Skip to main content
Log in

Interaction Between Neuropsychiatric Symptoms and Cognitive Performance in Parkinson’s Disease: What Do Clinical and Neuroimaging Studies Tell Us?

  • Neuroimaging (N Pavese, Section Editor)
  • Published:
Current Neurology and Neuroscience Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Parkinson’s disease was studied for a long time from the prism of a motor impairment. Recent advances have outlined the importance of cognitive and neuropsychiatric symptoms (NPS) in the PD equation. This review concentrates on the present possibilities of using neuroimaging techniques in order to quantify the cognitive performance and NPS in PD patients.

Recent Findings

Mild cognitive impairment as well as many NPS have been acknowledged as important criteria for assessing the quality of life in patients with Parkinson’s disease and have been shown as potential factors in predicting further evolution of PD from a clinical perspective. Some NPS strongly influence cognition (depression, REM sleep behavior disorder), while others are less specifically associated with it (impulse control disorders). Neuroimaging techniques reported specific structural, functional, and metabolic brain changes that might be specific for each NPS type.

Summary

Recent neuroimaging advances report a strong interrelation between NPS and cognitive performance in PD. A special place for consideration is given to REM sleep behavior disorder, depression, and hallucinations. Nevertheless, some studies report distinct results, outlining that the neuroimaging acquisition and analysis techniques still have limitations and also likely represent the complexity of the manifestation of NPS in PD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. •• Fereshtehnejad S-M, Romenets SR, Anang JBM, Latreille V, Gagnon J-F, Postuma RB. New clinical subtypes of Parkinson disease and their longitudinal progression: a prospective cohort comparison with other phenotypes. JAMA Neurol. 2015;72:863–73 The first study to define clinical subtypes of PD according to their evolution.

    PubMed  Google Scholar 

  2. Muslimovic D, Post B, Speelman JD, Schmand B. Cognitive profile of patients with newly diagnosed Parkinson disease. Neurology. 2005;65(8):1239–45.

    PubMed  Google Scholar 

  3. Aarsland D, Brønnick K, Larsen JP, Tysnes OB, Alves G. Cognitive impairment in incident, untreated parkinson disease: the norwegian parkwest study. Neurology. 2009;72(13):1121–6.

    CAS  PubMed  Google Scholar 

  4. Litvan I, Goldman JG, Tröster AI, Schmand BA, Weintraub D, Petersen RC, et al. Diagnostic criteria for mild cognitive impairment in Parkinson’s disease: Movement Disorder Society Task Force guidelines. Mov Disord. Wiley Online Library. 2012;27:349–56.

  5. Chaudhuri KR, Healy DG, Schapira AH V. Non-motor symptoms of Parkinson’s disease: diagnosis and management. Lancet Neurol. Elsevier. 2006;5:235–45.

    PubMed  Google Scholar 

  6. Soh S-E, Morris ME, McGinley JL. Determinants of health-related quality of life in Parkinson’s disease: a systematic review. Parkinsonism Relat Disord. 2011;17(1):1–9.

    PubMed  Google Scholar 

  7. Gallagher DA, Lees AJ, Schrag A. What are the most important nonmotor symptoms in patients with Parkinson’s disease and are we missing them? Mov Disord. 2010;25(15):2493–500.

    PubMed  Google Scholar 

  8. Aarsland D, Larsen JP, Lim NG, Janvin C, Karlsen K, Tandberg E, et al. Range of neuropsychiatric disturbances in patients with Parkinson’s disease. J Neurol Neurosurg Psychiatry. BMJ Publishing Group Ltd. 1999;67:492–6.

    CAS  Google Scholar 

  9. Aarsland D, Brønnick K, Alves G, Tysnes OB, Pedersen KF, Ehrt U, et al. The spectrum of neuropsychiatric symptoms in patients with early untreated Parkinson’s disease. J Neurol Neurosurg Psychiatry. 2009;80(8):928–3.

