Skip to main content
Log in

Repetitive Transcranial Magnetic Stimulation for Upper Extremity Motor Recovery: Does It Help?

  • Neurorehabilitation and Recovery (J Krakauer and T Kitago, Section Editors)
  • Published:
Current Neurology and Neuroscience Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Repetitive transcranial magnetic stimulation (rTMS) noninvasively modulates brain excitability in humans and influences mediators of plasticity in animals. When applied in humans in the months to years after stroke, potentiation of motor recovery has been limited. Recently, investigators have shifted rTMS administration into the early weeks following stroke, when injury-induced plasticity could be maximally engaged. This article provides an overview of basic mechanisms of rTMS, consideration of its interaction with various forms of neuroplasticity, and a summary of the highest quality clinical evidence for rTMS given early after stroke.

Recent Findings

Studies of repetitive magnetic stimulation in vitro and in vivo have found modulation of excitatory and inhibitory neurotransmission and induction of cellular mechanisms supporting plasticity. A handful of clinical studies have shown sustained improvements in grip strength and UE motor impairment when rTMS is delivered in the first weeks after stroke.

Summary

Though in its infancy, recent research suggests a plasticity-enhancing influence and modest motor recovery potentiation when rTMS is delivered early after stroke.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Barker AT, Jalinous R, Freeston IL. Non-invasive magnetic stimulation of human motor cortex. Lancet. 1985;1(8437):1106–7.

    Article  CAS  Google Scholar 

  2. Cohen LG, Roth BJ, Nilsson J, Dang N, Panizza M, Bandinelli S, et al. Effects of coil design on delivery of focal magnetic stimulation. Technical considerations. Electroencephalogr Clin Neurophysiol. 1990;75(4):350–7.

    Article  CAS  Google Scholar 

  3. Malenka RC, Bear MF. LTP and LTD: an embarrassment of riches. Neuron. 2004;44(1):5–21.

    Article  CAS  Google Scholar 

  4. •• Hoogendam JM, Ramakers GM, Di Lazzaro V. Physiology of repetitive transcranial magnetic stimulation of the human brain. Brain Stimul. 2010;3(2):95–118 Excellent review of rTMS parameters leading to neurophysiological effects.

    Article  Google Scholar 

  5. Di Lazzaro V, et al. Theta-burst repetitive transcranial magnetic stimulation suppresses specific excitatory circuits in the human motor cortex. J Physiol. 2005;565(Pt 3):945–50.

    Article  Google Scholar 

  6. Huang YZ, Edwards MJ, Rounis E, Bhatia KP, Rothwell JC. Theta burst stimulation of the human motor cortex. Neuron. 2005;45(2):201–6.

    Article  CAS  Google Scholar 

  7. Hill AJ. First occurrence of hippocampal spatial firing in a new environment. Exp Neurol. 1978;62(2):282–97.

    Article  CAS  Google Scholar 

  8. Larson J, Wong D, Lynch G. Patterned stimulation at the theta frequency is optimal for the induction of hippocampal long-term potentiation. Brain Res. 1986;368(2):347–50.

    Article  CAS  Google Scholar 

  9. Thickbroom GW, et al. Repetitive paired-pulse TMS at I-wave periodicity markedly increases corticospinal excitability: a new technique for modulating synaptic plasticity. Clin Neurophysiol. 2006;117(1):61–6.

    Article  Google Scholar 

  10. Hamada M, Terao Y, Hanajima R, Shirota Y, Nakatani-Enomoto S, Furubayashi T, et al. Bidirectional long-term motor cortical plasticity and metaplasticity induced by quadripulse transcranial magnetic stimulation. J Physiol. 2008;586(16):3927–47.

    Article  CAS  Google Scholar 

  11. Stefan K, et al. Induction of plasticity in the human motor cortex by paired associative stimulation. Brain. 2000;123(Pt 3):572–84.

    Article  Google Scholar 

  12. Cash RF, et al. Augmenting plasticity induction in human motor cortex by disinhibition stimulation. Cereb Cortex. 2016;26(1):58–69.

