Advertisement

Genetics of Alzheimer’s Disease: the Importance of Polygenic and Epistatic Components

  • Neha Raghavan
  • Giuseppe Tosto
Dementia (K S Marder, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Dementia

Abstract

Purpose of Review

We aimed to summarize the recent advances in genetic findings of Alzheimer’s disease (AD), focusing on traditional single-marker and gene approaches and non-traditional ones, i.e., polygenic and epistatic components.

Recent Findings

Genetic studies have progressed over the last few decades from linkage to genome-wide association studies (GWAS), and most recently studies utilizing high-throughput sequencing. So far, GWASs have identified several common variants characterized by small effect sizes (besides APOE-ε4). Sequencing has facilitated the study of rare variants with larger effects. Nevertheless, missing heritability for AD remains extensive; a possible explanation might lie in the existence of polygenic and epistatic components.

Summary

We review findings achieved by single-marker approaches, but also polygenic and epistatic associations. The latter two are critical, yet-underexplored mechanisms. Genes involved in complex diseases are likely regulated by mechanisms and pathways involving many other genes, an aspect potentially missed by traditional approaches.

Keywords

GWAS Next-generation sequencing Polygenic risk score Epistasis 

Notes

Acknowledgements

Dr. Tosto is supported by NIH grant R21AG054832

Compliance with Ethical Standards

Conflict of Interest

Neha Raghavan and Giuseppe Tosto each declare no potential conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Alzheimer’s A. 2015 Alzheimer's disease facts and figures. Alzheimer's & dementia: the journal of the Alzheimer's Association. 2015;11(3):332.CrossRefGoogle Scholar
  2. 2.
    Tosto G, Monsell SE, Hawes SE, Mayeux R. Pattern of extrapyramidal signs in Alzheimer’s disease. J Neurol. 2015;262(11):2548–56. doi: 10.1007/s00415-015-7886-1.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Gatz M, Reynolds CA, Fratiglioni L, Johansson B, Mortimer JA, Berg S, et al. Role of genes and environments for explaining Alzheimer disease. Arch Gen Psychiatry. 2006;63(2):168–74. doi: 10.1001/archpsyc.63.2.168.CrossRefPubMedGoogle Scholar
  4. 4.
    Gatz M, Pedersen NL, Berg S, Johansson B, Johansson K, Mortimer JA, et al. Heritability for Alzheimer’s disease: the study of dementia in Swedish twins. J Gerontol A Biol Sci Med Sci. 1997;52(2):M117–25.CrossRefPubMedGoogle Scholar
  5. 5.
    Sassi C, Guerreiro R, Gibbs R, Ding J, Lupton MK, Troakes C, et al. Exome sequencing identifies 2 novel presenilin 1 mutations (p.L166V and p.S230R) in British early-onset Alzheimer’s disease. Neurobiol Aging. 2014;35(10):2422 e13-6. doi: 10.1016/j.neurobiolaging.2014.04.026.CrossRefPubMedGoogle Scholar
  6. 6.
    Zhu XC, Tan L, Wang HF, Jiang T, Cao L, Wang C, et al. Rate of early onset Alzheimer’s disease: a systematic review and meta-analysis. Ann Transl Med. 2015;3(3):38. doi: 10.3978/j.issn.2305-5839.2015.01.19.PubMedPubMedCentralGoogle Scholar
  7. 7.
    Gantier R, Dumanchin C, Campion D, Loutelier C, Lange C, Gagnon J, et al. The L392V mutation of presenilin 1 associated with autosomal dominant early-onset Alzheimer’s disease alters the secondary structure of the hydrophilic loop. Neuroreport. 1999;10(14):3071–4.CrossRefPubMedGoogle Scholar
  8. 8.
    Kola I, Landis J. Can the pharmaceutical industry reduce attrition rates? Nat Rev Drug Discov. 2004;3(8):711–5. doi: 10.1038/nrd1470.CrossRefPubMedGoogle Scholar
  9. 9.
