Update on TBI and Cognitive Impairment in Military Veterans

  • Gregory A. ElderEmail author
Dementia (KS Marder, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Dementia


Traumatic brain injury (TBI) is a common cause of morbidity and mortality in military life. Interest in military TBI has increased recently due to the conflicts in Iraq and Afghanistan. Certain types of TBI are relatively unique to the military, the most prominent being blast-related TBI. Blast-related mild TBI has been of particular concern in veterans from the most recent conflicts although controversy remains concerning its separation from post-traumatic stress disorder. TBI is also a risk factor for the later development of neurodegenerative diseases in which cognitive impairment is prominent putting veterans at risk for disorders including Alzheimer’s disease and chronic traumatic encephalopathy. Recent evidence associating TBI with chronic cognitive impairment is reviewed in the context of its relevance to military veterans.


Alzheimer’s disease Blast Chronic traumatic encephalopathy Dementia Traumatic brain injury Military veterans 



The author has received research support from the Department of Veterans Affairs, Veterans Health Administration, Rehabilitation Research and Development Service Awards 1I01RX000179-01 and 1I01RX000996-01.

Compliance with Ethics Guidelines

Conflict of Interest

Gregory A. Elder has received research grants from the Veterans Administration.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.


Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. 1.
    Hyder AA, Wunderlich CA, Puvanachandra P, Gururaj G, Kobusingye OC. The impact of traumatic brain injuries: a global perspective. NeuroRehabilitation. 2007;22(5):341–53.PubMedGoogle Scholar
  2. 2.
    Gardner RC, Yaffe K. Epidemiology of mild traumatic brain injury and neurodegenerative disease. Mol Cell Neurosci. 2015. doi: 10.1016/j.mcn.2015.03.001.PubMedGoogle Scholar
  3. 3.
    Gubata ME, Packnett ER, Blandford CD, Piccirillo AL, Niebuhr DW, Cowan DN. Trends in the epidemiology of disability related to traumatic brain injury in the US Army and Marine Corps: 2005 to 2010. J Head Trauma Rehabil. 2014;29(1):65–75. doi: 10.1097/HTR.0b013e318295f590.CrossRefPubMedGoogle Scholar
  4. 4.
    Stroupe KT, Smith BM, Hogan TP, St Andre JR. Healthcare utilization and costs of veterans screened and assessed for traumatic brain injury. J Rehabil Res Dev. 2013;50(8):1047–68. doi: 10.1682/JRRD.2012.06.0107.CrossRefPubMedGoogle Scholar
  5. 5.
    DePalma RG. TBI combat history, epidemiology and injury modes. In: Kobeissy F, editor. Brain neurotrauma: molecular, neuropsychological, and rehabilitation aspects. Boca Raton FL, USA: CRC Press; 2015. p. 5–14.Google Scholar
  6. 6.
    Kaufman HH. Treatment of head injuries in the American Civil War. J Neurosurg. 1993;78(5):838–45. doi: 10.3171/jns.1993.78.5.0838.CrossRefPubMedGoogle Scholar
  7. 7.
    Cifu DX, Cohen SI, Lew HL, Jaffee M, Sigford B. The history and evolution of traumatic brain injury rehabilitation in military service members and veterans. Am J Phys Med Rehabil. 2010;89(8):688–94. doi: 10.1097/PHM.0b013e3181e722ad.CrossRefPubMedGoogle Scholar
  8. 8.
    Defense and Veterans Brain Injury Center. Accessed July 12, 2015
  9. 9.
    Chapman JC, Diaz-Arrastia R. Military traumatic brain injury: a review. Alzheimers Dement. 2014;10(3 Suppl):S97–104. doi: 10.1016/j.jalz.2014.04.012.CrossRefPubMedGoogle Scholar
  10. 10.
    Rabinowitz AR, Levin HS. Cognitive sequelae of traumatic brain injury. Psychiatr Clin North Am. 2014;37(1):1–11. doi: 10.1016/j.psc.2013.11.004.PubMedCentralCrossRefPubMedGoogle Scholar
  11. 11.
