Skip to main content

Advertisement

Log in

A Lifecourse Perspective on Female Sex-Specific Risk Factors for Later Life Cognition

  • Dementia (K.S. Marder, Section Editor)
  • Published:
Current Neurology and Neuroscience Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The prevalence of Alzheimer’s disease and related dementias is greater in women compared to men. We provide a review of female sex-specific risk factors across the lifecourse for cognition in older adulthood, highlighting areas that need further study.

Recent Findings

Pregnancy may affect late-life cognition, with adverse pregnancy outcomes associated with an increased risk of cognitive decline but parity providing a protective effect. Cumulative estrogen exposure, influenced by age of menarche, menopause, and exogenous estrogen use, may modify a woman’s risk for dementia. Menopause transition-associated symptoms may impact cognitive health at the time of the symptoms, but long-term effects remain unknown. As compared to natural menopause, surgical menopause seems to increase the risk for cognitive impairment.

Summary

Studies that have assessed the association between women’s reproductive health and cognition have produced conflicting results. Future studies that address these inconsistencies among diverse populations are needed to better care for women throughout their lives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. United Nations, Department of Economic and Social Affairs, Population Division (2020). World Population Ageing 2019 (ST/ESA/SER.A/444).

  2. Prince M, Bryce R, Albanese E, Wimo A, Ribeiro W, Ferri CP. The global prevalence of dementia: a systematic review and metaanalysis. Alzheimers Dement. 2013;9(1):63–75.e2.

    Article  PubMed  Google Scholar 

  3. Mielke MM, Vemuri P, Rocca WA. Clinical epidemiology of Alzheimer's disease: assessing sex and gender differences. Clin Epidemiol. 2014;6:37–48.

    Article  PubMed  PubMed Central  Google Scholar 

  4. 2021 Alzheimer's disease facts and figures. Alzheimers Dement. 2021;17(3):327-406.

  5. Larson EB, Shadlen MF, Wang L, McCormick WC, Bowen JD, Teri L, et al. Survival after initial diagnosis of Alzheimer disease. Ann Intern Med. 2004;140(7):501–9.

    Article  PubMed  Google Scholar 

  6. Ferretti MT, Iulita MF, Cavedo E, Chiesa PA, Schumacher Dimech A, Santuccione Chadha A, et al. Sex differences in Alzheimer disease - the gateway to precision medicine. Nat Rev Neurol. 2018;14(8):457–69.

    Article  PubMed  Google Scholar 

  7. • Nebel RA, Aggarwal NT, Barnes LL, Gallagher A, Goldstein JM, Kantarci K, et al. Understanding the impact of sex and gender in Alzheimer’s disease: a call to action. Alzheimers Dement. 2018;14(9):1171–83 This is a review of sex and gender differences in Alzheimer’s disease.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Dayan N, Kaur A, Elharram M, Rossi AM, Pilote L. Impact of preeclampsia on long-term cognitive function. Hypertension. 2018;72(6):1374–80.

    Article  CAS  PubMed  Google Scholar 

  9. • Okoth K, Chandan JS, Marshall T, Thangaratinam S, Thomas GN, Nirantharakumar K, et al. Association between the reproductive health of young women and cardiovascular disease in later life: umbrella review. Bmj. 2020;371:m3502 An umbrella review of the association between reproductive history and risk of cardiovascular disease.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Staff AC, Redman CW, Williams D, Leeson P, Moe K, Thilaganathan B, et al. Pregnancy and long-term maternal cardiovascular health: progress through harmonization of research cohorts and biobanks. Hypertension. 2016;67(2):251–60.

    Article  PubMed  CAS  Google Scholar 

  11. Lane-Cordova AD, Khan SS, Grobman WA, Greenland P, Shah SJ. Long-term cardiovascular risks associated with adverse pregnancy outcomes: JACC review Topic of the Week. J Am Coll Cardiol. 2019;73(16):2106–16.