    Reitz C, Mayeux R. Alzheimer disease: epidemiology, diagnostic criteria, risk factors and biomarkers. Biochem Pharmacol. 2014;88(4):640–51. doi: 10.1016/j.bcp.2013.12.024.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Corder EH, Saunders AM, Strittmatter WJ, Schmechel DE, Gaskell PC, Small GW, et al. Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science. 1993;261(5123):921–3.CrossRefPubMedGoogle Scholar
  11. 11.
    •• Saunders AM, Strittmatter WJ, Schmechel D, George-Hyslop PH, Pericak-Vance MA, Joo SH, et al. Association of apolipoprotein E allele epsilon 4 with late-onset familial and sporadic Alzheimer’s disease. Neurology. 1993;43(8):1467–72. Reference paper that established the association between APOE and Alzheimer’s disease. Google Scholar
  12. 12.
    Noguchi S, Murakami K, Yamada N. Apolipoprotein E genotype and Alzheimer’s disease. Lancet. 1993;342(8873):737.CrossRefPubMedGoogle Scholar
  13. 13.
    •• Lambert JC, Ibrahim-Verbaas CA, Harold D, Naj AC, Sims R, Bellenguez C, et al. Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer’s disease. Nat Genet. 2013;45(12):1452–8. doi: 10.1038/ng.2802. Largest GWAS to date in non-Hispanic Whites in the context of Alzheimer’s disease.
  14. 14.
    Reitz C, Mayeux R. Genetics of Alzheimer’s disease in Caribbean Hispanic and African American populations. Biol Psychiatry. 2014;75(7):534–41. doi: 10.1016/j.biopsych.2013.06.003.CrossRefPubMedGoogle Scholar
  15. 15.
    •• Tosto G, Fu H, Vardarajan BN, Lee JH, Cheng R, Reyes-Dumeyer D, et al. F-box/LRR-repeat protein 7 is genetically associated with Alzheimer’s disease. Annals of clinical and translational neurology. 2015;2(8):810–20. doi: 10.1002/acn3.223. Largest GWAS to date in Caribbean Hispanics in the context of Alzheimer’s disease.
  16. 16.
    Bertram L, McQueen MB, Mullin K, Blacker D, Tanzi RE. Systematic meta-analyses of Alzheimer disease genetic association studies: the AlzGene database. Nat Genet. 2007;39(1):17–23. doi: 10.1038/ng1934.CrossRefPubMedGoogle Scholar
  17. 17.
    Corneveaux JJ, Myers AJ, Allen AN, Pruzin JJ, Ramirez M, Engel A, et al. Association of CR1, CLU and PICALM with Alzheimer’s disease in a cohort of clinically characterized and neuropathologically verified individuals. Hum Mol Genet. 2010;19(16):3295–301. doi: 10.1093/hmg/ddq221.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Coon KD, Myers AJ, Craig DW, Webster JA, Pearson JV, Lince DH, et al. A high-density whole-genome association study reveals that APOE is the major susceptibility gene for sporadic late-onset Alzheimer’s disease. J Clin Psychiatry. 2007;68(4):613–8.CrossRefPubMedGoogle Scholar
  19. 19.
    Grupe A, Abraham R, Li Y, Rowland C, Hollingworth P, Morgan A, et al. Evidence for novel susceptibility genes for late-onset Alzheimer’s disease from a genome-wide association study of putative functional variants. Hum Mol Genet. 2007;16(8):865–73. doi: 10.1093/hmg/ddm031.CrossRefPubMedGoogle Scholar
  20. 20.
    Lambert JC, Heath S, Even G, Campion D, Sleegers K, Hiltunen M, et al. Genome-wide association study identifies variants at CLU and CR1 associated with Alzheimer’s disease. Nat Genet. 2009;41(10):1094–9. doi: 10.1038/ng.439.CrossRefPubMedGoogle Scholar
  21. 21.
    Harold D, Abraham R, Hollingworth P, Sims R, Gerrish A, Hamshere ML, et al. Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer’s disease. Nat Genet. 2009;41(10):1088–93. doi: 10.1038/ng.440.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Seshadri S, Fitzpatrick AL, Ikram MA, DeStefano AL, Gudnason V, Boada M, et al. Genome-wide analysis of genetic loci associated with Alzheimer disease. JAMA. 2010;303(18):1832–40. doi: 10.1001/jama.2010.574.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Naj AC, Jun G, Beecham GW, Wang LS, Vardarajan BN, Buros J, et al. Common variants at MS4A4/MS4A6E, CD2AP, CD33 and EPHA1 are associated with late-onset Alzheimer’s disease. Nat Genet. 2011;43(5):436–41. doi: 10.1038/ng.801.