    DeKosky ST, Ikonomovic MD, Gandy S. Traumatic brain injury: football, warfare, and long-term effects. N Engl J Med. 2010;363:1293–6.CrossRefPubMedGoogle Scholar
  12. 12.
    Gandy S, Ikonomovic MD, Mitsis E, Elder G, Ahlers ST, Barth J, et al. Chronic traumatic encephalopathy: clinical-biomarker correlations and current concepts in pathogenesis. Mol Neurodegener. 2014;9:37. doi: 10.1186/1750-1326-9-37.PubMedCentralCrossRefPubMedGoogle Scholar
  13. 13.
    Hoge CW, McGurk D, Thomas JL, Cox AL, Engel CC, Castro CA. Mild traumatic brain injury in U.S. Soldiers returning from Iraq. N Engl J Med. 2008;358(5):453–63.CrossRefPubMedGoogle Scholar
  14. 14.
    Tanielian T, Jaycox LH, editors. Invisible wounds of War: psychological and cognitive injuries, their consequences, and services to assist recovery. Santa Monica, CA: Rand Corporation; 2008.Google Scholar
  15. 15.
    Bell RS, Vo AH, Neal CJ, Tigno J, Roberts R, Mossop C, et al. Military traumatic brain and spinal column injury: a 5-year study of the impact blast and other military grade weaponry on the central nervous system. J Trauma. 2009;66(4 Suppl):S104–11.CrossRefPubMedGoogle Scholar
  16. 16.•
    Chase RP, Nevin RL. Population estimates of undocumented incident traumatic brain injuries among combat-deployed US military personnel. J Head Trauma Rehabil. 2015;30(1):E57–64. doi: 10.1097/HTR.0000000000000061. Documents the high incidence of unrecognized TBIs suffered by U.S. troops deployed to Iraq or Afghanistan during the period of January 2003 to October 2006.CrossRefPubMedGoogle Scholar
  17. 17.
    Elder GA, Mitsis EM, Ahlers ST, Cristian A. Blast-induced mild traumatic brain injury. Psychiatr Clin North Am. 2010;33(4):757–81.CrossRefPubMedGoogle Scholar
  18. 18.
    Military Acute Concussion Evaluation (MACE). Accessed July 12, 2015.
  19. 19.
    Coldren RL, Kelly MP, Parish RV, Dretsch M, Russell ML. Evaluation of the military acute concussion evaluation for use in combat operations more than 12 hours after injury. Mil Med. 2010;175(7):477–81.CrossRefPubMedGoogle Scholar
  20. 20.
    Jaffee MS, Meyer KS. A brief overview of traumatic brain injury (TBI) and post-traumatic stress disorder (PTSD) within the Department of Defense. Clin Neuropsychol. 2009;23(8):1291–8.CrossRefPubMedGoogle Scholar
  21. 21.
    Coldren RL, Russell ML, Parish RV, Dretsch M, Kelly MP. The ANAM lacks utility as a diagnostic or screening tool for concussion more than 10 days following injury. Mil Med. 2012;177(2):179–83.CrossRefPubMedGoogle Scholar
  22. 22.
    Norris JN, Carr W, Herzig T, Labrie DW, Sams R. ANAM4 TBI reaction time-based tests have prognostic utility for acute concussion. Mil Med. 2013;178(7):767–74. doi: 10.7205/MILMED-D-12-00493.CrossRefPubMedGoogle Scholar
  23. 23.
    Iverson GL, Langlois JA, McCrea MA, Kelly JP. Challenges associated with post-deployment screening for mild traumatic brain injury in military personnel. Clin Neuropsychol. 2009;23(8):1299–314.CrossRefPubMedGoogle Scholar
  24. 24.
    Evans CT, St Andre JR, Pape TL, Steiner ML, Stroupe KT, Hogan TP, et al. An evaluation of the veterans affairs traumatic brain injury screening process among operation enduring freedom and/or operation Iraqi freedom veterans. PM R. 2013;5(3):210–20. doi: 10.1016/j.pmrj.2012.12.004.CrossRefPubMedGoogle Scholar
  25. 25.