    Article  PubMed  Google Scholar 

  12. Nelander M, Cnattingius S, Åkerud H, Wikström J, Pedersen NL, Wikström AK. Pregnancy hypertensive disease and risk of dementia and cardiovascular disease in women aged 65 years or older: a cohort study. BMJ Open. 2016;6(1):e009880.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Basit S, Wohlfahrt J, Boyd HA. Pre-eclampsia and risk of dementia later in life: nationwide cohort study. Bmj. 2018;363:k4109.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Mielke MM, Milic NM, Weissgerber TL, White WM, Kantarci K, Mosley TH, et al. Impaired cognition and brain atrophy decades after hypertensive pregnancy disorders. Circ Cardiovasc Qual Outcomes. 2016;9(2 Suppl 1):S70–6.

    PubMed  PubMed Central  Google Scholar 

  15. • Adank MC, Hussainali RF, Oosterveer LC, Ikram MA, Steegers EAP, Miller EC, et al. Hypertensive disorders of pregnancy and cognitive impairment: a prospective cohort study. Neurology. 2021;96(5):e709–e18 This study found an association between a history of hypertensive disorders of pregnancy and worse working memory and verbal learning 15 years after pregnancy.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Harville EW, Guralnik J, Romero M, Bazzano LA. Reproductive history and cognitive aging: the Bogalusa Heart Study. Am J Geriatr Psychiatry. 2020;28(2):217–25.

    Article  PubMed  Google Scholar 

  17. Andolf E, Bladh M, Möller L, Sydsjö G. Prior placental bed disorders and later dementia: a retrospective Swedish register-based cohort study. Bjog. 2020;127(9):1090–9.

    Article  CAS  PubMed  Google Scholar 

  18. Andolf EG, Sydsjö GC, Bladh MK, Berg G, Sharma S. Hypertensive disorders in pregnancy and later dementia: a Swedish National Register Study. Acta Obstet Gynecol Scand. 2017;96(4):464–71.

    Article  PubMed  Google Scholar 

  19. Najar J, Ostling S, Waern M, Zettergren A, Kern S, Wetterberg H, et al. Reproductive period and dementia: A 44-year longitudinal population study of Swedish women. Alzheimers Dement. 2020;16(8):1153–63.

    Article  PubMed  Google Scholar 

  20. Singh M. Progesterone-induced neuroprotection. Endocrine. 2006;29(2):271–4.

    Article  CAS  PubMed  Google Scholar 

  21. Schock H, Zeleniuch-Jacquotte A, Lundin E, Grankvist K, Lakso H, Idahl A, et al. Hormone concentrations throughout uncomplicated pregnancies: a longitudinal study. BMC Pregnancy Childbirth. 2016;16(1):146.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Fox M, Berzuini C, Knapp LA, Glynn LM. Women’s pregnancy life history and Alzheimer’s risk: can immunoregulation explain the link? Am J Alzheimers Dis Other Dement. 2018;33(8):516–26.

    Article  Google Scholar 

  23. Jang H, Bae JB, Dardiotis E, Scarmeas N, Sachdev PS, Lipnicki DM, et al. Differential effects of completed and incomplete pregnancies on the risk of Alzheimer disease. Neurology. 2018;91(7):e643–e51.

    Article  PubMed  Google Scholar 

  24. Read SL, Grundy EMD. Fertility history and cognition in later life. J Gerontol B Psychol Sci Soc Sci. 2017;72(6):1021–31.

    Article  PubMed  Google Scholar 

  25. Saenz JL, Díaz-Venegas C, Crimmins EM. Fertility History and Cognitive Function in Late Life: The Case of Mexico. J Gerontol B Psychol Sci Soc Sci. 2021;76(4):e140–e52.

    Article  PubMed  Google Scholar 

  26. Grandi SM, Filion KB, Yoon S, Ayele HT, Doyle CM, Hutcheon JA, et al. Cardiovascular disease-related morbidity and mortality in women with a history of pregnancy complications. Circulation. 2019;139(8):1069–79.

    Article  PubMed  Google Scholar 

  27. Jung JH, Lee GW, Lee JH, Byun MS, Yi D, Jeon SY, et al. Multiparity, Brain Atrophy, and Cognitive Decline. Front Aging Neurosci. 2020;12:159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bordone V, Weber D. Number of children and cognitive abilities in later life. Vienna Yearbook of Population Research. 2012;10:95–126.

