Skip to main content

Advertisement

Log in

A Neuropsychological Perspective on Abstract Word Representation: From Theory to Treatment of Acquired Language Disorders

  • Behavior (H Kirshner, Section Editor)
  • Published:
Current Neurology and Neuroscience Reports Aims and scope Submit manuscript

Abstract

Natural languages are rife with words that describe feelings, introspective states, and social constructs (e.g., liberty, persuasion) that cannot be directly observed through the senses. Effective communication demands linguistic competence with such abstract words. In clinical neurological settings, abstract words are especially vulnerable to the effects of stroke and neurodegenerative conditions such as Alzheimer’s disease. A parallel literature in cognitive neuroscience suggests that abstract and concrete words are at least partially neuroanatomically dissociable. Much remains to be learned about the nature of lexical-semantic deficits of abstract words and how best to promote their recovery. Here, we review contemporary theoretical approaches to abstract-concrete word representation with an aim toward contextualizing patient-based dissociations for abstract words. We then describe a burgeoning treatment approach for targeting abstract words and suggest a number of potential strategies for future interventions. We argue that a deeper understanding of is essential for informing language rehabilitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Foster Wallace D. Infinite Jest. USA: Little, Brown & Co; 1996.

  2. Wise Brown M. Goodnight Moon. USA: Harper & Brothers; 1947.

  3. Reilly J, Kean J. Formal distinctiveness of high- and low-imageability nouns: analyses and theoretical implications. Cogn Sci. 2007;31(1):157–68.

    Article  PubMed  Google Scholar 

  4. Coltheart M. Deep dyslexia is right-hemisphere reading. Brain Lang. 2000;71(2):299–309.

    Article  CAS  PubMed  Google Scholar 

  5. Jefferies E, Sage K, Ralph MA. Do deep dyslexia, dysphasia and dysgraphia share a common phonological impairment? Neuropsychologia. 2007;45(7):1553–70.

    Article  PubMed Central  Google Scholar 

  6. Martin N, Saffran EM. A computational account of deep dysphasia: evidence from a single case study. Brain Lang. 1992;43(2):240–74.

    Article  CAS  PubMed  Google Scholar 

  7. Plaut DC, Shallice T. Deep dyslexia: a case study of connectionist neuropsychology. Cogn Neuropsychol. 1993;10(5):377–500.

    Article  Google Scholar 

  8. Franklin S, Howard D, Patterson K. Abstract word anomia. Cogn Neuropsychol. 1995;12(5):549–66.

    Article  Google Scholar 

  9. Franklin S, Howard D, Patterson K. Abstract word meaning deafness. Cogn Neuropsychol. 1994;11(1):1–34.

    Article  Google Scholar 

  10. Paivio A. Dual coding theory, word abstractness, and emotion: a critical review of Kousta et al. (2011) J Exp Psychol Gen. 2013;142(1):282–7.

  11. Paivio A. Intelligence, dual coding theory, and the brain. Intelligence. 2014;47:141–58.

    Article  Google Scholar 

  12. Jones GV. Deep dyslexia, imageability, and ease of predication. Brain Lang. 1985;24(1):1–19.

    Article  CAS  PubMed  Google Scholar 

  13. Franklin S. Dissociations in auditory word comprehension; evidence from nine fluent aphasic patients. Aphasiology. 1989;3(3):189–207.

    Article  Google Scholar 

  14. Grodzinsky Y, Santi A. The battle for Broca’s region. Trends Cogn Sci. 2008;12(12):474–80.

    Article  PubMed  Google Scholar 

  15. Nadeau SE, Gonzalez Rothi LJ, Crosson B. Aphasia and language: theory to practice. New York, NY: Guilford Press; 2000.

    Google Scholar 

  16. Breedin SD, Saffran EM, Coslett HB. Reversal of the concreteness effect in a patient with semantic dementia. Cogn Neuropsychol. 1994;11(6):617–60.

    Article  Google Scholar 

  17. Papagno C, Capasso R, Miceli G. Reversed concreteness effect for nouns in a subject with semantic dementia. Neuropsychologia. 2009;47(4):1138–48.

    Article  PubMed  Google Scholar 

  18. Reilly J, Peelle JE, Grossman M. A unitary semantics account of reverse concreteness effects in semantic dementia. Brain Lang. 2007;103:248–9.

    Article  Google Scholar 

  19. Warrington EK, McCarthy R. Category specific access dysphasia. Brain. 1983;106(Pt 4):859–78.

    Article  PubMed  Google Scholar 

  20. Gorno-Tempini ML et al. Classification of primary progressive aphasia and its variants. Neurology. 2011;76(11):1006–14.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Snowden JS, Goulding PJ, Neary D. Semantic dementia: a form of circumscribed cerebral atrophy. Behav Neurol. 1989;2(3):167–82.