    Hendricks AM, Amara J, Baker E, Charns MP, Gardner JA, Iverson KM, et al. Screening for mild traumatic brain injury in OEF-OIF deployed US military: an empirical assessment of VHA’s experience. Brain Inj. 2013;27(2):125–34. doi: 10.3109/02699052.2012.729284.CrossRefPubMedGoogle Scholar
  26. 26.
    United States Department of Veterans Affairs. Accessed July 12, 2015.
  27. 27.
    Bochicchio GV, Lumpkins K, O’Connor J, Simard M, Schaub S, Conway A, et al. Blast injury in a civilian trauma setting is associated with a delay in diagnosis of traumatic brain injury. Am Surg. 2008;74(3):267–70.PubMedGoogle Scholar
  28. 28.
    Bigler ED, Maxwell WL. Neuropathology of mild traumatic brain injury: relationship to neuroimaging findings. Brain Imaging Behav. 2012;6(2):108–36. doi: 10.1007/s11682-011-9145-0.CrossRefPubMedGoogle Scholar
  29. 29.
    Xiong Y, Mahmood A, Chopp M. Animal models of traumatic brain injury. Nat Rev Neurosci. 2013;14(2):128–42. doi: 10.1038/nrn3407.PubMedCentralCrossRefPubMedGoogle Scholar
  30. 30.
    Kucherov Y, Hubler G, DePalma R. Blast induced mild traumatic brain injury/concussion: a physical Analysis. J Appl Phys. 2012;112:104701-1-5.CrossRefGoogle Scholar
  31. 31.
    Kobeissy F, Mondello S, Tumer N, Toklu HZ, Whidden MA, Kirichenko N, et al. Assessing neuro-systemic & behavioral components in the pathophysiology of blast-related brain injury. Front Neurol. 2013;4:186. doi: 10.3389/fneur.2013.00186.PubMedCentralCrossRefPubMedGoogle Scholar
  32. 32.
    Elder GA, Gama Sosa MA, De Gasperi R, Stone JR, Dickstein DL, Haghighi F, et al. Vascular and inflammatory factors in the pathophysiology of blast-induced brain injury. Front Neurol. 2015;6:48. doi: 10.3389/fneur.2015.00048.PubMedCentralCrossRefPubMedGoogle Scholar
  33. 33.•
    Elder GA, Stone JR, Ahlers ST. Effects of low-level blast exposure on the nervous system: is there really a controversy? Front Neurol. 2014;5:269. doi: 10.3389/fneur.2014.00269. 10.3389/fneur.2014.00269. Reviews the mTBI/PTSD controversy as well as animal and human literature on the effects of low level blast.PubMedCentralCrossRefPubMedGoogle Scholar
  34. 34.
    Jorge RE, Arciniegas DB. Mood disorders after TBI. Psychiatr Clin North Am. 2014;37(1):13–29. doi: 10.1016/j.psc.2013.11.005.PubMedCentralCrossRefPubMedGoogle Scholar
  35. 35.
    Vasterling JJ, Verfaellie M, Sullivan KD. Mild traumatic brain injury and posttraumatic stress disorder in returning veterans: perspectives from cognitive neuroscience. Clin Psychol Rev. 2009;29(8):674–84.CrossRefPubMedGoogle Scholar
  36. 36.
    IOM (Institute of Medicine). Gulf War and health: Long-term effects of blast exposures. Washington, DC2014.Google Scholar
  37. 37.
    Jones E, Fear NT, Wessely S. Shell shock and mild traumatic brain injury: a historical review. Am J Psychiatry. 2007;164(11):1641–5.CrossRefPubMedGoogle Scholar
  38. 38.
    Vanderploeg RD, Belanger HG, Curtiss G. Mild traumatic brain injury and posttraumatic stress disorder and their associations with health symptoms. Arch Phys Med Rehabil. 2009;90(7):1084–93.CrossRefPubMedGoogle Scholar
  39. 39.
