Skip to main content

Advertisement

Log in

The Relationship between Amyloid Deposition, Neurodegeneration, and Cognitive Decline in Dementia

  • Neuroimaging (DJ Brooks, Section Editor)
  • Published:
Current Neurology and Neuroscience Reports Aims and scope Submit manuscript

Abstract

Amyloid imaging has been clinically approved for measuring β amyloid plaque load in patients being evaluated for Alzheimer's disease or other causes of cognitive decline. Here we explore a multidimensional approach to cognitive decline, where we situate amyloid plaque burden among a number of other relevant dimensions, such as aging, volume loss, other proteinopathies such as TDP43 and Lewy bodies, and functional reorganisation of cognitive brain systems. The multidimensional model incorporates a 'pure AD' trajectory, corresponding to e.g. monogenic Alzheimer's disease, but leaves room for other combinations of biomarker abnormalities (e.g. volume loss without amyloid positivity) and other trajectories. More tools will become available in the future that allow one to carve out a causal-mechanistic space for explaing cognitive decline in a personalized manner, enhancing progress towards more efficacious interventions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Klunk WE, Engler H, Nordberg A, Wang Y, Blomqvist G, Holt D, et al. Imaging brain amyloid in Alzheimer's disease with Pittsburgh compound-B. Ann Neurol. 2004;55:306–19.

    Article  PubMed  CAS  Google Scholar 

  2. Clark C, Pontecorvo M, Beach T, Bedell B, Coleman R, Doraiswamy P, et al. Cerebral PET with florbetapir compared with neuropathology at autopsy for detection of neuritic amyloid-β plaques: a prospective cohort study. Lancet Neurol. 2012;11:669–78. This pivotal paper establishes the validity of 18 F-florbetapir as a marker of neuritic amyloid plaque density.

  3. Rowe CC, Villemagne VL. Brain amyloid imaging. J Nucl Med Technol. 2013;41:11–8.

    Article  PubMed  Google Scholar 

  4. Vandenberghe R, Adamczuk K, Dupont P, Van Laere K, Chételat G. Amyloid PET in clinical practice: Its place in the multidimensional space of Alzheimer's disease. Neuroimage Clin. 2013;2:497–511.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Rinne J, Brooks DJ, Rossor MN, Fox NC, Bullock R, Klunk WE, et al. (11)C-PIB PET assessment of change in fibrillar amyloid-beta load in patients with Alzheimer's disease treated with bapineuzumab: a phase 2, double-blind, placebo-controlled, ascending-dose study. Lancet Neurol. 2010;9:363–72.

    Article  PubMed  CAS  Google Scholar 

  6. Ostrowitzki S, Deptula D, Thurfjell L, Barkhof F, Bohrmann B, Brooks DJ, et al. Mechanism of amyloid removal in patients with Alzheimer disease treated with gantenerumab. Arch Neurol. 2012;69:198–207.

    Article  PubMed  Google Scholar 

  7. Salloway S, Sperling R, Fox NC, Blennow K, Klunk WE, Raskind M, et al. Two phase 3 trials of bapineuzumab in mild-to-moderate Alzheimer's disease. N Engl J Med. 2014;370:322–33.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  8. Vandenberghe R, Van Laere K, Ivanoiu A, Salmon E, Bastin C, Triau E, et al. 18 F-flutemetamol amyloid imaging in Alzheimer disease and mild cognitive impairment: a phase 2 trial. Ann Neurol. 2010;68:319–29.

    Article  PubMed  Google Scholar 

  9. Doraiswamy PM, Sperling RA, Coleman RE, Johnson KA, Reiman EM, Davis MD, et al. Amyloid-β assessed by florbetapir F18 PET and 18-month cognitive decline: a multicenter study. Neurology. 2012;79:1636–44.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  10. Petersen RC, Aisen P, Boeve BF, Geda YE, Ivnik RJ, Knopman DS, et al. Mild cognitive impairment due to Alzheimer disease in the community. Ann Neurol. 2013;74:199–208.