    CAS  PubMed  Google Scholar 

  10. Nagata T, Shinagawa S, Nakajima S, Plitman E, Mihashi Y, Hayashi S, et al. Classification of neuropsychiatric symptoms requiring antipsychotic Treatment in patients with Alzheimer’s Disease: analysis of the CATIE-AD Study. J Alzheimer’s Dis. 2016;50(3):839–45.

    Google Scholar 

  11. Chaudhuri KR, Schapira AH V. Non-motor symptoms of Parkinson’s disease: dopaminergic pathophysiology and treatment. Lancet Neurol. Elsevier. 2009;8:464–74.

    CAS  PubMed  Google Scholar 

  12. •• Pirogovsky-Turk E, Moore RC, Filoteo JV, Litvan I, Song DD, Lessig SL, et al. Neuropsychiatric predictors of cognitive decline in Parkinson disease: a longitudinal study. Am J Geriatr Psychiatry [Internet]. Elsevier. 2017;25:279–89. Available from: https://doi.org/10.1016/j.jagp.2016.10.004. One of the first studies to describe the relationship between neuropsychiatric symptoms and cognitive decline in Parkinson’s disease longitudinally.

    PubMed  Google Scholar 

  13. Ye BS, Jeon S, Yoon S, Kang SW, Baik K, Lee Y, et al. Effects of dopaminergic depletion and brain atrophy on neuropsychiatric symptoms in de novo Parkinson’s disease. J Neurol Neurosurg Psychiatry. BMJ Publishing Group Ltd. 2017;jnnp-2017.

  14. Feldmann A, Illes Z, Kosztolanyi P, Illes E, Mike A, Kover F, et al. Morphometric changes of gray matter in Parkinson’s disease with depression: a voxel-based morphometry study. Mov Disord. Wiley Online Library. 2008;23:42–6.

    PubMed  Google Scholar 

  15. O’Callaghan C, Shine JM, Lewis SJG, Hornberger M. Neuropsychiatric symptoms in Parkinson’s disease: fronto-striatal atrophy contributions. Parkinsonism Relat Disord. Elsevier. 2014;20:867–72.

    CAS  Google Scholar 

  16. Van Rooden SM, Visser M, Verbaan D, Marinus J, Van Hilten JJ. Patterns of motor Parkinson’s disease: frontodisease. J Neurol Neurosurg Psychiatry. BMJ Publishing Group Ltd; 2009;80:846–50.

  17. Hobson P, Meara J. Risk and incidence of dementia in a cohort of older subjects with Parkinson’s disease in the United Kingdom. Mov Disord. Wiley Online Library; 2004;19:1043–9.

    PubMed  Google Scholar 

  18. Ramirez-Ruiz B, Junque C, Marti M-J, Valldeoriola F, Tolosa E. Cognitive changes in Parkinson’s disease patients with visual hallucinations. Dement Geriatr Cogn Disord. 2007;23(5):281–8.

    PubMed  Google Scholar 

  19. Pagonabarraga J, Martinez-Horta S, Fernández de Bobadilla R, Pérez J, Ribosa-Nogué R, Marín J, et al. Minor hallucinations occur in drug-naive Parkinson’s disease patients, even from the premotor phase. Mov Disord. Wiley Online Library; 2016;31:45–52.

    PubMed  Google Scholar 

  20. Forsaa EB, Larsen JP, Wentzel-Larsen T, Goetz CG, Stebbins GT, Aarsland D, et al. A 12-year population-based study of psychosis in Parkinson disease. Arch Neurol. American Medical Association. 2010;67:996–1001.

    Google Scholar 

  21. Goetz CG, Vaughan CL, Goldman JG, Stebbins GT. I finally see what you see: Parkinson’s disease visual hallucinations captured with functional neuroimaging. Mov Disord. Wiley Online Library; 2014;29:115–7.

    PubMed  Google Scholar 

  22. Barnes J, David AS. Visual hallucinations in Parkinson’s disease: a review and phenomenological survey. J Neurol Neurosurg Psychiatry. BMJ Publishing Group Ltd; 2001;70:727–33.