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Hollingworth P, Harold D, Sims R, Gerrish A, Lambert JC, Carrasquillo MM, et al. Common variants at ABCA7, MS4A6A/MS4A4E, EPHA1, CD33 and CD2AP are associated with Alzheimer’s disease. Nat Genet. 2011;43(5):429–35. doi: 10.1038/ng.803.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Rogaeva E, Meng Y, Lee JH, Gu Y, Kawarai T, Zou F, et al. The neuronal sortilin-related receptor SORL1 is genetically associated with Alzheimer disease. Nat Genet. 2007;39(2):168–77. doi: 10.1038/ng1943.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Lee JH, Cheng R, Honig LS, Vonsattel JP, Clark L, Mayeux R. Association between genetic variants in SORL1 and autopsy-confirmed Alzheimer disease. Neurology. 2008;70(11):887–9. doi: 10.1212/01.wnl.0000280581.39755.89.CrossRefPubMedGoogle Scholar
  27. 27.
    Tosto G, Reitz C. Genome-wide association studies in Alzheimer’s disease: a review. Current neurology and neuroscience reports. 2013;13(10):381. doi: 10.1007/s11910-013-0381-0.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Robinson M, Lee BY, Hane FT. Recent progress in Alzheimer’s disease research, part 2: genetics and epidemiology. Journal of Alzheimer's disease : JAD. 2017;57(2):317–30. doi: 10.3233/JAD-161149.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Dourlen P, Fernandez-Gomez FJ, Dupont C, Grenier-Boley B, Bellenguez C, Obriot H, et al. Functional screening of Alzheimer risk loci identifies PTK2B as an in vivo modulator and early marker of Tau pathology. Mol Psychiatry. 2016; doi: 10.1038/mp.2016.59.
  30. 30.
    Johnson ME, Deliard S, Zhu F, Xia Q, Wells AD, Hankenson KD, et al. A ChIP-seq-defined genome-wide map of MEF2C binding reveals inflammatory pathways associated with its role in bone density determination. Calcif Tissue Int. 2014;94(4):396–402. doi: 10.1007/s00223-013-9824-5.CrossRefPubMedGoogle Scholar
  31. 31.
    Association As. 2012 Alzheimer’s disease facts and figures. Alzheimers Dement. 2012;8(2):131–68.CrossRefGoogle Scholar
  32. 32.
    Tang MX, Stern Y, Marder K, Bell K, Gurland B, Lantigua R, et al. The APOE-epsilon4 allele and the risk of Alzheimer disease among African Americans, whites, and Hispanics. JAMA. 1998;279(10):751–5.CrossRefPubMedGoogle Scholar
  33. 33.
    Lee JH, Cheng R, Barral S, Reitz C, Medrano M, Lantigua R, et al. Identification of novel loci for Alzheimer disease and replication of CLU, PICALM, and BIN1 in Caribbean Hispanic individuals. Arch Neurol. 2011;68(3):320–8. doi: 10.1001/archneurol.2010.292.CrossRefPubMedGoogle Scholar
  34. 34.
    Graff-Radford NR, Green RC, Go RC, Hutton ML, Edeki T, Bachman D, et al. Association between apolipoprotein E genotype and Alzheimer disease in African American subjects. Arch Neurol. 2002;59(4):594–600.CrossRefPubMedGoogle Scholar
  35. 35.
    Green RC, Cupples LA, Go R, Benke KS, Edeki T, Griffith PA, et al. Risk of dementia among white and African American relatives of patients with Alzheimer disease. JAMA. 2002;287(3):329–36.CrossRefPubMedGoogle Scholar
  36. 36.
    Lee JH, Cheng R, Schupf N, Manly J, Lantigua R, Stern Y, et al. The association between genetic variants in SORL1 and Alzheimer disease in an urban, multiethnic, community-based cohort. Arch Neurol. 2007;64(4):501–6. doi: 10.1001/archneur.64.4.501.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    •• Reitz C, Jun G, Naj A, Rajbhandary R, Vardarajan BN, Wang LS, et al. Variants in the ATP-binding cassette transporter (ABCA7), apolipoprotein E 4, and the risk of late-onset Alzheimer disease in African Americans. JAMA. 2013;309(14):1483–92. doi: 10.1001/jama.2013.2973. Largest GWAS to date in African Americans in the context of Alzheimer’s disease.
  38. 38.