    PubMed  PubMed Central  Google Scholar 

  11. Beach TG, Monsell SE, Phillips LE, Kukull W. Accuracy of the clinical diagnosis of Alzheimer disease at National Institute on Aging Alzheimer Disease centers, 2005–2010. J Neuropathol Exp Neurol. 2012;71:266–73. This clinicopathological paper provides critical information about the accuracy of a clincal diagnosis of clinically probable or possible AD in a prospective multicentre academic memory clinic based series collected between 2005 and 2010 (n = 919). Compared to the standard-of-truth (neuritic plaque density and neurofibrillary tangle stage), the positive predictive value of a diagnosis of clinically probable AD ranged between 62 and 84 %; specificity between 60 % to 71 %, with a sensitivity around 73 %.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Vandenberghe R, Adamczuk K, Van Laere K. The interest of amyloid PET imaging in the diagnosis of Alzheimer's disease. Curr Opin Neurol. 2013;26:646–55.

    Article  PubMed  CAS  Google Scholar 

  13. Edison P, Rowe CC, Rinne JO, Nq S, Ahmed I, Kemmpainen N, et al. Amyloid load in Parkinson's disease dementia and Lewy body dementia measured with [11C]PIB positron emission tomography. J Neurol Neurosurg Psychiatry. 2008;79:1331–8.

    Article  PubMed  CAS  Google Scholar 

  14. Gomperts SN. Imaging the role of amyloid in PD dementia and dementia with Lewy bodies. Curr Neurol Neurosci Rep. 2014;14:472.

    Article  PubMed  Google Scholar 

  15. Kantarci K, Lowe VJ, Boeve BF, Weigand SD, Senjem ML, Przybelski SA, et al. Multimodality imaging characteristics of dementia with Lewy bodies. Neurobiol Aging. 2012;33:2091–105.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Bettens K, Sleegers K, Van Broeckhoven C. Current status on Alzheimer disease molecular genetics: from past, to present, to future. Hum Mol Genet. 2010;19:R4–R11.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  17. Savva GM, Wharton SB, Ince PG, Forster G, Matthews FE, Brayne C, et al. Age, neuropathology, and dementia. N Engl J Med. 2009;360:2302–9.

    Article  PubMed  CAS  Google Scholar 

  18. Jack CR, Knopman DS, Jagust WJ, Petersen RC, Weiner MW, Aisen PS, et al. Tracking pathophysiological processes in Alzheimer's disease: an updated hypothetical model of dynamic biomarkers. Lancet Neurol. 2013;12:207–16.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  19. Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. Science. 2002;297:353–6.

    Article  PubMed  CAS  Google Scholar 

  20. Oddo S, Caccamo A, Shepherd JD, Murphy MP, Golde TE, Kayed R, et al. Triple-transgenic model of Alzheimer's disease with plaques and tangles: intracellular Aβ and synaptic dysfunction. Neuron. 2003;39:409–21.

    Article  PubMed  CAS  Google Scholar 

  21. Silbert LC, Quinn JF, Moore MM, Corbridge E, Ball MJ, Murdoch G, et al. Changes in premorbid brain volume predict Alzheimer's disease pathology. Neurology. 2003;61:487–92.