    CAS  Google Scholar 

  23. Roselli F, Pisciotta NM, Perneczky R, Pennelli M, Aniello MS, De Caro MF, et al. Severity of neuropsychiatric symptoms and dopamine transporter levels in dementia with Lewy bodies: A 123I-FP-CIT SPECT study. Mov Disord. Wiley Online Library; 2009;24:2097–103.

    PubMed  Google Scholar 

  24. Firbank MJ, Parikh J, Murphy N, Killen A, Allan CL, Collerton D, et al. Reduced occipital GABA in Parkinson disease with visual hallucinations. Neurology. AAN Enterprises. 2018:10–1212.

  25. Kapur S, Seeman P. Does fast dissociation from the dopamine D2 receptor explain the action of atypical antipsychotics?: A new hypothesis. Am J Psychiatry. Am Psychiatric Assoc; 2001;158:360–9.

    CAS  Google Scholar 

  26. Ballanger B, Strafella AP, van Eimeren T, Zurowski M, Rusjan PM, Houle S, et al. Serotonin 2A receptors and visual hallucinations in Parkinson disease. Arch Neurol. American Medical Association. 2010;67:416–21.

    Google Scholar 

  27. Ramírez-Ruiz B, Martí M, Tolosa E, Gimenez M, Bargallo N, Valldeoriola F, et al. Cerebral atrophy in Parkinson’s disease patients with visual hallucinations. Eur J Neurol. Wiley Online Library; 2007;14:750–6.

    PubMed  Google Scholar 

  28. Holroyd S, Wooten GF. Preliminary FMRI evidence of visual system dysfunction in Parkinson’s disease patients with visual hallucinations. J Neuropsychiatry Clin Neurosci. Am Neuropsych Assoc; 2006;18:402–4.

    Google Scholar 

  29. Stebbins GT, Goetz CG, Carrillo MC, Bangen KJ, Turner DA, Glover GH, et al. Altered cortical visual processing in PD with hallucinations An fMRI study. Neurology. AAN Enterprises; 2004;63:1409–16.

    CAS  PubMed  Google Scholar 

  30. Kataoka H, Furiya Y, Morikawa M, Ueno S, Inoue M. Increased temporal blood flow associated with visual hallucinations in Parkinson’s disease with dementia. Mov Disord Off J Mov Disord Soc. Wiley Online Library; 2008;23:464–5.

    PubMed  Google Scholar 

  31. Nagano-Saito A, Washimi Y, Arahata Y, Iwai K, Kawatsu S, Ito K, et al. Visual hallucination in Parkinson’s disease with FDG PET. Mov Disord. Wiley Online Library; 2004;19:801–6.

    PubMed  Google Scholar 

  32. Hanganu A, Bedetti C, Jubault T, Gagnon J-F, Mejia-Constain B, Degroot C, et al. Mild cognitive impairment in patients with Parkinson’s disease is associated with increased cortical degeneration. Mov Disord. 2013;28:1360–9.

    PubMed  Google Scholar 

  33. Segura B, Baggio HC, Marti MJ, Valldeoriola F, Compta Y, Garcia-Diaz AI, et al. Cortical thinning associated with mild cognitive impairment in Parkinson’s disease. Mov Disord. Wiley Online Library; 2014;29:1495–503.

    PubMed  Google Scholar 

  34. Hanganu A, Bedetti C, Degroot C, Mejia-Constain B, Lafontaine A-L, Soland V, et al. Mild cognitive impairment is linked with faster rate of cortical thinning in patients with Parkinson’s disease longitudinally. Brain. 2014;137:1120–9.

    PubMed  Google Scholar 

  35. Mak E, Su L, Williams GB, Firbank MJ, Lawson RA, Yarnall AJ, et al. Baseline and longitudinal grey matter changes in newly diagnosed Parkinson’s disease: ICICLE-PD study. Brain. Oxford University Press; 2015;138:2974–86.