    Ruff RL, Riechers 2nd RG, Wang XF, Piero T, Ruff SS. A case-control study examining whether neurological deficits and PTSD in combat veterans are related to episodes of mild TBI. BMJ Open. 2012;2(2), e000312. doi: 10.1136/bmjopen-2011-000312.PubMedCentralCrossRefPubMedGoogle Scholar
  40. 40.•
    Elder GA, Dorr NP, De Gasperi R, Gama Sosa MA, Shaughness MC, Maudlin-Jeronimo E, et al. Blast exposure induces post-traumatic stress disorder-related traits in a rat model of mild traumatic brain injury. J Neurotrauma. 2012;29(16):2564–75. doi: 10.1089/neu.2012.2510. Demonstrates that low-level blast exposure in rats can induce PTSD-related behavioral traits in the absence of a psychological stressor.PubMedCentralCrossRefPubMedGoogle Scholar
  41. 41.•
    Brenner LA, Homaifar BY, Olson-Madden JH, Nagamoto HT, Huggins J, Schneider AL, et al. Prevalence and screening of traumatic brain injury among veterans seeking mental health services. J Head Trauma Rehabil. 2013;28(1):21–30. doi: 10.1097/HTR.0b013e31827df0b5. Study examining the frequency of a history of TBI among veterans seeking mental health services at a VA facility. 45% of those seeking treatment had suffered a probable TBI.CrossRefPubMedGoogle Scholar
  42. 42.
    Brickell TA, Lange RT, French LM. Health-related quality of life within the first 5 years following military-related concurrent mild traumatic brain injury and polytrauma. Mil Med. 2014;179(8):827–38. doi: 10.7205/MILMED-D-13-00506.CrossRefPubMedGoogle Scholar
  43. 43.
    Brickell TA, Lange RT, French LM. Three-year outcome following moderate-to-severe TBI in U.S. military service members: a descriptive cross-sectional study. Mil Med. 2014;179(8):839–48. doi: 10.7205/MILMED-D-14-00016.CrossRefPubMedGoogle Scholar
  44. 44.
    Vincent AS, Roebuck-Spencer TM, Cernich A. Cognitive changes and dementia risk after traumatic brain injury: implications for aging military personnel. Alzheimers Dement. 2014;10(3 Suppl):S174–87. doi: 10.1016/j.jalz.2014.04.006.CrossRefPubMedGoogle Scholar
  45. 45.
    Barnes DE, Kaup A, Kirby KA, Byers AL, Diaz-Arrastia R, Yaffe K. Traumatic brain injury and risk of dementia in older veterans. Neurology. 2014;83(4):312–9. doi: 10.1212/WNL.0000000000000616.PubMedCentralCrossRefPubMedGoogle Scholar
  46. 46.
    Plassman BL, Havlik RJ, Steffens DC, Helms MJ, Newman TN, Drosdick D, et al. Documented head injury in early adulthood and risk of Alzheimer’s disease and other dementias. Neurology. 2000;55(8):1158–66.CrossRefPubMedGoogle Scholar
  47. 47.
    Bazarian JJ, Cernak I, Noble-Haeusslein L, Potolicchio S, Temkin N. Long-term neurologic outcomes after traumatic brain injury. J Head Trauma Rehabil. 2009;24(6):439–51. doi: 10.1097/HTR.0b013e3181c15600.CrossRefPubMedGoogle Scholar
  48. 48.
    National Research Council. Gulf War and health: volume 7: long-term consequences of traumatic brain injury. Washington, DC: The National Academies Press; 2008.Google Scholar
  49. 49.
    Gardner RC, Burke JF, Nettiksimmons J, Kaup A, Barnes DE, Yaffe K. Dementia risk after traumatic brain injury vs nonbrain trauma: the role of age and severity. JAMA Neurol. 2014;71(12):1490–7. doi: 10.1001/jamaneurol.2014.2668.CrossRefPubMedGoogle Scholar
  50. 50.
    Lange RT, Brickell TA, Ivins B, Vanderploeg RD, French LM. Variable, not always persistent, postconcussion symptoms after mild TBI in U.S. military service members: a five-year cross-sectional outcome study. J Neurotrauma. 2013;30(11):958–69. doi: 10.1089/neu.2012.2743.CrossRefPubMedGoogle Scholar
  51. 51.•
    Budde MD, Shah A, McCrea M, Cullinan WE, Pintar FA, Stemper BD. Primary blast traumatic brain injury in the rat: relating diffusion tensor imaging and behavior. Front Neurol 2. 2013;4:154. doi: 10.3389/fneur.2013.00154. Study examining diffusion tensor imaging (DTI) after a blast injury in rats. Region specific decreases in fractional anisotropy were found that expanded during a 4 to 30 day observation period suggesting an evolving lesion.Google Scholar
  52. 52.