    Article  Google Scholar 

  13. Schambra HM, Sawaki L, Cohen LG. Modulation of excitability of human motor cortex (M1) by 1 Hz transcranial magnetic stimulation of the contralateral M1. Clin Neurophysiol. 2003;114(1):130–3.

    Article  CAS  Google Scholar 

  14. Gilio F, Rizzo V, Siebner HR, Rothwell JC. Effects on the right motor hand-area excitability produced by low-frequency rTMS over human contralateral homologous cortex. J Physiol. 2003;551(2):563–73.

    Article  CAS  Google Scholar 

  15. Funke K, Benali A. Modulation of cortical inhibition by rTMS - findings obtained from animal models. J Physiol. 2011;589(Pt 18):4423–35.

    Article  CAS  Google Scholar 

  16. •• Cirillo G, et al. Neurobiological after-effects of non-invasive brain stimulation. Brain Stimul. 2017;10(1):1–18 Excellent review of the cellular and synaptic mechanisms underlying rTMS excitability changes.

    Article  CAS  Google Scholar 

  17. Vlachos A, Muller-Dahlhaus F, Rosskopp J, Lenz M, Ziemann U, Deller T. Repetitive magnetic stimulation induces functional and structural plasticity of excitatory postsynapses in mouse organotypic hippocampal slice cultures. J Neurosci. 2012;32(48):17514–23.

    Article  CAS  Google Scholar 

  18. Lenz M, Galanis C, Müller-Dahlhaus F, Opitz A, Wierenga CJ, Szabó G, et al. Repetitive magnetic stimulation induces plasticity of inhibitory synapses. Nat Commun. 2016;7:10020.

    Article  CAS  Google Scholar 

  19. •• Pell GS, Roth Y, Zangen A. Modulation of cortical excitability induced by repetitive transcranial magnetic stimulation: influence of timing and geometrical parameters and underlying mechanisms. Prog Neurobiol. 2011;93(1):59–98 Excellent discussion of rTMS parameters influencing modulation and mechanisms underlying excitablity changes.

    Article  Google Scholar 

  20. Gersner R, Kravetz E, Feil J, Pell G, Zangen A. Long-term effects of repetitive transcranial magnetic stimulation on markers for neuroplasticity: differential outcomes in anesthetized and awake animals. J Neurosci. 2011;31(20):7521–6.

    Article  CAS  Google Scholar 

  21. Abbott LF, Nelson SB. Synaptic plasticity: taming the beast. Nat Neurosci. 2000;3(Suppl):1178–83.

    Article  CAS  Google Scholar 

  22. Rioult-Pedotti MS, et al. Strengthening of horizontal cortical connections following skill learning. Nat Neurosci. 1998;1(3):230–4.

    Article  CAS  Google Scholar 

  23. Rioult-Pedotti MS, Friedman D, Donoghue JP. Learning-induced LTP in neocortex. Science. 2000;290(5491):533–6.

    Article  CAS  Google Scholar 

  24. • Ziemann U, Siebner HR. Modifying motor learning through gating and homeostatic metaplasticity. Brain Stimul. 2008;1(1):60–6 Good review of behavioral evidence for gating and homeostatic plasticity with rTMS applications.

    Article  Google Scholar 

  25. Lenz M, Vlachos A. Releasing the cortical brake by non-invasive electromagnetic stimulation? rTMS induces LTD of GABAergic neurotransmission. Front Neural Circuits. 2016;10:96.

    Article  Google Scholar 

  26. • Kozyrev V, et al. TMS-induced neuronal plasticity enables targeted remodeling of visual cortical maps. Proc. Natl. Acad. Sci. U. S. A. 2018;115(25):6476–81 Clever use of voltage-gated sensitive dyes to provide real-time optical imaging of associative plasticity interacting with rTMS effects.

    Article  CAS  Google Scholar 

  27. Turrigiano, G.G., The dialectic of Hebb and homeostasis. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017. 372(1715).

    Article  Google Scholar 

  28. Abraham WC, Bear MF. Metaplasticity: the plasticity of synaptic plasticity. Trends Neurosci. 1996;19(4):126–30.

    Article  CAS  Google Scholar 

  29. Bienenstock EL, Cooper LN, Munro PW. Theory for the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex. J Neurosci. 1982;2(1):32–48.