    Article  Google Scholar 

  29. McDowell MA, Brody DJ, Hughes JP. Has age at menarche changed? Results from the National Health and Nutrition Examination Survey (NHANES) 1999-2004. J Adolesc Health. 2007;40(3):227–31.

    Article  PubMed  Google Scholar 

  30. Yoo JE, Shin DW, Han K, Kim D, Won HS, Lee J, et al. Female reproductive factors and the risk of dementia: a nationwide cohort study. Eur J Neurol. 2020;27(8):1448–58.

    Article  CAS  PubMed  Google Scholar 

  31. • Gilsanz P, Lee C, Corrada MM, Kawas CH, Quesenberry CP Jr, Whitmer RA. Reproductive period and risk of dementia in a diverse cohort of health care members. Neurology. 2019;92(17):e2005–e14 This study found that reproductive history characteristics related to shorter exposure to endogenous estrogen are associated with an increased risk of dementia.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Shimizu Y, Sawada N, Iwasaki M, Shikimoto R, Nozaki S, Mimura M, et al. Reproductive history and risk of cognitive impairment in Japanese women. Maturitas. 2019;128:22–8.

    Article  PubMed  Google Scholar 

  33. Karim R, Dang H, Henderson VW, Hodis HN, St John J, Brinton RD, et al. Effect of reproductive history and exogenous hormone use on cognitive function in mid- and late life. J Am Geriatr Soc. 2016;64(12):2448–56.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Ryan J, Carriere I, Scali J, Ritchie K, Ancelin ML. Life-time estrogen exposure and cognitive functioning in later life. Psychoneuroendocrinology. 2009;34(2):287–98.

    Article  CAS  PubMed  Google Scholar 

  35. • Prince MJ, Acosta D, Guerra M, Huang Y, Jimenez-Velazquez IZ, Llibre Rodriguez JJ, et al. Reproductive period, endogenous estrogen exposure and dementia incidence among women in Latin America and China; A 10/66 population-based cohort study. PLoS One. 2018;13(2):e0192889 This study found no association between reproductive history characteristics related to endogenous estrogen exposure and dementia incidence.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Fox M, Berzuini C, Knapp LA. Cumulative estrogen exposure, number of menstrual cycles, and Alzheimer’s risk in a cohort of British women. Psychoneuroendocrinology. 2013;38(12):2973–82.

    Article  CAS  PubMed  Google Scholar 

  37. Song X, Wu J, Zhou Y, Feng L, Yuan JM, Pan A, et al. Reproductive and hormonal factors and risk of cognitive impairment among Singapore Chinese women. Am J Obstet Gynecol. 2020;223(3):410 e1–e23.

    Article  CAS  Google Scholar 

  38. Butts SF, Seifer DB. Racial and ethnic differences in reproductive potential across the life cycle. Fertil Steril. 2010;93(3):681–90.

    Article  PubMed  Google Scholar 

  39. Gold EB, Bromberger J, Crawford S, Samuels S, Greendale GA, Harlow SD, et al. Factors associated with age at natural menopause in a multiethnic sample of midlife women. Am J Epidemiol. 2001;153(9):865–74.

    Article  CAS  PubMed  Google Scholar 

  40. • Edwards H, Duchesne A, Au AS, Einstein G. The many menopauses: searching the cognitive research literature for menopause types. Menopause. 2019;26(1):45–65 This review highlights the importance of distinguishing type of menopause in studies of cognition.

    Article  PubMed  Google Scholar 

  41. Kuh D, Cooper R, Moore A, Richards M, Hardy R. Age at menopause and lifetime cognition: findings from a British birth cohort study. Neurology. 2018;90(19):e1673–e81.

    Article  PubMed  PubMed Central  Google Scholar 

  42. McLay RN, Maki PM, Lyketsos CG. Nulliparity and late menopause are associated with decreased cognitive decline. J Neuropsychiatr Clin Neurosci. 2003;15(2):161–7.

    Article  Google Scholar 

  43. Rasgon NL, Magnusson C, Johansson AL, Pedersen NL, Elman S, Gatz M. Endogenous and exogenous hormone exposure and risk of cognitive impairment in Swedish twins: a preliminary study. Psychoneuroendocrinology. 2005;30(6):558–67.