    Google Scholar 

  22. Hoffman P. The meaning of ‘life’ and other abstract words: Insights from neuropsychology. J Neuropsychol. 2015. Hoffman provides a comprehensive review of current theoretical perspectives regarding how processing abstract words differs from that of concrete processing. Hoffman further reviews evidence for neuroanatomical correlates and dissociations by integrating insights from patients with language disorders with evidence from functional imaging of neurotypical adults.

  23. Hoffman P, Lambon Ralph MA. Reverse concreteness effects are not a typical feature of semantic dementia: evidence for the hub-and-spoke model of conceptual representation. Cereb Cortex. 2011;21(9):2103–12.

    Article  PubMed  Google Scholar 

  24. Yi HA, Moore P, Grossman M. Reversal of the concreteness effect for verbs in patients with semantic dementia. Neuropsychology. 2007;21(1):9–19.

    Article  PubMed  Google Scholar 

  25. Bonner MF et al. Reversal of the concreteness effect in semantic dementia. Cogn Neuropsychol. 2009;26(6):568–79.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Cousins KA et al. Cognitive and anatomic double dissociation in the representation of concrete and abstract words in semantic variant and behavioral variant frontotemporal degeneration. Neuropsychologia. 2016;84:244–51.

    Article  PubMed  Google Scholar 

  27. Jefferies E et al. Comprehension of concrete and abstract words in semantic dementia. Neuropsychology. 2009;23(4):492–9.

    Article  PubMed  Google Scholar 

  28. Hoffman P, Jones RW, Lambon Ralph MA. Be concrete to be comprehended: consistent imageability effects in semantic dementia for nouns, verbs, synonyms and associates. Cortex. 2013;49(5):1206–18.

    Article  PubMed  Google Scholar 

  29. Bird H et al. The rise and fall of frequency and imageability: noun and verb production in semantic dementia. Brain Lang. 2000;73(1):17–49.

    Article  CAS  PubMed  Google Scholar 

  30. Barsalou LW. Grounded cognition. Annu Rev Psychol. 2008;59(1):617–45.

    Article  PubMed  Google Scholar 

  31. Vigliocco G et al. The neural representation of abstract words: the role of emotion. Cereb Cortex. 2014;24(7):1767–77.

    Article  PubMed  Google Scholar 

  32. Gallese V, Lakoff G. The Brain’s concepts: the role of the sensory-motor system in conceptual knowledge. Cogn Neuropsychol. 2005;22(3):455–79.

    Article  PubMed  Google Scholar 

  33. Crutch SJ et al. Abstract conceptual feature ratings: the role of emotion, magnitude, and other cognitive domains in the organization of abstract conceptual knowledge. Front Hum Neurosci. 2013;7:186.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Troche J, Crutch S, Reilly J. Clustering, hierarchical organization, and the topography of abstract and concrete nouns. Front Psychol. 2014;5:360.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Reilly J, et al. Linking somatic and symbolic representation in semantic memory: The Dynamic Multilevel Reactivation framework. Psychonomic Bulletin & Review. 2016.

  36. Crutch SJ, Ridha BH, Warrington EK. The different frameworks underlying abstract and concrete knowledge: evidence from a bilingual patient with a semantic refractory access dysphasia. Neurocase. 2006;12(3):151–63.

    Article  PubMed  Google Scholar 

  37. Crutch SJ, Warrington EK. Abstract and concrete concepts have structurally different representational frameworks. Brain. 2005;128(Pt 3):615–27.

    Article  PubMed  Google Scholar 

  38. Crutch SJ, Warrington EK. The differential dependence of abstract and concrete words upon associative and similarity-based information: complementary semantic interference and facilitation effects. Cogn Neuropsychol. 2010;27(1):46–71.

    Article  PubMed  Google Scholar 

  39. Warrington EK, Shallice T. Semantic access dyslexia. Brain. 1979;102(1):43–63.

    Article  CAS  PubMed  Google Scholar 

  40. Cree GS, McRae K. Analyzing the factors underlying the structure and computation of the meaning of chipmunk, cherry, chisel, cheese, and cello (and many other such concrete nouns). J Exp Psychol Gen. 2003;132(2):163–201.

    Article  PubMed  Google Scholar 

  41. Schwartz MF et al. Neuroanatomical dissociation for taxonomic and thematic knowledge in the human brain. Proc Natl Acad Sci U S A. 2011;108(20):8520–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Seckin M et al. Am I looking at a cat or a dog? Gaze in the semantic variant of primary progressive aphasia is subject to excessive taxonomic capture. J Neurolinguistics. 2016;37:68–81.

    Article  Google Scholar 

  43. Farah MJ, McClelland JL. A computational model of semantic memory impairment: modality specificity and emergent category specificity. J Exp Psychol Gen. 1991;120(4):339–57.

    Article  CAS  PubMed  Google Scholar 

  44. Flanagan KJ et al. Alzheimer’s disease is associated with distinctive semantic feature loss. Neuropsychologia. 2013;51(10):2016–25.

    Article  PubMed  Google Scholar 

  45. Garrard P et al. Semantic feature knowledge and picture naming in dementia of Alzheimer’s type: a new approach. Brain Lang. 2005;93(1):79–94.

