Thrombolysis beyond 4.5 h in Acute Ischemic Stroke

Abstract

Purpose of Review

The purpose of this article is to review the current approaches using neuroimaging techniques to expand eligibility for intravenous thrombolytic therapy in acute ischemic stroke patients with stroke of unknown symptom onset.

Recent Findings

In recent years, several randomized, placebo-controlled trials have shown neuroimaging-guided approaches to be feasible in determining eligibility for alteplase beyond 4.5 h from last known well, and efficacious for reducing disability. DWI-FLAIR mismatch on MRI is an effective tool to identify stroke lesions less than 4.5 h in onset in patients with stroke of unknown symptom onset. Additionally, an automated perfusion-based approach, assessing for a disproportionate amount of salvageable tissue, is effective in identifying patients likely to benefit from late window alteplase treatment.

Summary

In patients with stroke of unknown symptom onset, an individualized approach using neuroimaging to determine time of stroke onset or presence of salvageable brain tissue is feasible in the acute setting and associated with improved long-term outcomes.

This is a preview of subscription content, log in to check access.

Fig. 1

References

Papers of particular interest, published recently, have been highlighted as: •• Of major importance

  1. 1.

    Tissue plasminogen activator for acute ischemic stroke. The National Institute of Neurological Disorders and Stroke rt-PA stroke study group. N Engl J Med. 1995;333:1581–7.

    Google Scholar 

  2. 2.

    Hacke W, Kaste M, Bluhmki E, Brozman M, Dávalos A, Guidetti D, et al. Thrombolysis with alteplase 3 to 4.5 hours after acute ischemic stroke. N Engl J Med. 2008;359:1317–29.

    CAS  Google Scholar 

  3. 3.

    Adeoye O, Hornung R, Khatri P, Kleindorfer D. Recombinant tissue-type plasminogen activator use for ischemic stroke in the United States: a doubling of treatment rates over the course of 5 years. Stroke. 2011;42:1952–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. 4.

    California Acute Stroke Pilot Registry I. Prioritizing interventions to improve rates of thrombolysis for ischemic stroke. Neurology. 2005;64:654–9.

    Google Scholar 

  5. 5.

    Maas MB, Singhal AB. Unwitnessed stroke: impact of different onset times on eligibility into stroke trials. J Stroke Cerebrovasc Dis. 2013;22:241–3.

    PubMed  Google Scholar 

  6. 6.

    Kim YJ, Kim BJ, Kwon SU, Kim JS, Kang DW. Unclear-onset stroke: Daytime-unwitnessed stroke vs wake-up stroke. Int J Stroke. 2016;11:212–20.

    PubMed  Google Scholar 

  7. 7.

    Fink JN, Kumar S, Horkan C, Linfante I, Selim MH, Caplan LR, et al. The stroke patient who woke up: clinical and radiological features, including diffusion and perfusion MRI. Stroke. 2002;33:988–93.

    PubMed  Google Scholar 

  8. 8.

    Marler JR, Price TR, Clark GL, Muller JE, Robertson T, Mohr JP, et al. Morning increase in onset of ischemic stroke. Stroke. 1989;20:473–6.

    CAS  PubMed  Google Scholar 

  9. 9.

    Mackey J, Kleindorfer D, Sucharew H, Moomaw CJ, Kissela BM, Alwell K, et al. Population-based study of wake-up strokes. Neurology. 2011;76:1662–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Etherton MR, Barreto AD, Schwamm LH, Wu O. Neuroimaging paradigms to identify patients for reperfusion therapy in stroke of unknown onset. Front Neurol. 2018;9:327.

    PubMed  PubMed Central  Google Scholar 

  11. 11.

    Hacke W, Kaste M, Fieschi C, Toni D, Lesaffre E, von Kummer R, et al. Intravenous thrombolysis with recombinant tissue plasminogen activator for acute hemispheric stroke. The European cooperative acute stroke study (ECASS). JAMA. 1995;274:1017–25.

    CAS  PubMed  Google Scholar 

  12. 12.