    Article  PubMed  CAS  Google Scholar 

  22. Jagust WJ, Zheng L, Harvey DJ, Mack WJ, Vinters HV, Weiner MW, et al. Neuropathological basis of magnetic resonance images in aging and dementia. Ann Neurol. 2008;63:72–80.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Josephs KA, Whitwell JL, Ahmed Z, Shiung MM, Weigand SD, Knopman DS, et al. Beta-amyloid burden is not associated with rates of brain atrophy. Ann Neurol. 2008;63:204–12.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Sabuncu MR, Desikan RS, Sepulcre J, Yeo BTT, Liu H, Schmansky NJ, et al. The dynamics of cortical and hippocampal atrophy in Alzheimer disease. Arch Neurol. 2011;68:1040–8.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Erten-Lyons D, Dodge HH, Woltjer R, Silbert LC, Howieson DB, Kramer P, et al. Neuropathologic basis of age-associated brain atrophy. JAMA Neurol. 2013;70:616–22. From the Oregon Brain and Aging study, different measures (ventricular, total brain and hippocampal) were  derived from longitudinal structural MRIs obtained in 70 cognitively intact older adults. These  were correlated with clinical status, APOE status and neuropathological measures (NFT, neuritic plaques, different types of vascular lesions). Strongest correlations were obtained for ventricular and total brain measures. The correlations between these structural measures and cognition remained even after controlling for the degree of neuropathology. Hippocampal volume correlated only with the degree of amyloid angiopathy.

    Article  PubMed  PubMed Central  Google Scholar 

  26. MC Donohue, H Jacqmin-Gadda, M Le Goff, RG Thomas, R Raman, AC Gamst, et al. Estimating long-term multivariate progression from short-term data. Alzheimers Dement. in press, 2014.

  27. M Bilgel, Y An, A Lang, J Prince, L Ferrucci, B Jedynak, and SM Resnick. Trajectories of Alzheimer disease-related cognitive measures in a longitudinal sample. Alzheimers Dement. in press, 2014. Ultimately, efficacy of any intervention must be proven in terms of clinical parameters. From almost 900 BLSA participants, some of the most commonly used neuropsychological episodic memory measures were analyzed for their sensitivity to detect decline in the preclinical AD stage. The importance of this work lies in the high familiarity worldwide of the test parameters examined and the novel insight into the relative sensitivity of encoding versus retrieval parameters

  28. Dickerson BC, Bakkour A, Salat DH, Feczko E, Pacheco J, Greve DN, et al. The cortical signature of Alzheimer's disease: regionally specific cortical thinning relates to symptom severity in very mild to mild AD dementia and is detectable in asymptomatic amyloid-positive individuals. Cereb Cortex. 2009;19:497–510.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Vlassenko AG, Mintun MA, Xiong C, Sheline YI, Goate AM, Benzinger TLS, et al. Amyloid-beta plaque growth in cognitively normal adults: longitudinal [11C]Pittsburgh compound B data. Ann Neurol. 2011;70:857–61.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  30. Villain N, Chételat G, Grassiot B, Bourgeat P, Jones G, Ellis KA, et al. Regional dynamics of amyloid-β deposition in healthy elderly, mild cognitive impairment and Alzheimer's disease: a voxelwise PIB-PET longitudinal study. Brain. 2012;135:2126–39.

    Article  PubMed  Google Scholar 

  31. Villemagne VL, Burnham S, Bourgeat P, Brown B, Ellis KA, Salvado O, et al. Amyloid β deposition, neurodegeneration, and cognitive decline in sporadic Alzheimer's disease: a prospective cohort study. Lancet Neurol. 2013;12:357–67.

    Article  PubMed  CAS  Google Scholar 

  32. Jack CR, Wiste HJ, Knopman DS, Vemuri P, Mielke MM, Weigand SD, et al. Rates of β-amyloid accumulation are independent of hippocampal neurodegeneration. Neurology. 2014;82:1605–12.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  33. Chételat G, Villemagne VL, Villain N, Jones G, Ellis KA, Ames D, et al. Accelerated cortical atrophy in cognitively normal elderly with high β-amyloid deposition. Neurology. 2012;78:477–84.

    Article  PubMed  Google Scholar 

  34. Bateman RJ, Xiong C, Benzinger TLS, Fagan AM, Goate A, Fox NC, et al. Clinical and biomarker changes in dominantly inherited Alzheimer's disease. N Engl J Med. 2012;367:795–804. From the Dominantly Inherited Alzheimer Network, multimodal cross-sectional data were analyzed from 50 symptomatic and 50 asymptomatic mutation carriers and 100 noncarrier siblings. This study provides critical empirical evidence for the orderly sequence of changes in in vivo biomarkers in monogenic AD up to 30 years prior to expected disease onset.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  35. Fleisher AS, Chen K, Quiroz YT, Jakimovich LJ, Gomez MG, Langois CM, et al. Florbetapir PET analysis of amyloid-β deposition in the Presenilin 1 E280A autosomal dominant Alzheimer's disease kindred: a cross-sectional study. Lancet Neurol. 2012;11:1057–65.