    Article  CAS  PubMed  Google Scholar 

  44. Matyi JM, Rattinger GB, Schwartz S, Buhusi M, Tschanz JT. Lifetime estrogen exposure and cognition in late life: the Cache County Study. Menopause. 2019;26(12):1366–74.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Geerlings MI, Ruitenberg A, Witteman JC, van Swieten JC, Hofman A, van Duijn CM, et al. Reproductive period and risk of dementia in postmenopausal women. Jama. 2001;285(11):1475–81.

    Article  CAS  PubMed  Google Scholar 

  46. Mosher WD, Martinez GM, Chandra A, Abma JC, Willson SJ. Use of contraception and use of family planning services in the United States. Adv Data. 1982-2002;2004(350):1–36.

    Google Scholar 

  47. Beltz AM, Hampson E, Berenbaum SA. Oral contraceptives and cognition: a role for ethinyl estradiol. Horm Behav. 2015;74:209–17.

    Article  CAS  PubMed  Google Scholar 

  48. Egan KR, Gleason CE. Longer duration of hormonal contraceptive use predicts better cognitive outcomes later in life. J Women's Health (Larchmt). 2012;21(12):1259–66.

    Article  Google Scholar 

  49. Li FD, He F, Chen TR, Xiao YY, Lin ST, Shen W, et al. Reproductive history and risk of cognitive impairment in elderly women: a cross-sectional study in eastern China. J Alzheimers Dis. 2016;49(1):139–47.

    Article  CAS  PubMed  Google Scholar 

  50. Tierney MC, Ryan J, Ancelin ML, Moineddin R, Rankin S, Yao C, et al. Lifelong estrogen exposure and memory in older postmenopausal women. J Alzheimers Dis. 2013;34(3):601–8.

    Article  CAS  PubMed  Google Scholar 

  51. Heys M, Jiang C, Cheng KK, Zhang W, Au Yeung SL, Lam TH, et al. Life long endogenous estrogen exposure and later adulthood cognitive function in a population of naturally postmenopausal women from Southern China: the Guangzhou Biobank Cohort Study. Psychoneuroendocrinology. 2011;36(6):864–73.

    Article  CAS  PubMed  Google Scholar 

  52. The NHTPSAP. The 2017 hormone therapy position statement of The North American Menopause Society. Menopause. 2017;24(7):728–53.

    Article  Google Scholar 

  53. Yaffe K, Sawaya G, Lieberburg I, Grady D. Estrogen therapy in postmenopausal women: effects on cognitive function and dementia. Jama. 1998;279(9):688–95.

    Article  CAS  PubMed  Google Scholar 

  54. Shumaker SA, Legault C, Kuller L, Rapp SR, Thal L, Lane DS, et al. Conjugated equine estrogens and incidence of probable dementia and mild cognitive impairment in postmenopausal women: Women's Health Initiative Memory Study. Jama. 2004;291(24):2947–58.

    Article  CAS  PubMed  Google Scholar 

  55. Shumaker SA, Legault C, Rapp SR, Thal L, Wallace RB, Ockene JK, et al. Estrogen plus progestin and the incidence of dementia and mild cognitive impairment in postmenopausal women: the Women’s Health Initiative Memory Study: a randomized controlled trial. Jama. 2003;289(20):2651–62.

    Article  CAS  PubMed  Google Scholar 

  56. Maki PM, Girard LM, Manson JE. Menopausal hormone therapy and cognition. BMJ. 2019;364:l877.

    Article  PubMed  Google Scholar 

  57. Maki PM. Critical window hypothesis of hormone therapy and cognition: a scientific update on clinical studies. Menopause. 2013;20(6):695–709.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Manson JE, Aragaki AK, Rossouw JE, Anderson GL, Prentice RL, LaCroix AZ, et al. Menopausal hormone therapy and long-term all-cause and cause-specific mortality: the Women's Health Initiative randomized trials. JAMA. 2017;318(10):927–38.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Gleason CE, Dowling NM, Wharton W, Manson JE, Miller VM, Atwood CS, et al. Effects of hormone therapy on cognition and mood in recently postmenopausal women: findings from the randomized, controlled KEEPS-Cognitive and Affective Study. PLoS Med. 2015;12(6):e1001833 discussion e.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Espeland MA, Shumaker SA, Leng I, Manson JE, Brown CM, LeBlanc ES, et al. Long-term effects on cognitive function of postmenopausal hormone therapy prescribed to women aged 50 to 55 years. JAMA Intern Med. 2013;173(15):1429–36.