    Martland HS. Punch drunk. JAMA. 1928;91:1103–7. doi: 10.1001/jama.1928.02700150029009.CrossRefGoogle Scholar
  53. 53.
    Corsellis JA, Bruton CJ, Freeman-Browne D. The aftermath of boxing. Psychol Med. 1973;3(3):270–303.CrossRefPubMedGoogle Scholar
  54. 54.
    Omalu BI, DeKosky ST, Minster RL, Kamboh MI, Hamilton RL, Wecht CH. Chronic traumatic encephalopathy in a national football league player. Neurosurgery. 2005;57(1):128–34.CrossRefPubMedGoogle Scholar
  55. 55.
    Maroon JC, Winkelman R, Bost J, Amos A, Mathyssek C, Miele V. Chronic traumatic encephalopathy in contact sports: a systematic review of all reported pathological cases. PLoS One. 2015;10(2), e0117338. doi: 10.1371/journal.pone.0117338.PubMedCentralCrossRefPubMedGoogle Scholar
  56. 56.
    McKee AC, Cantu RC, Nowinski CJ, Hedley-Whyte ET, Gavett BE, Budson AE, et al. Chronic traumatic encephalopathy in athletes: progressive tauopathy after repetitive head injury. J Neuropathol Exp Neurol. 2009;68(7):709–35. doi: 10.1097/NEN.0b013e3181a9d503.PubMedCentralCrossRefPubMedGoogle Scholar
  57. 57.•
    McKee AC, Stern RA, Nowinski CJ, Stein TD, Alvarez VE, Daneshvar DH, et al. The spectrum of disease in chronic traumatic encephalopathy. Brain. 2013;136(Pt 1):43–64. doi: 10.1093/brain/aws307. Describes the features of CTE in 68 cases including 21 military veterans.PubMedCentralCrossRefPubMedGoogle Scholar
  58. 58.•
    Omalu B, Hammers JL, Bailes J, Hamilton RL, Kamboh MI, Webster G, et al. Chronic traumatic encephalopathy in an Iraqi war veteran with posttraumatic stress disorder who committed suicide. Neurosurgical focus. 2011;31(5):E3. doi: 10.3171/2011.9.FOCUS11178. Describes the first case of CTE in an Iraq veteran.CrossRefPubMedGoogle Scholar
  59. 59.•
    Goldstein LE, Fisher AM, Tagge CA, Zhang XL, Velisek L, Sullivan JA, et al. Chronic traumatic encephalopathy in blast-exposed military veterans and a blast neurotrauma mouse model. Sci Transl Med. 2012;4(134):134ra60. doi: 10.1126/scitranslmed.3003716. Describes four cases of CTE in Iraq and Afghanistan veterans along with prominant tau pathology in an animal model of blast injury.PubMedCentralCrossRefPubMedGoogle Scholar
  60. 60.
    Huber BR, Meabon JS, Martin TJ, Mourad PD, Bennett R, Kraemer BC, et al. Blast exposure causes early and persistent aberrant phospho- and cleaved-tau expression in a murine model of mild blast-induced traumatic brain injury. J Alzheimers Dis. 2013;37(2):309–23. doi: 10.3233/JAD-130182.PubMedCentralPubMedGoogle Scholar
  61. 61.
    Sibener L, Zaganjor I, Snyder HM, Bain LJ, Egge R, Carrillo MC. Alzheimer’s disease prevalence, costs, and prevention for military personnel and veterans. Alzheimers Dement. 2014;10(3 Suppl):S105–10. doi: 10.1016/j.jalz.2014.04.011.CrossRefPubMedGoogle Scholar
  62. 62.
    Veitch DP, Friedl KE, Weiner MW. Military risk factors for cognitive decline, dementia and Alzheimer’s disease. Curr Alzheimer Res. 2013;10(9):907–30.CrossRefPubMedGoogle Scholar
  63. 63.