    Article  CAS  Google Scholar 

  30. Turrigiano GG, Leslie KR, Desai NS, Rutherford LC, Nelson SB. Activity-dependent scaling of quantal amplitude in neocortical neurons. Nature. 1998;391(6670):892–6.

    Article  CAS  Google Scholar 

  31. Chen J, et al. Clustered dynamics of inhibitory synapses and dendritic spines in the adult neocortex. Neuron. 2012;74(2):361–73.

    Article  CAS  Google Scholar 

  32. Donnell C, Nolan MF, van Rossum MCW. Dendritic spine dynamics regulate the long-term stability of synaptic plasticity. J Neurosci. 2011;31(45):16142–56.

    Article  Google Scholar 

  33. Murphy TH, Corbett D. Plasticity during stroke recovery: from synapse to behaviour. Nat Rev Neurosci. 2009;10(12):861–72.

    Article  CAS  Google Scholar 

  34. •• Krakauer, J.W. and S.T. Carmichael, Broken movement: the neurobiology of motor recovery after stroke. 2017, Cambridge, MA: The MIT Press. xiv, 269 pages. Excellent discussion of the neurobiological basis of motor recovery after stroke.

  35. Caracciolo L, Marosi M, Mazzitelli J, Latifi S, Sano Y, Galvan L, et al. CREB controls cortical circuit plasticity and functional recovery after stroke. Nat Commun. 2018;9(1):2250.

    Article  CAS  Google Scholar 

  36. Biernaskie J, Chernenko G, Corbett D. Efficacy of rehabilitative experience declines with time after focal ischemic brain injury. J Neurosci. 2004;24(5):1245–54.

    Article  CAS  Google Scholar 

  37. •• Wahl AS, et al. Optogenetically stimulating intact rat corticospinal tract post-stroke restores motor control through regionalized functional circuit formation. Nat Commun. 2017;8(1):1187 Superb mechanistic study investigating the effects of repetitive optogenetic stimulation in a rat model of large ischemic stroke and rehabilitation.

    Article  CAS  Google Scholar 

  38. Cheng MY, Wang EH, Woodson WJ, Wang S, Sun G, Lee AG, et al. Optogenetic neuronal stimulation promotes functional recovery after stroke. Proc Natl Acad Sci U S A. 2014;111(35):12913–8.

    Article  CAS  Google Scholar 

  39. Hummel FC, Cohen LG. Non-invasive brain stimulation: a new strategy to improve neurorehabilitation after stroke? Lancet Neurol. 2006;5(8):708–12.

    Article  Google Scholar 

  40. Stinear CM, Petoe MA, Byblow WD. Primary motor cortex excitability during recovery after stroke: implications for neuromodulation. Brain Stimul. 2015;8(6):1183–90.

    Article  Google Scholar 

  41. Xu, J., et al., Rethinking interhemispheric imbalance as a target for stroke neurorehabilitation. Under review.

  42. Hao Z, et al. Repetitive transcranial magnetic stimulation for improving function after stroke. Cochrane Database Syst Rev. 2013;(5):Cd008862.

  43. • Harvey, R.L., et al., A randomized sham-controlled trial of navigated rTMS for motor recovery in stroke: the NICHE trial. Neurology, 2018. In press. Well-designed phase III clinical trial of rTMS after stroke. The design demonstrates important design elements for NIBS trials after stroke.

  44. Krakauer JW, Carmichael ST, Corbett D, Wittenberg GF. Getting neurorehabilitation right: what can be learned from animal models? Neurorehabil Neural Repair. 2012;26(8):923–31.

    Article  Google Scholar 

  45. Du J, et al. Effects of repetitive transcranial magnetic stimulation on motor recovery and motor cortex excitability in patients with stroke: a randomized controlled trial. Eur J Neurol. 2016;23(11):1666–72.

    Article  CAS  Google Scholar 

  46. Ludemann-Podubecka J, et al. The effectiveness of 1 Hz rTMS over the primary motor area of the unaffected hemisphere to improve hand function after stroke depends on hemispheric dominance. Brain Stimul. 2015;8(4):823–30.