    Article  PubMed  Google Scholar 

  61. Henderson VW, St John JA, Hodis HN, McCleary CA, Stanczyk FZ, Shoupe D, et al. Cognitive effects of estradiol after menopause: a randomized trial of the timing hypothesis. Neurology. 2016;87(7):699–708.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Imtiaz B, Taipale H, Tanskanen A, Tiihonen M, Kivipelto M, Heikkinen AM, et al. Risk of Alzheimer's disease among users of postmenopausal hormone therapy: a nationwide case-control study. Maturitas. 2017;98:7–13.

    Article  CAS  PubMed  Google Scholar 

  63. Savolainen-Peltonen H, Rahkola-Soisalo P, Hoti F, Vattulainen P, Gissler M, Ylikorkala O, et al. Use of postmenopausal hormone therapy and risk of Alzheimer’s disease in Finland: nationwide case-control study. BMJ. 2019;364:l665.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Mikkola TS, Savolainen-Peltonen H, Tuomikoski P, Hoti F, Vattulainen P, Gissler M, et al. Lower death risk for vascular dementia than for Alzheimer’s disease with postmenopausal hormone therapy users. J Clin Endocrinol Metab. 2017;102(3):870–7.

    PubMed  Google Scholar 

  65. Gervais NJ, Au A, Almey A, Duchesne A, Gravelsins L, Brown A, et al. Cognitive markers of dementia risk in middle-aged women with bilateral salpingo-oophorectomy prior to menopause. Neurobiol Aging. 2020;94:1–6.

    Article  CAS  PubMed  Google Scholar 

  66. Rocca WA, Bower JH, Maraganore DM, Ahlskog JE, Grossardt BR, de Andrade M, et al. Increased risk of cognitive impairment or dementia in women who underwent oophorectomy before menopause. Neurology. 2007;69(11):1074–83.

    Article  CAS  PubMed  Google Scholar 

  67. Bove R, Secor E, Chibnik LB, Barnes LL, Schneider JA, Bennett DA, et al. Age at surgical menopause influences cognitive decline and Alzheimer pathology in older women. Neurology. 2014;82(3):222–9.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Oveisgharan S, Arvanitakis Z, Yu L, Farfel J, Schneider JA, Bennett DA. Sex differences in Alzheimer’s disease and common neuropathologies of aging. Acta Neuropathol. 2018;136(6):887–900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Wisch JK, Meeker KL, Gordon BA, Flores S, Dincer A, Grant EA, et al. Sex-related Differences in tau positron emission tomography (PET) and the effects of hormone therapy (HT). Alzheimer Dis Assoc Disord. 2021;35(2):164–8.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Rahman A, Schelbaum E, Hoffman K, Diaz I, Hristov H, Andrews R, et al. Sex-driven modifiers of Alzheimer risk: a multimodality brain imaging study. Neurology. 2020;95(2):e166–e78.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Brinton RD. The healthy cell bias of estrogen action: mitochondrial bioenergetics and neurological implications. Trends Neurosci. 2008;31(10):529–37.

    Article  CAS  PubMed  Google Scholar 

  72. Thompson MR, Niu J, Lei X, Nowakowska M, Wehner MR, Giordano SH, et al. Association of endocrine therapy and dementia in women with breast cancer. Breast Cancer (Dove Med Press). 2021;13:219–24.

    Google Scholar 

  73. Yaffe K, Krueger K, Cummings SR, Blackwell T, Henderson VW, Sarkar S, et al. Effect of raloxifene on prevention of dementia and cognitive impairment in older women: the Multiple Outcomes of Raloxifene Evaluation (MORE) randomized trial. Am J Psychiatry. 2005;162(4):683–90.