    Article  PubMed  Google Scholar 

  46. Reilly J et al. Anomia as a marker of distinct semantic memory impairments in Alzheimer’s disease and semantic dementia. Neuropsychology. 2011;25(4):413–26.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Woollams AM et al. Anomia: a doubly typical signature of semantic dementia. Neuropsychologia. 2008;46(10):2503–14.

    Article  PubMed  Google Scholar 

  48. Lambon Ralph MA et al. No right to speak? The relationship between object naming and semantic impairment: neuropsychological evidence and a computational model. J Cogn Neurosci. 2001;13(3):341–56.

    Article  CAS  PubMed  Google Scholar 

  49. Reilly J, Peelle JE. Effects of semantic impairment on language processing in semantic dementia. Semin Speech Lang. 2008;29(1):32–43.

    Article  PubMed  Google Scholar 

  50. Schwanenflugel PJ, Akin C, Luh WM. Context availability and the recall of abstract and concrete words. Mem Cogn. 1992;20(1):96–104.

    Article  CAS  Google Scholar 

  51. Schwanenflugel PJ, Shoben EJ. Differential context effects in the comprehension of abstract and concrete verbal materials. J Exp Psychol Learn Mem Cogn. 1983;9(1):82–102.

    Article  Google Scholar 

  52. Schwanenflugel PJ, Stowe RW. Context availability and the processing of abstract and concrete words in sentences. Read Res Q. 1989;24(1):114–26.

    Article  Google Scholar 

  53. Hoffman P, Lambon Ralph MA, Rogers TT. Semantic diversity: a measure of semantic ambiguity based on variability in the contextual usage of words. Behav Res Methods. 2013;45(3):718–30.

    Article  PubMed  Google Scholar 

  54. Landauer TK, Dumais ST. A solution to Plato’s problem: the latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychol Rev. 1997;104(2):211–40.

    Article  Google Scholar 

  55. Jefferies E, Lambon Ralph MA. Semantic impairment in stroke aphasia versus semantic dementia: a case-series comparison. Brain. 2006;129(8):2132–47.

    Article  PubMed  Google Scholar 

  56. Thompson-Schill SL. Neuroimaging studies of semantic memory: inferring “how” from “where”. Neuropsychologia. 2003;41(3):280–92.

    Article  PubMed  Google Scholar 

  57. Binder JR et al. Where is the semantic system? A critical review and meta-analysis of 120 functional neuroimaging studies. Cereb Cortex. 2009;19(12):2767–96.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Wang J et al. Neural representation of abstract and concrete concepts: a meta-analysis of neuroimaging studies. Hum Brain Mapp. 2010;31(10):1459–68.

    Article  PubMed  Google Scholar 

  59. Boyle M. Semantic feature analysis treatment for anomia in two fluent aphasia syndromes. Am J Speech-Lang Pathol. 2004;13(3):236–49.

    Article  PubMed  Google Scholar 

  60. Reilly J. How to constrain and maintain a lexicon for the treatment of progressive semantic naming deficits: principles of item selection for formal semantic therapy. Neuropsychol Rehabil. 2016;26(1):126–56.

    Article  PubMed  Google Scholar 

  61. Kiran S, Sandberg C, Abbott K. Treatment for lexical retrieval using abstract and concrete words in persons with aphasia: effect of complexity. Aphasiology. 2009;23(7):835–53.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Sandberg C, Kiran S. How justice can affect jury: training abstract words promotes generalisation to concrete words in patients with aphasia. Neuropsychol Rehabil. 2014;24(5):738–69. Sandberg and Kiran describe a promising approach to the treatment of abstract word knowledge. Modest improvement were reported in ten of twelve persons with post-stroke aphasia. 8 patients also generalized to concrete words. The authors also briefly speculate on the mechanisms of treatment effects in relation to a subset of cognitive theories of abstract word processing.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Kiran S, Thompson CK. The role of semantic complexity in treatment of naming deficits: training semantic categories in fluent aphasia by controlling exemplar typicality. J Speech lang Hear Res JSLHR. 2003;46(4):773–87.

    Article  PubMed  Google Scholar 

  64. Locke J. Of abstract and concrete terms, in an essay concerning human understanding (Book 3: of Words). Urie: Glasgow; 1759.

    Google Scholar 

  65. Coltheart M. The MRC psycholinguistic database. Q J Exp Psychol Sec A. 1981;33(4):497–505.

    Article  Google Scholar 

Download references

Acknowledgments

J. Reilly is funded by a US Public Health Service Grant R01 (DC013063) to study language treatment for aphasia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard J. Binney.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Behavior

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Binney, R.J., Zuckerman, B. & Reilly, J. A Neuropsychological Perspective on Abstract Word Representation: From Theory to Treatment of Acquired Language Disorders. Curr Neurol Neurosci Rep 16, 79 (2016). https://doi.org/10.1007/s11910-016-0683-0

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11910-016-0683-0

Keywords

Navigation