    Hacke W, Kaste M, Fieschi C, von Kummer R, Davalos A, Meier D, et al. Randomised double-blind placebo-controlled trial of thrombolytic therapy with intravenous alteplase in acute ischaemic stroke (ECASS II). Second European-Australasian acute stroke study investigators. Lancet. 1998;352:1245–51.

    CAS  PubMed  Google Scholar 

  13. 13.

    Clark WM, Wissman S, Albers GW, Jhamandas JH, Madden KP, Hamilton S. Recombinant tissue-type plasminogen activator (Alteplase) for ischemic stroke 3 to 5 hours after symptom onset. The ATLANTIS study: a randomized controlled trial. Alteplase Thrombolysis for Acute Noninterventional Therapy in Ischemic Stroke. JAMA. 1999;282:2019–26.

    CAS  PubMed  Google Scholar 

  14. 14.

    Hacke W, Donnan G, Fieschi C, Kaste M, von Kummer R, Broderick JP, et al. Association of outcome with early stroke treatment: pooled analysis of ATLANTIS, ECASS, and NINDS rt-PA stroke trials. Lancet. 2004;363:768–74.

    PubMed  Google Scholar 

  15. 15.

    Powers WJ, Rabinstein AA, Ackerson T, et al. Update to the 2018 guidelines for the early Management of Acute Ischemic Stroke: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2019;2019:STR0000000000000211.

    Google Scholar 

  16. 16.

    Thomalla G, Cheng B, Ebinger M, Hao Q, Tourdias T, Wu O, et al. DWI-FLAIR mismatch for the identification of patients with acute ischaemic stroke within 4.5 h of symptom onset (PRE-FLAIR): a multicentre observational study. Lancet Neurol. 2011;10:978–86.

    PubMed  Google Scholar 

  17. 17.

    Thomalla G, Rossbach P, Rosenkranz M, Siemonsen S, Krützelmann A, Fiehler J, et al. Negative fluid-attenuated inversion recovery imaging identifies acute ischemic stroke at 3 hours or less. Ann Neurol. 2009;65:724–32.

    PubMed  Google Scholar 

  18. 18.

    Ebinger M, Galinovic I, Rozanski M, Brunecker P, Endres M, Fiebach JB. Fluid-attenuated inversion recovery evolution within 12 hours from stroke onset: a reliable tissue clock? Stroke. 2010;41:250–5.

    PubMed  Google Scholar 

  19. 19.

    Aoki J, Kimura K, Iguchi Y, Shibazaki K, Sakai K, Iwanaga T. FLAIR can estimate the onset time in acute ischemic stroke patients. J Neurol Sci. 2010;293:39–44.

    PubMed  Google Scholar 

  20. 20.

    Petkova M, Rodrigo S, Lamy C, Oppenheim G, Touzé E, Mas JL, et al. MR imaging helps predict time from symptom onset in patients with acute stroke: implications for patients with unknown onset time. Radiology. 2010;257:782–92.

    PubMed  Google Scholar 

  21. 21.

    •• Thomalla G, Simonsen CZ, Boutitie F, Andersen G, Berthezene Y, Cheng B, et al. MRI-guided thrombolysis for stroke with unknown time of onset. N Engl J Med. 2018;379:611–22 This Phase 3 randomized, placebo-controlled trial showed that DWI-FLAIR mismatch was feasible in guiding alteplase decision-making in stroke of uknown symptom onset beyond 4.5 hours of LKW and associated with reduced disability at 90-days.

    Google Scholar 

  22. 22.

    Schwamm LH, Wu O, Song SS, Latour LL, Ford AL, Hsia AW, et al. Intravenous thrombolysis in unwitnessed stroke onset: MR WITNESS trial results. Ann Neurol. 2018;83:980–93.

    PubMed  PubMed Central  Google Scholar 

  23. 23.

    Koga M, Toyoda K, Kimura K, Yamamoto H, Sasaki M, Hamasaki T, et al. THrombolysis for Acute Wake-up and unclear-onset Strokes with alteplase at 0.6 mg/kg (THAWS) Trial. Int J Stroke. 2014;9:1117–24.