    Fleminger S, Oliver DL, Lovestone S, Rabe-Hesketh S, Giora A. Head injury as a risk factor for Alzheimer’s disease: the evidence 10 years on; a partial replication. J Neurol Neurosurg Psychiatry. 2003;74(7):857–62.PubMedCentralCrossRefPubMedGoogle Scholar
  64. 64.
    Nemetz PN, Leibson C, Naessens JM, Beard M, Kokmen E, Annegers JF, et al. Traumatic brain injury and time to onset of Alzheimer’s disease: a population-based study. Am J Epidemiol. 1999;149(1):32–40.CrossRefPubMedGoogle Scholar
  65. 65.
    Gandy S. The role of cerebral amyloid beta accumulation in common forms of Alzheimer disease. J Clin Invest. 2005;115(5):1121–9. doi: 10.1172/JCI25100.PubMedCentralPubMedGoogle Scholar
  66. 66.
    Uryu K, Chen XH, Martinez D, Browne KD, Johnson VE, Graham DI, et al. Multiple proteins implicated in neurodegenerative diseases accumulate in axons after brain trauma in humans. Exp Neurol. 2007;208(2):185–92.PubMedCentralCrossRefPubMedGoogle Scholar
  67. 67.
    Loane DJ, Pocivavsek A, Moussa CE, Thompson R, Matsuoka Y, Faden AI, et al. Amyloid precursor protein secretases as therapeutic targets for traumatic brain injury. Nat Med. 2009;15(4):377–9.PubMedCentralCrossRefPubMedGoogle Scholar
  68. 68.
    Lawrence DW, Comper P, Hutchison MG, Sharma B. The role of apolipoprotein E episilon (epsilon)-4 allele on outcome following traumatic brain injury: a systematic review. Brain Inj. 2015;1:14. doi: 10.3109/02699052.2015.1005131.Google Scholar
  69. 69.•
    De Gasperi R, Gama Sosa MA, Kim SH, Steele JW, Shaughness MC, Maudlin-Jeronimo E, et al. Acute blast injury reduces brain abeta in two rodent species. Front Neurol. 2012;3:177. doi: 10.3389/fneur.2012.00177. Describes the acute lowering of brain Abeta following blast injury in animals.PubMedCentralCrossRefPubMedGoogle Scholar
  70. 70.
    Pierce JE, Trojanowski JQ, Graham DI, Smith DH, McIntosh TK. Immunohistochemical characterization of alterations in the distribution of amyloid precursor proteins and beta-amyloid peptide after experimental brain injury in the rat. J Neurosci. 1996;16(3):1083–90.PubMedGoogle Scholar
  71. 71.•
    Tweedie D, Rachmany L, Rubovitch V, Zhang Y, Becker KG, Perez E, et al. Changes in mouse cognition and hippocampal gene expression observed in a mild physical- and blast-traumatic brain injury. Neurobiol Dis. 2013;54:1–11. doi: 10.1016/j.nbd.2013.02.006. Examined changes in the mouse hippocampal transcriptome following a weight drop injury or exposure to a low-level blast. While a common set of up regulated or down regulated RNAs were found, most changes between the two models differed. A functional pathway analysis found that genes up regulated or down regulated in AD were regulated in similar directions by non-blast TBI but in the opposite direction after blast.PubMedCentralCrossRefPubMedGoogle Scholar
  72. 72.
    Bower JH, Maraganore DM, Peterson BJ, McDonnell SK, Ahlskog JE, Rocca WA. Head trauma preceding PD: a case-control study. Neurology. 2003;60(10):1610–5.CrossRefPubMedGoogle Scholar
  73. 73.
    Chen H, Richard M, Sandler DP, Umbach DM, Kamel F. Head injury and amyotrophic lateral sclerosis. Am J Epidemiol. 2007;166(7):810–6. doi: 10.1093/aje/kwm153.PubMedCentralCrossRefPubMedGoogle Scholar
  74. 74.