    Article  Google Scholar 

  47. Hosomi K, Morris S, Sakamoto T, Taguchi J, Maruo T, Kageyama Y, et al. Daily repetitive transcranial magnetic stimulation for poststroke upper limb paresis in the subacute period. J Stroke Cerebrovasc Dis. 2016;25(7):1655–64.

    Article  Google Scholar 

  48. Sasaki N, Kakuda W, Abo M. Bilateral high- and low-frequency rTMS in acute stroke patients with hemiparesis: a comparative study with unilateral high-frequency rTMS. Brain Inj. 2014;28(13–14):1682–6.

    Article  Google Scholar 

  49. Volz LJ, Rehme AK, Michely J, Nettekoven C, Eickhoff SB, Fink GR, et al. Shaping early reorganization of neural networks promotes motor function after stroke. Cereb Cortex. 2016;26(6):2882–94.

    Article  CAS  Google Scholar 

  50. Long H, Wang H, Zhao C, Duan Q, Feng F, Hui N, et al. Effects of combining high- and low-frequency repetitive transcranial magnetic stimulation on upper limb hemiparesis in the early phase of stroke. Restor Neurol Neurosci. 2018;36(1):21–30.

    PubMed  Google Scholar 

  51. Li J, Meng XM, Li RY, Zhang R, Zhang Z, du YF. Effects of different frequencies of repetitive transcranial magnetic stimulation on the recovery of upper limb motor dysfunction in patients with subacute cerebral infarction. Neural Regen Res. 2016;11(10):1584–90.

    Article  Google Scholar 

  52. Seniow J, et al. Transcranial magnetic stimulation combined with physiotherapy in rehabilitation of poststroke hemiparesis: a randomized, double-blind, placebo-controlled study. Neurorehabil Neural Repair. 2012;26(9):1072–9.

    Article  Google Scholar 

  53. Veerbeek JM, van Wegen E, van Peppen R, van der Wees PJ, Hendriks E, Rietberg M, et al. What is the evidence for physical therapy poststroke? A systematic review and meta-analysis. PLoS One. 2014;9(2):e87987.

    Article  Google Scholar 

  54. Kollen BJ, Lennon S, Lyons B, Wheatley-Smith L, Scheper M, Buurke JH, et al. The effectiveness of the Bobath concept in stroke rehabilitation: what is the evidence? Stroke. 2009;40(4):e89–97.

    Article  Google Scholar 

  55. Wassermann EM, Wedegaertner FR, Ziemann U, George MS, Chen R. Crossed reduction of human motor cortex excitability by 1-Hz transcranial magnetic stimulation. Neurosci Lett. 1998;250(3):141–4.

    Article  CAS  Google Scholar 

  56. Lohse KR, Pathania A, Wegman R, Boyd LA, Lang CE. On the reporting of experimental and control therapies in stroke rehabilitation trials: a systematic review. Arch Phys Med Rehabil. 2018;99(7):1424–32.

    Article  Google Scholar 

  57. MacLellan CL, Keough MB, Granter-Button S, Chernenko GA, Butt S, Corbett D. A critical threshold of rehabilitation involving brain-derived neurotrophic factor is required for poststroke recovery. Neurorehabil Neural Repair. 2011;25(8):740–8.

    Article  Google Scholar 

  58. Guerra J, Uddin J, Nilsen D, Mclnerney J, Fadoo A, Omofuma IB, et al. Capture, learning, and classification of upper extremity movement primitives in healthy controls and stroke patients. IEEE Int Conf Rehabil Robot. 2017;2017:547–54.

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heidi M. Schambra.

Ethics declarations

Conflict of Interest

Heidi M. Schambra reports grants from NIH/NINDS during manuscript preparation.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Neurorehabilitation and Recovery

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schambra, H.M. Repetitive Transcranial Magnetic Stimulation for Upper Extremity Motor Recovery: Does It Help?. Curr Neurol Neurosci Rep 18, 97 (2018). https://doi.org/10.1007/s11910-018-0913-8

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11910-018-0913-8

Keywords

Navigation