    PubMed  PubMed Central  Google Scholar 

  24. 24.

    Schwamm LH, Wu O, Song SS, et al. IV Alteplase in MR-selected Patients with Stroke of Unknown Onset is Safe and Feasible: Results of the Multicenter MR WITNESS Trial (NCT01282242). Int Stroke Conf. 2016. Los Angeles, CA.

  25. 25.

    Rocha M, Jovin TG. Fast versus slow Progressors of infarct growth in large vessel occlusion stroke: clinical and research implications. Stroke. 2017;48:2621–7.

    PubMed  Google Scholar 

  26. 26.

    Campbell BC, Purushotham A, Christensen S, et al. The infarct core is well represented by the acute diffusion lesion: sustained reversal is infrequent. J Cereb Blood Flow Metab. 2012;32:50–6.

    PubMed  Google Scholar 

  27. 27.

    Wintermark M, Albers GW, Broderick JP, Demchuk AM, Fiebach JB, Fiehler J, et al. Acute stroke imaging research roadmap II. Stroke. 2013;44:2628–39.

    PubMed  PubMed Central  Google Scholar 

  28. 28.

    Campbell BC, Christensen S, Levi CR, et al. Cerebral blood flow is the optimal CT perfusion parameter for assessing infarct core. Stroke. 2011;42:3435–40.

    PubMed  Google Scholar 

  29. 29.

    Campbell BC, Mitchell PJ, Kleinig TJ, Dewey HM, Churilov L, Yassi N, et al. Endovascular therapy for ischemic stroke with perfusion-imaging selection. N Engl J Med. 2015;372:1009–18.

    CAS  Google Scholar 

  30. 30.

    Sorensen AG, Buonanno FS, Gonzalez RG, Schwamm LH, Lev MH, Huang-Hellinger FR, et al. Hyperacute stroke: evaluation with combined multisection diffusion-weighted and hemodynamically weighted echo-planar MR imaging. Radiology. 1996;199:391–401.

    CAS  PubMed  Google Scholar 

  31. 31.

    Sorensen AG, Copen WA, Ostergaard L, et al. Hyperacute stroke: simultaneous measurement of relative cerebral blood volume, relative cerebral blood flow, and mean tissue transit time. Radiology. 1999;210:519–27.

    CAS  PubMed  Google Scholar 

  32. 32.

    Baird AE, Warach S. Magnetic resonance imaging of acute stroke. J Cereb Blood Flow Metab. 1998;18:583–609.

    CAS  PubMed  Google Scholar 

  33. 33.

    Warach S, Dashe JF, Edelman RR. Clinical outcome in ischemic stroke predicted by early diffusion-weighted and perfusion magnetic resonance imaging: a preliminary analysis. J Cereb Blood Flow Metab. 1996;16:53–9.

    CAS  PubMed  Google Scholar 

  34. 34.

    Shih LC, Saver JL, Alger JR, Starkman S, Leary MC, Vinuela F, et al. Perfusion-weighted magnetic resonance imaging thresholds identifying core, irreversibly infarcted tissue. Stroke. 2003;34:1425–30.

    PubMed  Google Scholar 

  35. 35.

    Wu O, Koroshetz WJ, Ostergaard L, et al. Predicting tissue outcome in acute human cerebral ischemia using combined diffusion- and perfusion-weighted MR imaging. Stroke. 2001;32:933–42.

    CAS  PubMed  Google Scholar 

  36. 36.

    Wu O, Christensen S, Hjort N, et al. Characterizing physiological heterogeneity of infarction risk in acute human ischaemic stroke using MRI. Brain. 2006;129:2384–93.

    PubMed  Google Scholar 

  37. 37.

    Davis SM, Donnan GA, Parsons MW, Levi C, Butcher KS, Peeters A, et al. Effects of alteplase beyond 3 h after stroke in the Echoplanar imaging thrombolytic evaluation trial (EPITHET): a placebo-controlled randomised trial. Lancet Neurol. 2008;7:299–309.