    Article  PubMed  Google Scholar 

  74. Henderson VW, Ala T, Sainani KL, Bernstein AL, Stephenson BS, Rosen AC, et al. Raloxifene for women with Alzheimer disease: a randomized controlled pilot trial. Neurology. 2015;85(22):1937–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Han M, Chang J, Choi S, Cho Y, Lee G, Park SM. Association of tibolone and dementia risk: a cohort study using Korean claims data. Gynecol Endocrinol. 2021;37(6):567–71.

    Article  CAS  PubMed  Google Scholar 

  76. Brinton RD, Yao J, Yin F, Mack WJ, Cadenas E. Perimenopause as a neurological transition state. Nat Rev Endocrinol. 2015;11(7):393–405.

    Article  CAS  PubMed  Google Scholar 

  77. Freedman RR. Menopausal hot flashes: mechanisms, endocrinology, treatment. J Steroid Biochem Mol Biol. 2014;142:115–20.

    Article  CAS  PubMed  Google Scholar 

  78. Drogos LL, Rubin LH, Geller SE, Banuvar S, Shulman LP, Maki PM. Objective cognitive performance is related to subjective memory complaints in midlife women with moderate to severe vasomotor symptoms. Menopause. 2013;20(12):1236–42.

    Article  PubMed  Google Scholar 

  79. Triantafyllou N, Armeni E, Christidi F, Rizos D, Kaparos G, Palaiologou A, et al. The intensity of menopausal symptoms is associated with episodic memory in postmenopausal women. Climacteric. 2016;19(4):393–9.

    Article  CAS  PubMed  Google Scholar 

  80. Rubin LH, Sundermann EE, Cook JA, Martin EM, Golub ET, Weber KM, et al. Investigation of menopausal stage and symptoms on cognition in human immunodeficiency virus-infected women. Menopause. 2014;21(9):997–1006.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Jaff NG, Rubin LH, Crowther NJ, Norris SA, Maki PM. Menopausal symptoms, menopausal stage and cognitive functioning in black urban African women. Climacteric. 2020;23(1):38–45.

    Article  CAS  PubMed  Google Scholar 

  82. LeBlanc ES, Neiss MB, Carello PE, Samuels MH, Janowsky JS. Hot flashes and estrogen therapy do not influence cognition in early menopausal women. Menopause. 2007;14(2):191–202.

    Article  PubMed  Google Scholar 

  83. Maki PM, Drogos LL, Rubin LH, Banuvar S, Shulman LP, Geller SE. Objective hot flashes are negatively related to verbal memory performance in midlife women. Menopause. 2008;15(5):848–56.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Fogel J, Rubin LH, Kilic E, Walega DR, Maki PM. Physiologic vasomotor symptoms are associated with verbal memory dysfunction in breast cancer survivors. Menopause. 2020;27(11):1209–19.

    Article  PubMed  Google Scholar 

  85. Thurston RC, Blumenthal JA, Babyak MA, Sherwood A. Emotional antecedents of hot flashes during daily life. Psychosom Med. 2005;67(1):137–46.

    Article  PubMed  Google Scholar 

  86. Greendale GA, Wight RG, Huang MH, Avis N, Gold EB, Joffe H, et al. Menopause-associated symptoms and cognitive performance: results from the study of women’s health across the nation. Am J Epidemiol. 2010;171(11):1214–24.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Maki PM, Thurston RC. Menopause and brain health: hormonal changes are only part of the story. Front Neurol. 2020;11:562275.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Thurston RC. Vasomotor symptoms: natural history, physiology, and links with cardiovascular health. Climacteric. 2018;21(2):96–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Zhu D, Chung HF, Dobson AJ, Pandeya N, Anderson DJ, Kuh D, et al. Vasomotor menopausal symptoms and risk of cardiovascular disease: a pooled analysis of six prospective studies. Am J Obstet Gynecol. 2020;223(6):898 e1–e16.

    Article  Google Scholar 

  90. Thurston RC, Aizenstein HJ, Derby CA, Sejdic E, Maki PM. Menopausal hot flashes and white matter hyperintensities. Menopause. 2016;23(1):27–32.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Thurston RC, Wu M, Aizenstein HJ, Chang Y, Barinas Mitchell E, Derby CA, et al. Sleep characteristics and white matter hyperintensities among midlife women. Sleep. 2020;43(6).