    PubMed  PubMed Central  Google Scholar 

  36. Burton EJ, McKeith IG, Burn DJ, Williams ED, O’Brien JT. Cerebral atrophy in Parkinson’s disease with and without dementia: a comparison with Alzheimer’s disease, dementia with Lewy bodies and controls. Brain. 2004;127(Pt 4):791–800.

    PubMed  Google Scholar 

  37. Nilsson FM, Kessing LV, Sorensen TM, Andersen PK, Bolwig TG. Major depressive disorder in Parkinson’s disease: a register-based study. Acta Psychiatr Scand. 2002;106(3):202–11.

    PubMed  Google Scholar 

  38. Reijnders JSAM, Ehrt U, Weber WEJ, Aarsland D, Leentjens AFG. A systematic review of prevalence studies of depression in Parkinson’s disease. Mov Disord. 2008;23(2):183–9.

    PubMed  Google Scholar 

  39. American Psychiatric Association. Diagnostic and statistical manual of mental disorders (DSM-5®). Washington, D.C.: American Psychiatric Pub; 2013.

    Google Scholar 

  40. Marsh L, McDonald WM, Cummings J, Ravina B, Disease NWG on D and P. Provisional diagnostic criteria for depression in Parkinson’s disease: report of an NINDS/NIMH Work Group. Mov Disord. Wiley Online Library; 2006;21:148–58.

    PubMed  Google Scholar 

  41. Felicio AC, Moriyama TS, Godeiro-Junior C, Shih MC, Hoexter MQ, Borges V, et al. Higher dopamine transporter density in Parkinson’s disease patients with depression. Psychopharmacology (Berl). Springer; 2010;211:27–31.

    CAS  PubMed  Google Scholar 

  42. •• Maillet A, Krack P, Lhommée E, Météreau E, Klinger H, Favre E, et al. The prominent role of serotonergic degeneration in apathy, anxiety and depression in de novo Parkinson’s disease. Brain. Oxford University Press; 2016;139:2486–502. The first study to study the effect of apathy in PD on serotonin and dopamine in PD.

    PubMed  Google Scholar 

  43. Kuzis G, Sabe L, Tiberti C, Leiguarda R, Starkstein SE. Cognitive functions in major depression and Parkinson disease. Arch Neurol. 1997;54(8):982-986

    CAS  PubMed  Google Scholar 

  44. Riedel O, Klotsche J, Spottke A, Deuschl G, Förstl H, Henn F, et al. Frequency of dementia, depression, and other neuropsychiatric symptoms in 1,449 outpatients with Parkinson’s disease. J Neurol. 2010;257(7):1073–82.

    PubMed  Google Scholar 

  45. Marinus J, Zhu K, Marras C, Aarsland D, van Hilten JJ. Risk factors for non-motor symptoms in Parkinson’s disease. Lancet Neurol. Elsevier; 2018;17(6):559-568

    PubMed  Google Scholar 

  46. • Hanganu A, Bruneau M-A, Degroot C, Bedetti C, Mejia-Constain B, Lafontaine A-L, et al. Depressive symptoms in Parkinson’s disease correlate with cortical atrophy over time. Brain Cogn. Elsevier; 2017;111:127–33. The first study to describe the influence of depression on brain’s structure and it’s association with cognitive decline.

    PubMed  Google Scholar 

  47. Lee J-Y, Kim JS, Jang W, Park J, Oh E, Youn J, et al. Association between white matter lesions and non-motor symptoms in Parkinson disease. Neurodegener Dis [Internet]. 2018;18:127–32. Available from: https://www.karger.com/DOI/10.1159/000489311

    PubMed  Google Scholar 

  48. Kostić VS, Agosta F, Petrović I, Galantucci S, Špica V, Ječmenica-Lukic M, et al. Regional patterns of brain tissue loss associated with depression in Parkinson disease. Neurology. AAN Enterprises; 2010;75:857–63.