    Article  PubMed  CAS  Google Scholar 

  36. Reiman EM, Quiroz YT, Fleisher AS, Chen K, Velez-Pardo C, Jimenez-Del-Rio M, et al. Brain imaging and fluid biomarker analysis in young adults at genetic risk for autosomal dominant Alzheimer's disease in the Presenilin 1 E280A kindred: a case–control study. Lancet Neurol. 2012;11:1048–56. From the Columbian Alzheimer Prevention Initiative registry, 20 PS1 mutation carriers and 20 noncarrier siblings between 18 and 26 years of age underwent task-related fMRI, structural MRI and CSF. This study provides essential insight in the functional organization of cognitive brain systems prior to clinical disease expression.

    Article  PubMed  CAS  Google Scholar 

  37. Fagan AM, Xiong C, Jasielec MS, Bateman RJ, Goate AM, Benzinger TLS, et al. Longitudinal change in CSF biomarkers in autosomal-dominant Alzheimer's disease. Sci Transl Med. 2014;6:226–30.

    Article  Google Scholar 

  38. B Kaur, JJ Himali, S Seshadri, AS Beiser, R Au, AC McKee, et al. Association between neuropathology and brain volume in the Framingham Heart Study. Alzheimer Dis Assoc Disord. in press, 2014.

  39. Fotuhi M, Do D, Jack C. Modifiable factors that alter the size of the hippocampus with ageing. Nat Rev Neurol. 2012;8:189–202.

    PubMed  CAS  Google Scholar 

  40. Wilson RS, Yu L, Trojanowski JQ, Chen EY, Boyle PA, Bennett DA, et al. TDP-43 pathology, cognitive decline, and dementia in old age. JAMA Neurol. 2013;70:1418–24. In a consecutive series of 130 cases with annual cognitive assessments for more than 10 years, postmortem measures of TDP43 explained as much variability in the rate of the cognitive decline as neurofibrillary tangles. This is of high importance as it points to high clinical relevance of other proteinopathies apart from the classical AD hallmark lesions.

    Article  PubMed  Google Scholar 

  41. Gomez-Isla T, Price JL, McKeel DW, Morris JC, Growdon JH, Hyman BT. Profound loss of layer II entorhinal cortex neurons occurs in very mild Alzheimer's disease. J Neurosci. 1996;16:4491–500.

    PubMed  CAS  Google Scholar 

  42. Braak H, Braak E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol. 1991;82:239–59.

    Article  PubMed  CAS  Google Scholar 

  43. Hyman BT, Gomez-Isla T. Alzheimer's disease is a laminar, regional, and neural system specific disease, not a global brain disease. Neurobiol Aging. 1994;15:353–4.

    Article  PubMed  CAS  Google Scholar 

  44. Braak H, Thal DR, Ghebremedhin E, Del Tredici K. Stages of the pathologic process in Alzheimer disease: age categories from 1 to 100 years. J Neuropathol Exp Neurol. 2011;70:960–9.

    Article  PubMed  CAS  Google Scholar 

  45. DeKosky ST, Scheff SW. Synapse loss in frontal cortex biopsies in Alzheimer's disease: correlation with cognitive severity. Ann Neurol. 1990;27:457–64.

    Article  PubMed  CAS  Google Scholar 

  46. Terry RD, Masliah E, Salmon DP, Butters N, DeTeresa R, Hill R, et al. Physical basis of cognitive alterations in Alzheimer's disease: Synapse loss is the major correlate of cognitive impairment. Ann Neurol. 1991;30:572–80.