  92. Greendale. Effects of the menopause transition and hormone use on cognitive performance in midlife women. Neurology. 2009.

  93. Rocca WA, Grossardt BR, Shuster LT. Oophorectomy, estrogen, and dementia: a 2014 update. Mol Cell Endocrinol. 2014;389(1-2):7–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Trabuco EC, Moorman PG, Algeciras-Schimnich A, Weaver AL, Cliby WA. Association of ovary-sparing hysterectomy with ovarian reserve. Obstet Gynecol. 2016;127(5):819–27.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Moorman PG, Myers ER, Schildkraut JM, Iversen ES, Wang F, Warren N. Effect of hysterectomy with ovarian preservation on ovarian function. Obstet Gynecol. 2011;118(6):1271–9.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Rocca WA, Gazzuola-Rocca L, Smith CY, Grossardt BR, Faubion SS, Shuster LT, et al. Accelerated accumulation of multimorbidity after bilateral oophorectomy: a population-based cohort study. Mayo Clin Proc. 2016;91(11):1577–89.

    Article  PubMed  Google Scholar 

  97. Wellons M, Ouyang P, Schreiner PJ, Herrington DM, Vaidya D. Early menopause predicts future coronary heart disease and stroke: the Multi-Ethnic Study of Atherosclerosis. Menopause. 2012;19(10):1081–7.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Kritz-Silverstein D, Barrett-Connor E. Hysterectomy, oophorectomy, and cognitive function in older women. J Am Geriatr Soc. 2002;50(1):55–61.

    Article  PubMed  Google Scholar 

  99. Kurita K, Henderson VW, Gatz M, St John J, Hodis HN, Karim R, et al. Association of bilateral oophorectomy with cognitive function in healthy, postmenopausal women. Fertil Steril. 2016;106(3):749–56 e2.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Phung TK, Waltoft BL, Laursen TM, Settnes A, Kessing LV, Mortensen PB, et al. Hysterectomy, oophorectomy and risk of dementia: a nationwide historical cohort study. Dement Geriatr Cogn Disord. 2010;30(1):43–50.

    Article  PubMed  Google Scholar 

  101. Ryan J, Scali J, Carriere I, Amieva H, Rouaud O, Berr C, et al. Impact of a premature menopause on cognitive function in later life. BJOG. 2014;121(13):1729–39.

    Article  CAS  PubMed  Google Scholar 

  102. Zeydan B, Tosakulwong N, Schwarz CG, Senjem ML, Gunter JL, Reid RI, et al. Association of bilateral salpingo-oophorectomy before menopause onset with medial temporal lobe neurodegeneration. JAMA Neurol. 2019;76(1):95–100.

    Article  PubMed  Google Scholar 

  103. Glymour MM, Manly JJ. Lifecourse social conditions and racial and ethnic patterns of cognitive aging. Neuropsychol Rev. 2008;18(3):223–54.

    Article  PubMed  Google Scholar 

  104. Brewster KL, Rindfuss RR. Fertility and women’s employment in industrialized nations. Annu Rev Sociol. 2000;26:271–96.

    Article  CAS  Google Scholar 

  105. Iwamoto SJ, Defreyne J, Rothman MS, Van Schuylenbergh J, Van de Bruaene L, Motmans J, et al. Health considerations for transgender women and remaining unknowns: a narrative review. Ther Adv Endocrinol Metab. 2019;10:2042018819871166.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Avila JF, Vonk JMJ, Verney SP, Witkiewitz K, Arce Renteria M, Schupf N, et al. Sex/gender differences in cognitive trajectories vary as a function of race/ethnicity. Alzheimers Dement. 2019;15(12):1516–23.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amalia Peterson.

Ethics declarations

Conflict of Interest

Dr. Peterson reports grants from NIH, during the conduct of the study. Dr. Tom has nothing to disclose.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Dementia

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peterson, A., Tom, S.E. A Lifecourse Perspective on Female Sex-Specific Risk Factors for Later Life Cognition. Curr Neurol Neurosci Rep 21, 46 (2021). https://doi.org/10.1007/s11910-021-01133-y

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11910-021-01133-y

Keywords

Navigation