    Schmidt S, Kwee LC, Allen KD, Oddone EZ. Association of ALS with head injury, cigarette smoking and APOE genotypes. J Neurol Sci. 2010;291(1-2):22–9. doi: 10.1016/j.jns.2010.01.011.PubMedCentralCrossRefPubMedGoogle Scholar
  75. 75.
    Strickland D, Smith SA, Dolliff G, Goldman L, Roelofs RI. Physical activity, trauma, and ALS: a case-control study. Acta Neurol Scand. 1996;94(1):45–50.CrossRefPubMedGoogle Scholar
  76. 76.
    IOM (Institute of Medicine). Amyotrophic Lateral Sclerosis in Veterans: Review of the Scientific Literature. Washington DC 2006.Google Scholar
  77. 77.
    Department of Veterans Affairs. Presumption of Service Connection for Amyotrophic Lateral Sclerosis. Federal Registry 2009. p. 57072.Google Scholar
  78. 78.•
    Faden AI, Loane DJ. Chronic neurodegeneration after traumatic brain injury: Alzheimer disease, chronic traumatic encephalopathy, or persistent neuroinflammation? Neurotherapeutics. 2015;12(1):143–50. doi: 10.1007/s13311-014-0319-5. Reviews the evidence for inflammation playing a role in chronic neurodegeneration after TBI.CrossRefPubMedGoogle Scholar
  79. 79.
    Johnson VE, Stewart JE, Begbie FD, Trojanowski JQ, Smith DH, Stewart W. Inflammation and white matter degeneration persist for years after a single traumatic brain injury. Brain. 2013;136(Pt 1):28–42. doi: 10.1093/brain/aws322.PubMedCentralCrossRefPubMedGoogle Scholar
  80. 80.
    Ramlackhansingh AF, Brooks DJ, Greenwood RJ, Bose SK, Turkheimer FE, Kinnunen KM, et al. Inflammation after trauma: microglial activation and traumatic brain injury. Ann Neurol. 2011;70(3):374–83. doi: 10.1002/ana.22455.CrossRefPubMedGoogle Scholar
  81. 81.
    Muller N. Immunology of major depression. Neuroimmunomodulation. 2014;21(2-3):123–30. doi: 10.1159/000356540.PubMedGoogle Scholar
  82. 82.
    Wieck A, Grassi-Oliveira R, Hartmann do Prado C, Teixeira AL, Bauer ME. Neuroimmunoendocrine interactions in post-traumatic stress disorder: focus on long-term implications of childhood maltreatment. Neuroimmunomodulation. 2014;21(2-3):145–51. doi: 10.1159/000356552.PubMedGoogle Scholar
  83. 83.
    Yaffe K, Vittinghoff E, Lindquist K, Barnes D, Covinsky KE, Neylan T, et al. Posttraumatic stress disorder and risk of dementia among US veterans. Arch Gen Psychiatry. 2010;67(6):608–13. doi: 10.1001/archgenpsychiatry.2010.61.PubMedCentralCrossRefPubMedGoogle Scholar
  84. 84.
    Qureshi SU, Kimbrell T, Pyne JM, Magruder KM, Hudson TJ, Petersen NJ, et al. Greater prevalence and incidence of dementia in older veterans with posttraumatic stress disorder. J Am Geriatr Soc. 2010;58(9):1627–33. doi: 10.1111/j.1532-5415.2010.02977.x.CrossRefPubMedGoogle Scholar
  85. 85.
    Weiner MW, Friedl KE, Pacifico A, Chapman JC, Jaffee MS, Little DM, et al. Military risk factors for Alzheimer’s disease. Alzheimers Dement. 2013;9(4):445–51. doi: 10.1016/j.jalz.2013.03.005.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York (outside the USA) 2015

Authors and Affiliations

  1. 1.James J. Peters Department of Veterans Affairs Medical CenterNeurology ServiceBronxUSA
  2. 2.Department of PsychiatryIcahn School of Medicine at Mount SinaiNew YorkUSA
  3. 3.Department of NeurologyIcahn School of Medicine at Mount SinaiNew YorkUSA
  4. 4.Friedman Brain InstituteIcahn School of Medicine at Mount SinaiNew YorkUSA

Personalised recommendations