    CAS  PubMed  Google Scholar 

  49. Reijnders JSAM, Scholtissen B, Weber WEJ, Aalten P, Verhey FRJ, Leentjens AFG. Neuroanatomical correlates of apathy in Parkinson’s disease: a magnetic resonance imaging study using voxel-based morphometry. Mov Disord. Wiley Online Library; 2010;25:2318–25.

    PubMed  Google Scholar 

  50. Alzahrani H, Venneri A. Cognitive and neuroanatomical correlates of neuropsychiatric symptoms in Parkinson’s disease: a systematic review. J Neurol Sci. Elsevier; 2015;356:32–44.

    PubMed  Google Scholar 

  51. Ng A, Chander RJ, Tan LCS, Kandiah N. Influence of depression in mild Parkinson’s disease on longitudinal motor and cognitive function. Parkinsonism Relat Disord. Elsevier; 2015;21:1056–60.

    Google Scholar 

  52. Stefanova E, Potrebic A, Ziropadja L, Maric J, Ribaric I, Kostic VS. Depression predicts the pattern of cognitive impairment in early Parkinson’s disease. J Neurol Sci. 2006;248(1-2):131–7.

    PubMed  Google Scholar 

  53. Kadhim S, Pringsheim T, Le A, Fiest KM, Patten SB, Prisnie JC, et al. Validating screening tools for depression in Parkinson’s disease. Mov Disord. Wiley Online Library. 2018.

  54. Levy R, Dubois B. Apathy and the functional anatomy of the prefrontal cortex–basal ganglia circuits. Cereb Cortex. Oxford University Press. 2005;16:916–28.

    PubMed  Google Scholar 

  55. den Brok MGHE, van Dalen JW, van Gool WA, Moll van Charante EP, de Bie R, Richard E. Apathy in Parkinson’s disease: a systematic review and meta-analysis. Mov Disord. Wiley Online Library. 2015;30:759–69.

    PubMed  Google Scholar 

  56. Santangelo G, Vitale C, Picillo M, Cuoco S, Moccia M, Pezzella D, et al. Apathy and striatal dopamine transporter levels in de-novo, untreated Parkinson’s disease patients. Parkinsonism Relat Disord. Elsevier. 2015;21:489–93.

    Google Scholar 

  57. Dujardin K, Sockeel P, Delliaux M, Destée A, Defebvre L. Apathy may herald cognitive decline and dementia in Parkinson’s disease. Mov Disord. Wiley Online Library. 2009;24:2391–7.

    PubMed  Google Scholar 

  58. Surdhar I, Gee M, Bouchard T, Coupland N, Malykhin N, Camicioli R. Intact limbic-prefrontal connections and reduced amygdala volumes in Parkinson’s disease with mild depressive symptoms. Parkinsonism Relat Disord. Elsevier. 2012;18:809–13.

    Google Scholar 

  59. Yan H, Onoda K, Yamaguchi S. Gray matter volume changes in the apathetic elderly. Front Hum Neurosci. Frontiers. 2015;9:318.

  60. Remy P, Doder M, Lees A, Turjanski N, Brooks D. Depression in Parkinson’s disease: loss of dopamine and noradrenaline innervation in the limbic system. Brain. Oxford University Press. 2005;128:1314–22.

  61. Fitts W, Weintraub D, Massimo L, Chahine L, Chen-Plotkin A, Duda JE, et al. Caregiver report of apathy predicts dementia in Parkinson’s disease. Parkinsonism Relat Disord. 2015;21(8):992–5.

    PubMed  PubMed Central  Google Scholar 

  62. Baggio HC, Segura B, Sala-Llonch R, Marti MJ, Valldeoriola F, Compta Y, et al. Cognitive impairment and resting-state network connectivity in Parkinson’s disease. Hum Brain Mapp. 2015;36(1):199–212.