    Article  PubMed  CAS  Google Scholar 

  47. Davis DG, Schmitt FA, Wekstein DR, Markesberry WR. Alzheimer neuropathologic alterations in aged cognitively intact subjects. J Neuropathol Exp Neurol. 1999;58:376–88.

    Article  PubMed  CAS  Google Scholar 

  48. Scheff SW, Price DA, Schmitt FA, Mufson EJ. Hippocampal synaptic loss in early Alzheimer's disease and mild cognitive impairment. Neurobiol Aging. 2006;27:1372–84.

    Article  PubMed  CAS  Google Scholar 

  49. Kovacs GG, Milenkovic I, Wöhrer A, Höftberger R, Gelpi E, Haberler C, et al. Non-Alzheimer neurodegenerative pathologies and their combinations are more frequent than commonly believed in the elderly brain: a community-based autopsy series. Acta Neuropathol. 2013;126:365–84.

    Article  PubMed  CAS  Google Scholar 

  50. Snowdon DA, Greiner LH, Mortimer JA, Riley KP, Greiner PA, Markesbery WR. Brain infarction and the clinical expression of Alzheimer's disease: The Nun study. JAMA. 1997;277:813–7.

    Article  PubMed  CAS  Google Scholar 

  51. Schneider JA, Arvanitakis Z, Yu L, Boyle PA, Leurgans SE, Bennett DA. Cognitive impairment, decline and fluctuations in older community-dwelling subjects with Lewy bodies. Brain. 2012;135:3005–14.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  52. Kovacs G. Current concepts of neurodegenerative diseases. Eur Med J Neurol. 2014;1:78–86.

    Google Scholar 

  53. Boyle PA, Wilson RS, Yu L, Barr AM, Honer WG, Schneider JA, et al. Much of late life cognitive decline is not due to common neurodegenerative pathologies. Ann Neurol. 2013;74:478–89.

    PubMed  Google Scholar 

  54. Iacono D, Resnick SM, O'Brien R, Zonderman AB, An Y, Pletnikova O, et al. Mild cognitive impairment and asymptomatic Alzheimer disease subjects: equivalent β-amyloid and tau loads with divergent cognitive outcomes. J Neuropathol Exp Neurol. 2014;73:295–304.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  55. Dickerson BC, Sperling RA. Large-scale functional brain network abnormalities in Alzheimer's disease: insights from functional neuroimaging. Behav Neurol. 2009;21:63–75.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Quiroz YT, Budson AE, Celone K, Ruiz A, Newmark R, Castrillón G, et al. Hippocampal hyperactivation in presymptomatic familial Alzheimer's disease. Ann Neurol. 2010;68:865–75.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Jagust WJ, Mormino EC. Lifespan brain activity, β-amyloid, and Alzheimer's disease. Trends Cogn Sci. 2011;15:520–6.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Vandenbulcke M, Peeters R, Dupont P, Van Hecke P, Vandenberghe R. Word reading and posterior temporal dysfunction in amnestic mild cognitive impairment. Cereb Cortex. 2007;17:542–51.

    Article  PubMed  Google Scholar 

  59. Nelissen N, Vandenbulcke M, Fannes K, Verbruggen A, Peeters R, Dupont P, et al. Aβ amyloid deposition in the language system and how the brain responds. Brain. 2007;130:2055–69.

    Article  PubMed  Google Scholar 

  60. Becker JT, Mintun MA, Aleva K, Wiseman MB, Nichols T, DeKosky ST. Compensatory reallocation of brain resources supporting verbal episodic memory in Alzheimer's disease. Neurology. 1996;46:692–700.

    Article  PubMed  CAS  Google Scholar 

  61. Grady CL, McIntosh AR, Beig S, Keightley ML, Burian H, Black SE. Evidence from functional neuroimaging of a compensatory prefrontal network in Alzheimer's disease. J Neurosci. 2003;23:986–93.