    Liu Y, Lear T, Zhao Y, Zhao J, Zou C, Chen BB, et al. F-box protein Fbxl18 mediates polyubiquitylation and proteasomal degradation of the pro-apoptotic SCF subunit Fbxl7. Cell Death Dis. 2015;6:e1630. doi: 10.1038/cddis.2014.585.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Logue MW, Schu M, Vardarajan BN, Buros J, Green RC, Go RC, et al. A comprehensive genetic association study of Alzheimer disease in African Americans. Arch Neurol. 2011;68(12):1569–79. doi: 10.1001/archneurol.2011.646.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Miyashita A, Koike A, Jun G, Wang LS, Takahashi S, Matsubara E, et al. SORL1 is genetically associated with late-onset Alzheimer’s disease in Japanese, Koreans and Caucasians. PloS one. 2013;8(4):e58618. doi: 10.1371/journal.pone.0058618.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Jun GR, Chung J, Mez J, Barber R, Beecham GW, Bennett DA, et al. Transethnic genome-wide scan identifies novel Alzheimer’s disease loci. Alzheimer’s & dementia : the journal of the Alzheimer’s Association. 2017; doi: 10.1016/j.jalz.2016.12.012.
  42. 42.
    Ridge PG, Mukherjee S, Crane PK, Kauwe JS, Alzheimer’s Disease Genetics C. Alzheimer’s disease: analyzing the missing heritability. PLoS One. 2013;8(11):e79771. doi: 10.1371/journal.pone.0079771.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Dickson SP, Wang K, Krantz I, Hakonarson H, Goldstein DB. Rare variants create synthetic genome-wide associations. PLoS Biol. 2010;8(1):e1000294. doi: 10.1371/journal.pbio.1000294.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Cirulli ET, Goldstein DB. Uncovering the roles of rare variants in common disease through whole-genome sequencing. Nat Rev Genet. 2010;11(6):415–25. doi: 10.1038/nrg2779.CrossRefPubMedGoogle Scholar
  45. 45.
    Manolio TA, Collins FS, Cox NJ, Goldstein DB, Hindorff LA, Hunter DJ, et al. Finding the missing heritability of complex diseases. Nature. 2009;461(7265):747–53. doi: 10.1038/nature08494.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Tanzi RE. The genetics of Alzheimer disease. Cold Spring Harb Perspect Med. 2012;2(10) doi: 10.1101/cshperspect.a006296.
  47. 47.
    Bertram L, Lill CM, Tanzi RE. The genetics of Alzheimer disease: back to the future. Neuron. 2010;68(2):270–81. doi: 10.1016/j.neuron.2010.10.013.CrossRefPubMedGoogle Scholar
  48. 48.
    Panoutsopoulou K, Tachmazidou I, Zeggini E. In search of low-frequency and rare variants affecting complex traits. Hum Mol Genet. 2013;22(R1):R16–21. doi: 10.1093/hmg/ddt376.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Vardarajan BN, Ghani M, Kahn A, Sheikh S, Sato C, Barral S, et al. Rare coding mutations identified by sequencing of Alzheimer disease genome-wide association studies loci. Ann Neurol. 2015;78(3):487–98. doi: 10.1002/ana.24466.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Vardarajan BN, Zhang Y, Lee JH, Cheng R, Bohm C, Ghani M, et al. Coding mutations in SORL1 and Alzheimer disease. Ann Neurol. 2015;77(2):215–27. doi: 10.1002/ana.24305.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Christodoulou K, Wiskin AE, Gibson J, Tapper W, Willis C, Afzal NA, et al. Next generation exome sequencing of paediatric inflammatory bowel disease patients identifies rare and novel variants in candidate genes. Gut. 2013;62(7):977–84. doi: 10.1136/gutjnl-2011-301833.CrossRefPubMedGoogle Scholar
  52. 52.
    •• Guerreiro R, Wojtas A, Bras J, Carrasquillo M, Rogaeva E, Majounie E, et al. TREM2 variants in Alzheimer’s disease. N Engl J Med. 2013;368(2):117–27. doi: 10.1056/NEJMoa1211851. One of the first successful attempts to identify rare variants associated with Alzheimer’s disease employing sequencing data.
  53. 53.
