hart EP, Klaassen ES, Doll RJ, et al. Safety, pharmacokinetics and exploratory pro-cognitive effects of HTL0018318, a selective M1 receptor agonist, in healthy younger adult and elderly subjects: a multiple ascending dose study. Alzheimers Res Ther. 2021;13(1):87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Johnson CR, Kangas BD, Jutkiewicz EM, Bergman J, Coop A. Drug design targeting the muscarinic receptors and the implications in central nervous system disorders. Biomedicines. 2022;10(2):398.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Wilbraham D, Biglan KM, Svensson KA, Tsai M, Kielbasa W. Safety, tolerability, and pharmacokinetics of mevidalen (LY3154207), a centrally acting dopamine D1 receptor-positive allosteric modulator (D1PAM). Healthy Subjects Clin Pharmacol Drug Dev. 2021;10(4):393–403.

    Article  CAS  PubMed  Google Scholar 

  84. Biglan K, Munsie L, Svensson KA, Ardayfio P, Pugh M, Sims J, et al. Safety and efficacy of mevidalen in lewy body dementia: a phase 2, randomized. Placebo-Controlled Trial Mov Disord. 2022;37(3):513–24.

    CAS  PubMed  Google Scholar 

  85. Lang FM, Kwon DY, Aarsland D, Boeve B, Tousi B, Harnett M, et al. An international, randomized, placebo-controlled, phase 2b clinical trial of intepirdine for dementia with Lewy bodies (HEADWAY-DLB). Alzheimers Dement Transl Res Clin Interv. 2021;7(1):e12171.

    Article  Google Scholar 

  86. Barth AL, Aguado JD, Moghadam AA, Stanton PK, Bowers MS, Khan MA, et al. NYX-458, a NMDA receptor modulator, when tested in aged F344 rats, facilitates LTP and reverses age-related cognitive deficits as measured by the Morris water maze.

  87. Barth AL, Schneider JS, Johnston TH, Hill MP, Brotchie JM, Moskal JR, et al. NYX-458 improves cognitive performance in a primate parkinson’s disease model. Mov Disord. 2020;35(4):640–9.

    Article  CAS  PubMed  Google Scholar 

  88. Quetiapine for agitation or psychosis in patients with dementia and parkinsonism - PubMed [Internet]. [cited 2023 May 15]. https://pubmed.ncbi.nlm.nih.gov/17452579/

  89. Pollak P. Clozapine in drug induced psychosis in Parkinson’s disease: a randomised, placebo controlled study with open follow up. J Neurol Neurosurg Psychiatry. 2004;75(5):689–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Tariot PN, Cummings JL, Soto-Martin ME, Ballard C, Erten-Lyons D, Sultzer DL, et al. Trial of pimavanserin in dementia-related psychosis. N Engl J Med. 2021;385(4):309–19. This is a successful phase 3 trial of pimavanserin for the treatment of dementia-related psychosis. Of the 392 patients recruited with various forms of dementia, 7.1% had DLB. There was a significant difference between the treatment and placebo arms in the rate of relapse to psychosis when all etiologies were grouped together.

  91. Wen W, Ramaswamy S, Kishnani K, Ramaswamy G, Friedhoff L. A Phase 2 Study of Nelotanserin, a Novel 5HT2A Receptor Inverse Agonist, in Dementia with Lewy Bodies and Parkinson’s Disease Dementia Subjects Experiencing Visual Hallucinations (P6.088). Neurology [Internet]. 2017 Apr 18 [cited 2023 Jun 27];88(16 Supplement). https://n.neurology.org/content/88/16_Supplement/P6.088

  92. Stefani A, Santamaria J, Iranzo A, Hackner H, Schenck CH, Högl B. Nelotanserin as symptomatic treatment for rapid eye movement sleep behavior disorder: a double-blind randomized study using video analysis in patients with dementia with Lewy bodies or Parkinson’s disease dementia. Sleep Med. 2021;1(81):180–7.

    Article  Google Scholar 

  93. Rongve A, Soennesyn H, Skogseth R, Oesterhus R, Hortobágyi T, Ballard C, et al. Cognitive decline in dementia with Lewy bodies: a 5-year prospective cohort study. BMJ Open. 2016;6(2):e010357.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

ISS authored the original and subsequent manuscript drafts. SJS reviewed and edited the manuscript.

Corresponding author

Correspondence to Irina A. Skylar-Scott.

Ethics declarations

Conflict of Interest

I.S.S. has received funding for clinical trials research from Eli Lilly, Eisai, Biogen, Janssen, Novartis, Alector, AbbVie, Genentech/Roche, Cortexyme, UCB Biopharma, and Alzheon.

S.J.S. has received consulting fees/honoraria from Biogen, Guidepoint Global, ExpertConnect, UpToDate, ReachMD, and Forefront Collaborative; and funding for research from Biogen, Janssen, Genentech, Novartis, Eisai, and Eli Lilly.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Skylar-Scott, I.A., Sha, S.J. Lewy Body Dementia: An Overview of Promising Therapeutics. Curr Neurol Neurosci Rep 23, 581–592 (2023). https://doi.org/10.1007/s11910-023-01292-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11910-023-01292-0

Keywords

Navigation