    PubMed  Google Scholar 

  38. 38.

    •• Ma H, Campbell BCV, Parsons MW, Churilov L, Levi CR, Hsu C, et al. Thrombolysis guided by perfusion imaging up to 9 hours after onset of stroke. N Engl J Med. 2019;380:1795–803 This Phase 3 randomized, placebo-controlled trial showed that a perfusion-based imaging approach to identify target mismatch in acute ischemic stroke patients 4.5–9 hours from LKW was feasible for alteplase decision-making and resulted in reduced long-term disability.

    Google Scholar 

  39. 39.

    Ma H, Parsons MW, Christensen S, Campbell BCV, Churilov L, Connelly A, et al. A multicentre, randomized, double-blinded, placebo-controlled phase III study to investigate EXtending the time for thrombolysis in emergency neurological deficits (EXTEND). Int J Stroke. 2012;7:74–80.

    PubMed  Google Scholar 

  40. 40.

    Campbell BCV, Ma H, Ringleb PA, Parsons MW, Churilov L, Bendszus M, et al. Extending thrombolysis to 4.5-9 h and wake-up stroke using perfusion imaging: a systematic review and meta-analysis of individual patient data. Lancet. 2019;394:139–47.

    PubMed  Google Scholar 

  41. 41.

    Hacke W, Furlan AJ, Al-Rawi Y, et al. Intravenous desmoteplase in patients with acute ischaemic stroke selected by MRI perfusion-diffusion weighted imaging or perfusion CT (DIAS-2): a prospective, randomised, double-blind, placebo-controlled study. Lancet Neurol. 2009;8:141–50.

    CAS  PubMed  Google Scholar 

  42. 42.

    Parsons M, Spratt N, Bivard A, Campbell B, Chung K, Miteff F, et al. A randomized trial of tenecteplase versus alteplase for acute ischemic stroke. N Engl J Med. 2012;366:1099–107.

    CAS  PubMed  Google Scholar 

  43. 43.

    Nogueira RG, Jadhav AP, Haussen DC, et al. Thrombectomy 6 to 24 hours after stroke with a mismatch between deficit and infarct. N Engl J Med. 2017.

  44. 44.

    Albers GW, Marks MP, Kemp S, Christensen S, Tsai JP, Ortega-Gutierrez S, et al. Thrombectomy for stroke at 6 to 16 hours with selection by perfusion imaging. N Engl J Med. 2018;378:708–18.

    PubMed  PubMed Central  Google Scholar 

  45. 45.

    Wu O, Schwamm LH, Sorensen AG. Imaging stroke patients with unclear onset times. Neuroimaging Clin N Am. 2011;21:327–44 xi.

    PubMed  PubMed Central  Google Scholar 

  46. 46.

    Chaturvedi S, Adams HP Jr, Woolson RF. Circadian variation in ischemic stroke subtypes. Stroke. 1999;30:1792–5.

    CAS  PubMed  Google Scholar 

  47. 47.

    Serena J, Davalos A, Segura T, Mostacero E, Castillo J. Stroke on awakening: looking for a more rational management. Cerebrovasc Dis. 2003;16:128–33.

    PubMed  Google Scholar 

  48. 48.

    Lago A, Geffner D, Tembl J, Landete L, Valero C, Baquero M. Circadian variation in acute ischemic stroke: a hospital-based study. Stroke. 1998;29:1873–5.

    CAS  PubMed  Google Scholar 

  49. 49.

    Argentino C, Toni D, Rasura M, Violi F, Sacchetti ML, Allegretta A, et al. Circadian variation in the frequency of ischemic stroke. Stroke. 1990;21:387–9.

    CAS  PubMed  Google Scholar 

  50. 50.

    Elliott WJ. Circadian variation in the timing of stroke onset: a meta-analysis. Stroke. 1998;29:992–6.

    CAS  PubMed  Google Scholar 

  51. 51.