    •• Jonsson T, Stefansson H, Steinberg S, Jonsdottir I, Jonsson PV, Snaedal J, et al. Variant of TREM2 associated with the risk of Alzheimer’s disease. N Engl J Med. 2013;368(2):107–16. doi: 10.1056/NEJMoa1211103. One of the first successful attempts to identify rare variants associated with Alzheimer’s disease employing sequencing data.
  54. 54.
    • Cruchaga C, Karch CM, Jin SC, Benitez BA, Cai Y, Guerreiro R, et al. Rare coding variants in the phospholipase D3 gene confer risk for Alzheimer’s disease. Nature. 2014;505(7484):550–4. doi: 10.1038/nature12825. A newly discovered locus identified by family-based sequencing data.
  55. 55.
    Johnson JO, Mandrioli J, Benatar M, Abramzon Y, Van Deerlin VM, Trojanowski JQ, et al. Exome sequencing reveals VCP mutations as a cause of familial ALS. Neuron. 2010;68(5):857–64. doi: 10.1016/j.neuron.2010.11.036.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Hamerman JA, Jarjoura JR, Humphrey MB, Nakamura MC, Seaman WE, Lanier LL. Cutting edge: inhibition of TLR and FcR responses in macrophages by triggering receptor expressed on myeloid cells (TREM)-2 and DAP12. J Immunol. 2006;177(4):2051–5.CrossRefPubMedGoogle Scholar
  57. 57.
    Ghani M, Sato C, Kakhki EG, Gibbs JR, Traynor B, St George-Hyslop P, et al. Mutation analysis of the MS4A and TREM gene clusters in a case-control Alzheimer’s disease data set. Neurobiol Aging. 2016;42:217 e7–e13. doi: 10.1016/j.neurobiolaging.2016.03.009.CrossRefGoogle Scholar
  58. 58.
    Benitez BA, Cooper B, Pastor P, Jin SC, Lorenzo E, Cervantes S, et al. TREM2 is associated with the risk of Alzheimer’s disease in Spanish population. Neurobiol Aging. 2013;34(6):1711 e15–7. doi: 10.1016/j.neurobiolaging.2012.12.018.CrossRefGoogle Scholar
  59. 59.
    Hooli BV, Lill CM, Mullin K, Qiao D, Lange C, Bertram L, et al. PLD3 gene variants and Alzheimer’s disease. Nature. 2015;520(7545):E7–8. doi: 10.1038/nature14040.CrossRefPubMedGoogle Scholar
  60. 60.
    Heilmann S, Drichel D, Clarimon J, Fernandez V, Lacour A, Wagner H, et al. PLD3 in non-familial Alzheimer’s disease. Nature. 2015;520(7545):E3–5. doi: 10.1038/nature14039.CrossRefPubMedGoogle Scholar
  61. 61.
    Lambert JC, Grenier-Boley B, Bellenguez C, Pasquier F, Campion D, Dartigues JF, et al. PLD3 and sporadic Alzheimer’s disease risk. Nature. 2015;520(7545):E1. doi: 10.1038/nature14036.CrossRefPubMedGoogle Scholar
  62. 62.
    van der Lee SJ, Holstege H, Wong TH, Jakobsdottir J, Bis JC, Chouraki V, et al. PLD3 variants in population studies. Nature. 2015;520(7545):E2–3. doi: 10.1038/nature14038.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Zhang DF, Fan Y, Wang D, Bi R, Zhang C, Fang Y, et al. PLD3 in Alzheimer’s disease: a modest effect as revealed by updated association and expression analyses. Mol Neurobiol. 2016;53(6):4034–45. doi: 10.1007/s12035-015-9353-5.CrossRefPubMedGoogle Scholar
  64. 64.
    Kohli MA, Cukier HN, Hamilton-Nelson KL, Rolati S, Kunkle BW, Whitehead PL, et al. Segregation of a rare TTC3 variant in an extended family with late-onset Alzheimer disease. Neurology Genetics. 2016;2(1):e41. doi: 10.1212/NXG.0000000000000041.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Jakobsdottir J, van der Lee SJ, Bis JC, Chouraki V, Li-Kroeger D, Yamamoto S, et al. Rare functional variant in TM2D3 is associated with late-onset Alzheimer’s disease. PLoS Genet. 2016;12(10):e1006327. doi: 10.1371/journal.pgen.1006327.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Logue MW, Schu M, Vardarajan BN, Farrell J, Bennett DA, Buxbaum JD, et al. Two rare AKAP9 variants are associated with Alzheimer’s disease in African Americans. Alzheimer’s & dementia : the journal of the Alzheimer’s Association. 2014;10(6):609–618 e11. doi: 10.1016/j.jalz.2014.06.010.CrossRefGoogle Scholar
  67. 67.