    PubMed  Google Scholar 

  63. • Baggio HC, Segura B, Garrido-Millan JL, Marti M, Compta Y, Valldeoriola F, et al. Resting-state frontostriatal functional connectivity in Parkinson’s disease–related apathy. Mov Disord. Wiley Online Library. 2015;30:671–9. The first study to report the influence of apathy on the brain’s functional state in patients with Parkinson’s disease.

    PubMed  Google Scholar 

  64. Hatz F, Meyer A, Zimmermann R, Gschwandtner U, Fuhr P. Apathy in patients with Parkinson’s disease correlates with alteration of left fronto-polar electroencephalographic connectivity. Front Aging Neurosci. Frontiers. 2017;9:262.

  65. Monchi O, Petrides M, Doyon J, Postuma RB, Worsley K, Dagher A. Neural bases of set-shifting deficits in Parkinson’s disease. J Neurosci. 2004;24(3):702–10.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Nagano-Saito A, Leyton M, Monchi O, Goldberg YK, He Y, Dagher A. Dopamine depletion impairs frontostriatal functional connectivity during a set-shifting task. J Neurosci. 2008;28(14):3697–706.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Erro R, Pappatà S, Amboni M, Vicidomini C, Longo K, Santangelo G, et al. Anxiety is associated with striatal dopamine transporter availability in newly diagnosed untreated Parkinson’s disease patients. Parkinsonism Relat Disord. Elsevier. 2012;18:1034–8.

    Google Scholar 

  68. Yamanishi T, Tachibana H, Oguru M, Matsui K, Toda K, Okuda B, et al. Anxiety and depression in patients with Parkinson’s disease. Intern Med. The Japanese Society of Internal Medicine. 2013;52:539–45.

    PubMed  Google Scholar 

  69. Vriend C, Boedhoe PS, Rutten S, Berendse HW, van der Werf YD, van den Heuvel OA. A smaller amygdala is associated with anxiety in Parkinson’s disease: a combined FreeSurfer—VBM study. J Neurol Neurosurg Psychiatry. 2016.

  70. Oosterwijk CS, Vriend C, Berendse HW, van der Werf YD, van den Heuvel OA. Anxiety in Parkinson’s disease is associated with reduced structural covariance of the striatum. J Affect Disord. Elsevier. 2018.

  71. Hu M, Szewczyk-Królikowski K, Tomlinson P, Nithi K, Rolinski M, Murray C, et al. Predictors of cognitive impairment in an early stage Parkinson’s disease cohort. Mov Disord. Wiley Online Library. 2014;29:351–9.

    PubMed  PubMed Central  Google Scholar 

  72. Ryder KA, Gontkovsky ST, McSwan KL, Scott JG, Bharucha KJ, Beatty WW. Cognitive function in Parkinson’s disease: association with anxiety but not depression. Aging Neuropsychol Cognit. 2002;9(2), 77-84.

    Google Scholar 

  73. Huang C, Ravdin LD, Nirenberg MJ, Piboolnurak P, Severt L, Maniscalco JS, et al. Neuroimaging markers of motor and nonmotor features of Parkinson’s disease: an 18f fluorodeoxyglucose positron emission computed tomography study. Dement Geriatr Cogn Disord. 2013;35(3-4):183-196

    PubMed  Google Scholar 

  74. Grant JE, Schreiber L, Odlaug BL. Impulse control disorders: updated review of clinical characteristics and pharmacological management. Front Psychiatry. Frontiers. 2011;2:1.

  75. Weintraub D, Koester J, Potenza MN, Siderowf AD, Stacy M, Voon V, et al. Impulse control disorders in Parkinson disease: a cross-sectional study of 3090 patients. Arch Neurol. American Medical Association. 2010;67:589–95.

  76. Avanzi M, Baratti M, Cabrini S, Uber E, Brighetti G, Bonfà F. Prevalence of pathological gambling in patients with Parkinson’s disease. Mov Disord. Wiley Online Library. 2006;21:2068–72.