    Todo K, Moriwaki H, Saito K, Tanaka M, Oe H, Naritomi H. Early CT findings in unknown-onset and wake-up strokes. Cerebrovasc Dis. 2006;21:367–71.

    PubMed  Google Scholar 

  52. 52.

    Denny MC, Boehme AK, Dorsey AM, et al. Wake-up strokes are similar to known-onset morning strokes in severity and outcome. J Neurol Neurol Disord. 2014;1.

  53. 53.

    Moradiya Y, Janjua N. Presentation and outcomes of "wake-up strokes" in a large randomized stroke trial: analysis of data from the international stroke trial. J Stroke Cerebrovasc Dis. 2013;22:e286–92.

    PubMed  Google Scholar 

  54. 54.

    Barreto AD, Martin-Schild S, Hallevi H, Morales MM, Abraham AT, Gonzales NR, et al. Thrombolytic therapy for patients who wake-up with stroke. Stroke. 2009;40:827–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. 55.

    Manawadu D, Bodla S, Jarosz J, Keep J, Kalra L. A case-controlled comparison of thrombolysis outcomes between wake-up and known time of onset ischemic stroke patients. Stroke. 2013;44:2226–31.

    CAS  PubMed  Google Scholar 

  56. 56.

    Barreto AD, Fanale CV, Alexandrov AV, Gaffney KC, Vahidy FS, Nguyen CB, et al. Prospective, open-label safety study of intravenous recombinant tissue plasminogen activator in wake-up stroke. Ann Neurol. 2016;80:211–8.

    CAS  PubMed  Google Scholar 

  57. 57.

    ClinicalTrials.gov. Safety of Intravenous Thrombolytics in Stroke on Awakening [online].

  58. 58.

    Urrutia VC, Faigle R, Zeiler SR, Marsh EB, Bahouth M, Cerdan Trevino M, et al. Safety of intravenous alteplase within 4.5 hours for patients awakening with stroke symptoms. PLoS One. 2018;13:e0197714.

    PubMed  PubMed Central  Google Scholar 

  59. 59.

    Tenecteplase in Wake-up Ischaemic Stroke Trial [online].

Download references

Disclosures

Drs. Etherton and Gadhia report no disclosures. Dr. Schwamm reports the following relationships relevant to research grants or companies that manufacture products for telemedicine, thrombolysis or thrombectomy: scientific consultant regarding trial design and conduct to Genentech (late window thrombolysis); user interface design and usability to LifeImage (and holds < 1% stock options in this privately held company); stroke systems of care to the Massachusetts Department of Public Health; member of a Data Safety Monitoring Board (DSMB) for Penumbra (Separator 3D NCT01584609, last payment 2016; MIND NCT03342664, CURRENT); Diffusion Pharma PHAST-TSC NCT03763929, CURRENT); National PI or member of National Steering Committee for Medtronic (Victory AF NCT01693120, last payment 2015; Stroke AF NCT02700945, CURRENT); PI, late window thrombolysis trial, NINDS (P50NS051343, MR WITNESS NCT01282242; last payment 2017 and alteplase provided free of charge to Massachusetts General Hospital as well as supplemental per-patient payments to participating sites last payment 2017); PI, StrokeNet Network NINDS (New England Regional Coordinating Center U24NS107243, CURENT); Co-I, The Impact of Telestroke on Patterns of Care and Long-Term Outcomes, NINDS (R01NS111952; CURRENT); Co-I, REACH-PC, PCORI (NCT03375489; CURRENT); Member of steering committee, Genentech (TIMELESS NCT03785678, CURRENT).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mark R. Etherton.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Stroke

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Etherton, M.R., Gadhia, R.R. & Schwamm, L.H. Thrombolysis beyond 4.5 h in Acute Ischemic Stroke. Curr Neurol Neurosci Rep 20, 35 (2020). https://doi.org/10.1007/s11910-020-01055-1

Download citation

Keywords

  • Ischemic stroke
  • Thrombolysis
  • Neuroimaging
  • Systems of care