    PubMed  CAS  Google Scholar 

  62. Mintun MA, Larossa GN, Sheline YI, Dence CS, Lee SY, Mach RH, et al. [11C]PIB in a nondemented population: potential antecedent marker of Alzheimer disease. Neurology. 2006;67:446–52.

    Article  PubMed  CAS  Google Scholar 

  63. Pike KE, Savage G, Villemagne VL, Ng S, Moss SA, Maruff P, et al. Beta-amyloid imaging and memory in non-demented individuals: evidence for preclinical Alzheimer's disease. Brain. 2007;130:2837–44.

    Article  PubMed  Google Scholar 

  64. Aizenstein HJ, Nebes RD, Saxton JA, Price JC, Mathis CA, Tsopelas ND, et al. Frequent amyloid deposition without significant cognitive impairment among the elderly. Arch Neurol. 2008;65:1509–17.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Adamczuk K, De Weer AS, Nelissen N, Chen K, Sleegers K, Bettens K, et al. Polymorphism of brain derived neurotrophic factor influences β amyloid load in cognitively intact apolipoprotein e ε4 carriers. Neuroimage Clin. 2013;2:512–20.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Fleisher AS, Chen K, Liu X, Ayutyanont N, Roontiva A, Thiyyagura P, et al. Apolipoprotein E ε4 and age effects on florbetapir positron emission tomography in healthy aging and Alzheimer disease. Neurobiol Aging. 2013;34:1–12. Based on a pooled analysis of 245 subjects who had undergone 18 F-florbetapir and APOE genotyping, reliable age-dependent estimates are obtained for linear amyloid increase and for amyloid-positivity as a function of age and APOE.

    Article  PubMed  CAS  Google Scholar 

  67. Yeo BTT, Krienen FM, Sepulcre J, Sabuncu MR, Lashkari D, Hollinshead M, et al. The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J Neurophysiol. 2011;106:1125–65.

    Article  PubMed  Google Scholar 

  68. Buckner RL, Snyder AZ, Shannon BJ, LaRossa G, Sachs R, Fotenos AF, et al. Molecular, structural, and functional characterization of Alzheimer's disease: evidence for a relationship between default activity, amyloid, and memory. J Neurosci. 2005;25:7709–17.

    Article  PubMed  CAS  Google Scholar 

  69. Seeley WW, Crawford RK, Zhou J, Miller BL, Greicius MD. Neurodegenerative diseases target large-scale human brain networks. Neuron. 2009;62:42–52.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  70. Zhou J, Gennatas ED, Kramer JH, Miller BL, Seeley WW. Predicting regional neurodegeneration from the healthy brain functional connectome. Neuron. 2012;73:1216–27.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  71. Myers N, Pasquini L, Göttler J, Grimmer T, Koch K, Ortner M, et al. Within-patient correspondence of amyloid-β and intrinsic network connectivity in Alzheimer's disease. Brain. 2014;137:2052–64.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Vlassenko AG, Vaishnavi SN, Couture L, Sacco D, Shannon BJ, Mach RH, et al. Spatial correlation between brain aerobic glycolysis and amyloid-β deposition. Proc Natl Acad Sci U S A. 2010;107:17763–7.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  73. Mathis CA, Kuller LH, Klunk WE, Snitz BE, Price JC, Weissfeld LA, et al. In vivo assessment of amyloid-β deposition in nondemented very elderly subjects. Ann Neurol. 2013;73:751–61.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  74. G Chételat, R La Joie, N Villain, A Perrotin, V de La Sayette, F Eustache, and R Vandenberghe. Amyloid imaging in cognitively normal individuals, at-risk populations and preclinical Alzheimer's disease. NeuroImage: Clinical. 2013

  75. Dubois B, Feldman HH, Jacova C, Hampel H, Molinuevo JL, Blennow K, et al. Advancing research diagnostic criteria for Alzheimer's disease: the IWG-2 criteria. Lancet Neurol. 2014;13:614–29.