    Wetzel-Smith MK, Hunkapiller J, Bhangale TR, Srinivasan K, Maloney JA, Atwal JK, et al. A rare mutation in UNC5C predisposes to late-onset Alzheimer’s disease and increases neuronal cell death. Nat Med. 2014;20(12):1452–7. doi: 10.1038/nm.3736.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    International Schizophrenia C, Purcell SM, Wray NR, Stone JL, Visscher PM, O'Donovan MC, et al. Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature. 2009;460(7256):748–52. doi: 10.1038/nature08185.Google Scholar
  69. 69.
    Rodriguez-Rodriguez E, Sanchez-Juan P, Vazquez-Higuera JL, Mateo I, Pozueta A, Berciano J, et al. Genetic risk score predicting accelerated progression from mild cognitive impairment to Alzheimer’s disease. J Neural Transm (Vienna). 2013;120(5):807–12. doi: 10.1007/s00702-012-0920-x.CrossRefGoogle Scholar
  70. 70.
    • Escott-Price V, Sims R, Bannister C, Harold D, Vronskaya M, Majounie E, et al. Common polygenic variation enhances risk prediction for Alzheimer’s disease. Brain : a journal of neurology. 2015;138(Pt 12):3673–84. doi: 10.1093/brain/awv268. Large study successfully employing polygenic score in the context of sporadic Alzheimer’s disease.
  71. 71.
    Sleegers K, Bettens K, De Roeck A, Van Cauwenberghe C, Cuyvers E, Verheijen J, et al. A 22-single nucleotide polymorphism Alzheimer’s disease risk score correlates with family history, onset age, and cerebrospinal fluid Abeta42. Alzheimer’s & dementia : the journal of the Alzheimer’s Association. 2015;11(12):1452–60. doi: 10.1016/j.jalz.2015.02.013.CrossRefGoogle Scholar
  72. 72.
    Chouraki V, Reitz C, Maury F, Bis JC, Bellenguez C, Yu L, et al. Evaluation of a genetic risk score to improve risk prediction for Alzheimer’s disease. Journal of Alzheimer’s disease : JAD. 2016;53(3):921–32. doi: 10.3233/JAD-150749.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Mormino EC, Sperling RA, Holmes AJ, Buckner RL, De Jager PL, Smoller JW, et al. Polygenic risk of Alzheimer disease is associated with early- and late-life processes. Neurology. 2016;87(5):481–8. doi: 10.1212/WNL.0000000000002922.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Marden JR, Mayeda ER, Walter S, Vivot A, Tchetgen Tchetgen EJ, Kawachi I, et al. Using an Alzheimer disease polygenic risk score to predict memory decline in Black and White Americans over 14 years of follow-up. Alzheimer Dis Assoc Disord. 2016;30(3):195–202. doi: 10.1097/WAD.0000000000000137.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Desikan RS, Fan CC, Wang Y, Schork AJ, Cabral HJ, Cupples LA, et al. Genetic assessment of age-associated Alzheimer disease risk: development and validation of a polygenic hazard score. PLoS Med. 2017;14(3):e1002258. doi: 10.1371/journal.pmed.1002258.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    • Tosto G, Bird TD, Tsuang D, Bennett DA, Boeve BF, Cruchaga C, et al. Polygenic risk scores in familial Alzheimer disease. Neurology. 2017;88(12):1180–6. doi: 10.1212/WNL.0000000000003734. Polygenic scores are significantly associated to familial late-onset Alzheimer’s disease.
  77. 77.
    Naj AC, Jun G, Reitz C, et al. Effects of multiple genetic loci on age at onset in late-onset Alzheimer disease: a genome-wide association study. JAMA neurology. 2014;71(11):1394–404. doi: 10.1001/jamaneurol.2014.1491.CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Escott-Price V, Shoai M, Pither R, Williams J, Hardy J. Polygenic score prediction captures nearly all common genetic risk for Alzheimer’s disease. Neurobiol Aging. 2017;49:214 e7–e11. doi: 10.1016/j.neurobiolaging.2016.07.018.CrossRefGoogle Scholar
  79. 79.
    Infante J, Rodriguez-Rodriguez E, Mateo I, Llorca J, Vazquez-Higuera JL, Berciano J, et al. Gene-gene interaction between heme oxygenase-1 and liver X receptor-beta and Alzheimer’s disease risk. Neurobiol Aging. 2010;31(4):710–4. doi: 10.1016/j.neurobiolaging.2008.05.025.CrossRefPubMedGoogle Scholar