    PubMed  Google Scholar 

  77. Voon V, Hassan K, Zurowski M, De Souza M, Thomsen T, Fox S, et al. Prevalence of repetitive and reward-seeking behaviors in Parkinson disease. Neurology. AAN Enterprises. 2006;67:1254–7.

    CAS  PubMed  Google Scholar 

  78. Weintraub D, David AS, Evans AH, Grant JE, Stacy M. Clinical spectrum of impulse control disorders in Parkinson’s disease. Mov Disord. 2015;30(2):121–7.

    CAS  PubMed  Google Scholar 

  79. Rao H, Mamikonyan E, Detre JA, Siderowf AD, Stern MB, Potenza MN, et al. Decreased ventral striatal activity with impulse control disorders in Parkinson’s disease. Mov Disord. Wiley Online Library. 2010;25:1660–9.

    PubMed  PubMed Central  Google Scholar 

  80. Cilia R, Ko JH, Cho SS, van Eimeren T, Marotta G, Pellecchia G, et al. Reduced dopamine transporter density in the ventral striatum of patients with Parkinson’s disease and pathological gambling. Neurobiol Dis. Elsevier. 2010;39:98–104.

    CAS  PubMed  Google Scholar 

  81. Santangelo G, Vitale C, Trojano L, Verde F, Grossi D, Barone P. Cognitive dysfunctions and pathological gambling in patients with Parkinson’s disease. Mov Disord. Wiley Online Library. 2009;24:899–905.

    PubMed  Google Scholar 

  82. Reuter J, Raedler T, Rose M, Hand I, Gläscher J, Büchel C. Pathological gambling is linked to reduced activation of the mesolimbic reward system. Nat Neurosci. Nature Publishing Group. 2005;8:147.

    CAS  PubMed  Google Scholar 

  83. • Siri C, Cilia R, Reali E, Pozzi B, Cereda E, Colombo A, et al. Long-term cognitive follow-up of Parkinson’s disease patients with impulse control disorders. Mov Disord. 2015;30(5):696–704 The first study to assess cognitive decline in patients with Parkinson’s disease with impulse control disorders.

    PubMed  Google Scholar 

  84. Siri C, Cilia R, De Gaspari D, Canesi M, Meucci N, Zecchinelli AL, et al. Cognitive status of patients with Parkinson’s disease and pathological gambling. J Neurol. Springer. 2010;257:247–52.

    PubMed  Google Scholar 

  85. Linnet J, Moller A, Peterson E, Gjedde A, Doudet D. Inverse association between dopaminergic neurotransmission and Iowa Gambling Task performance in pathological gamblers and healthy controls. Scand J Psychol. 2011;52(1):28–34.

    PubMed  Google Scholar 

  86. Steeves TDL, Miyasaki J, Zurowski M, Lang AE, Pellecchia G, Van Eimeren T, et al. Increased striatal dopamine release in Parkinsonian patients with pathological gambling: a [11C] raclopride PET study. Brain. Oxford University Press. 2009;132:1376–85.

  87. Gotham AM, Brown RG, Marsden CD. “Frontal” cognitive function in patients with Parkinson’s disease “on” and “off” levodopa. Brain. 1988;111 (Pt 2):299-321

    PubMed  Google Scholar 

  88. Corvol J-C, Artaud F, Cormier-Dequaire F, Rascol O, Durif F, Derkinderen P, et al. Longitudinal analysis of impulse control disorders in Parkinson disease. Neurology. AAN Enterprises. 2018;10–1212.

  89. Postuma RB, Bertrand J, Montplaisir J, Desjardins C, Vendette M, Rios Romenets S, et al. Rapid eye movement sleep behavior disorder and risk of dementia in Parkinson’s disease: a prospective study. Mov Disord. Wiley Online Library. 2012;27:720–6.