  80. 80.
    Robson KJ, Lehmann DJ, Wimhurst VL, Livesey KJ, Combrinck M, Merryweather-Clarke AT, et al. Synergy between the C2 allele of transferrin and the C282Y allele of the haemochromatosis gene (HFE) as risk factors for developing Alzheimer’s disease. J Med Genet. 2004;41(4):261–5.CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Kauwe JS, Bertelsen S, Mayo K, Cruchaga C, Abraham R, Hollingworth P, et al. Suggestive synergy between genetic variants in TF and HFE as risk factors for Alzheimer’s disease. American journal of medical genetics Part B, Neuropsychiatric genetics : the official publication of the International Society of Psychiatric Genetics. 2010;153B(4):955–9. doi: 10.1002/ajmg.b.31053.CrossRefGoogle Scholar
  82. 82.
    Combarros O, van Duijn CM, Hammond N, Belbin O, Arias-Vasquez A, Cortina-Borja M, et al. Replication by the Epistasis Project of the interaction between the genes for IL-6 and IL-10 in the risk of Alzheimer’s disease. J Neuroinflammation. 2009;6:22. doi: 10.1186/1742-2094-6-22.CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Reitz C, Tosto G, Vardarajan B, Rogaeva E, Ghani M, Rogers RS, et al. Independent and epistatic effects of variants in VPS10-d receptors on Alzheimer disease risk and processing of the amyloid precursor protein (APP). Transl Psychiatry. 2013;3:e256. doi: 10.1038/tp.2013.13.CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Hohman TJ, Koran ME, Thornton-Wells T, Alzheimer’s Neuroimaging I. Epistatic genetic effects among Alzheimer’s candidate genes. PLoS One. 2013;8(11):e80839. doi: 10.1371/journal.pone.0080839.CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Ebbert MT, Ridge PG, Wilson AR, Sharp AR, Bailey M, Norton MC, et al. Population-based analysis of Alzheimer’s disease risk alleles implicates genetic interactions. Biol Psychiatry. 2014;75(9):732–7. doi: 10.1016/j.biopsych.2013.07.008.CrossRefPubMedGoogle Scholar
  86. 86.
    •• Gusareva ES, Carrasquillo MM, Bellenguez C, Cuyvers E, Colon S, Graff-Radford NR, et al. Genome-wide association interaction analysis for Alzheimer’s disease. Neurobiol Aging. 2014;35(11):2436–43. doi: 10.1016/j.neurobiolaging.2014.05.014. Successful attempt to identify and rigorously replicate and validate an interactive gene-pair in Alzheimer’s disease.
  87. 87.
    Koran ME, Hohman TJ, Meda SA, Thornton-Wells TA. Genetic interactions within inositol-related pathways are associated with longitudinal changes in ventricle size. Journal of Alzheimer’s disease : JAD. 2014;38(1):145–54. doi: 10.3233/JAD-130989.PubMedGoogle Scholar
  88. 88.
    Ebbert MT, Boehme KL, Wadsworth ME, Staley LA, Alzheimer’s disease neuroimaging I, Alzheimer’s disease genetics C et al. Interaction between variants in CLU and MS4A4E modulates Alzheimer’s disease risk. Alzheimer’s & dementia : the journal of the Alzheimer’s Association. 2016;12(2):121–9. doi: 10.1016/j.jalz.2015.08.163.CrossRefGoogle Scholar
  89. 89.
    Hohman TJ, Bush WS, Jiang L, Brown-Gentry KD, Torstenson ES, Dudek SM, et al. Discovery of gene-gene interactions across multiple independent data sets of late onset Alzheimer disease from the Alzheimer Disease Genetics Consortium. Neurobiol Aging. 2016;38:141–50. doi: 10.1016/j.neurobiolaging.2015.10.031.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.The Gertrude H. Sergievsky Center, College of Physicians and SurgeonsColumbia UniversityNew YorkUSA
  2. 2.Department of Neurology, Columbia University College of Physicians and SurgeonsNew York Presbyterian HospitalNew YorkUSA
  3. 3.Institute for Genomic MedicineColumbia UniversityNew YorkUSA
  4. 4.The Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, College of Physicians and SurgeonsColumbia UniversityNew YorkUSA

Personalised recommendations