    PubMed  Google Scholar 

  90. Kotagal V, Albin RL, Muller MLTM, Koeppe RA, Chervin RD, Frey KA, et al. Symptoms of rapid eye movement sleep behavior disorder are associated with cholinergic denervation in Parkinson disease. Ann Neurol. 2012;71(4):560–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Gagnon J, Vendette M, Postuma RB, Desjardins C, Massicotte-Marquez J, Panisset M, et al. Mild cognitive impairment in rapid eye movement sleep behavior disorder and Parkinson’s disease. Ann Neurol Off J Am Neurol Assoc Child Neurol Soc. Wiley Online Library. 2009;66:39–47.

    PubMed  Google Scholar 

  92. Gagnon J-F, Bédard M-A, Fantini ML, Petit D, Panisset M, Rompre S, et al. REM sleep behavior disorder and REM sleep without atonia in Parkinson’s disease. Neurology. AAN Enterprises. 2002;59:585–9.

    CAS  PubMed  Google Scholar 

  93. Vendette M, Gagnon J-F, Decary A, Massicotte-Marquez J, Postuma RB, Doyon J, et al. REM sleep behavior disorder predicts cognitive impairment in Parkinson disease without dementia. Neurology. AAN Enterprises. 2007;69:1843–9.

    CAS  PubMed  Google Scholar 

  94. Lim J-S, Shin SA, Lee J-Y, Nam H, Lee J-Y, Kim YK. Neural substrates of rapid eye movement sleep behavior disorder in Parkinson’s disease. Parkinsonism Relat Disord. Elsevier. 2016;23:31–6.

    Google Scholar 

  95. Killgore WDS, Schwab ZJ, Kipman M, DelDonno SR, Weber M. Voxel-based morphometric gray matter correlates of daytime sleepiness. Neurosci Lett. Elsevier. 2012;518:10–3.

    CAS  PubMed  Google Scholar 

  96. García-Lorenzo D, Longo-Dos Santos C, Ewenczyk C, Leu-Semenescu S, Gallea C, Quattrocchi G, et al. The coeruleus/subcoeruleus complex in rapid eye movement sleep behaviour disorders in Parkinson’s disease. Brain. Oxford University Press. 2013;136:2120–9.

  97. Siderowf A, Stern MB. Premotor Parkinson’s disease: clinical features, detection, and prospects for treatment. Ann Neurol. Wiley Online Library. 2008;64.

  98. Postuma RB, Gagnon JF, Vendette M, Fantini ML, Massicotte-Marquez J, Montplaisir J. Quantifying the risk of neurodegenerative disease in idiopathic REM sleep behavior disorder. Neurology. 2009;72(15):1296–300.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Kehagia AA, Barker RA, Robbins TW. Cognitive impairment in Parkinson’s disease: the dual syndrome hypothesis. Neurodegener Dis. 2012.

  100. Jellinger KA. Morphological substrates of parkinsonism with and without dementia: a retrospective clinico-pathological study. Neuropsychiatr Disord An Integr Approach. Springer. 2007;91–104.

Download references

Acknowledgements

This work was funded by an operating grant from the Canadian Institutes of Health Research (CIHR) (MOP-126017), the Canada Research Chair in non-motor deficits in Parkinson’s disease, and the Tourmaline Oil Chair in Parkinson’s disease to Oury Monchi. Alexandru Hanganu received a basic research fellowship funded by the Parkinson Society Canada (PSC), Quebec Parkinson Network (QPN), and Parkinson Society Quebec’s (PSQ) Research Fund on Parkinson and a postdoctoral fellowship from Parkinson Alberta.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oury Monchi.

Ethics declarations

Conflict of Interest

Alexandru Hanganu and Oury Monchi each declare no potential conflicts of interest.

Human and Animal Rights and Information Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Neuroimaging

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hanganu, A., Monchi, O. Interaction Between Neuropsychiatric Symptoms and Cognitive Performance in Parkinson’s Disease: What Do Clinical and Neuroimaging Studies Tell Us?. Curr Neurol Neurosci Rep 18, 91 (2018). https://doi.org/10.1007/s11910-018-0907-6

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11910-018-0907-6

Keywords

Navigation