    Article  PubMed  Google Scholar 

  76. Altmann A, Tian L, Henderson VW, Greicius MD, Alzheimer's Disease Neuroimaging Initiative Investigators. Sex modifies the APOE-related risk of developing Alzheimer disease. Ann Neurol. 2014;75:563–73.

    Article  PubMed  CAS  Google Scholar 

  77. Morris JC, Roe CM, Xiong C, Fagan AM, Goate AM, Holtzman DM, et al. APOE predicts amyloid-beta but not tau Alzheimer pathology in cognitively normal aging. Ann Neurol. 2010;67:122–31.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  78. Thambisetty M, An Y, Nalls M, Sojkova J, Swaminathan S, Zhou Y, et al. Effect of complement CR1 on brain amyloid burden during aging and its modification by APOE genotype. Biol Psychiatry. 2013;73:422–8.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  79. Sperling RA, Aisen P, Beckett LA, Bennett DA, Craft S, Fagan AM, et al. Toward defining the preclinical stages of Alzheimer's disease: Recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement. 2011;7:280–92.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Vandenberghe R, Nelissen N, Salmon E, Ivanoiu A, Hasselbalch S, Andersen A, et al. Binary classification of 18 F-flutemetamol PET using machine learning: Comparison with visual reads and structural MRI. Neuroimage. 2012;64C:517–25.

    Google Scholar 

  81. Jack CR, Knopman DS, Weigand SD, Wiste HJ, Vemuri P, Lowe V, et al. An operational approach to National Institute on Aging-Alzheimer's Association criteria for preclinical Alzheimer disease. Ann Neurol. 2012;71:765–75.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Knopman DS, Jack Jr CR, Wiste HJ, Weigand SD, Vemuri P, Lowe VJ, et al. Brain injury biomarkers are not dependent on β-amyloid in normal elderly. Ann Neurol. 2013;73:472–80.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  83. Becker JA, Hedden T, Carmasin J, Maye J, Rentz DM, Putcha D, et al. Amyloid-β associated cortical thinning in clinically normal elderly. Ann Neurol. 2011;69:1032–42.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  84. Sheline YI, Raichle ME, Snyder AZ, Morris JC, Head D, Wang S, et al. Amyloid plaques disrupt resting state default mode network connectivity in cognitively normal elderly. Biol Psychiatry. 2010;67:584–7.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  85. Knopman DS. CR Jack, Jr, H. J. Wiste, S. D. Weigand, P. Vemuri, V. Lowe, et al. Short-term clinical outcomes for stages of NIA-AA preclinical Alzheimer disease. Neurology. 2012;78:1576–82.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  86. Lim YY, Villemagne VL, Laws SM, Ames D, Pietrzak RH, Ellis KA, et al. BDNF val66met, Aβ amyloid, and cognitive decline in preclinical Alzheimer's disease. Neurobiol Aging. 2013;34:2457–64.

    Article  PubMed  CAS  Google Scholar 

  87. Nordberg A, Carter SF, Rinne J, Drzezga A, Brooks DJ, Vandenberghe R, et al. A European multicentre PET study of fibrillar amyloid in Alzheimer's disease. Eur J Nucl Med Mol Imaging. 2013;40:104–14.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  88. Jack CR, Wiste HJ, Vemuri P, Weigand SD, Senjem ML, Zeng G, et al. Brain beta-amyloid measures and magnetic resonance imaging atrophy both predict time-to-progression from mild cognitive impairment to Alzheimer's disease. Brain. 2010;133:3336–48.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Villemagne VL, Pike KE, Chételat G, Ellis KA, Mulligan RS, Bourgeat P, et al. Longitudinal assessment of Aβ and cognition in aging and Alzheimer disease. Ann Neurol. 2011;69:181–92.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  90. Rowe CC, Bourgeat P, Ellis KA, Brown B, Lim YY, Mulligan R, et al. Predicting Alzheimer disease with β-amyloid imaging: results from the Australian Imaging, Biomarkers, and Lifestyle study of ageing. Ann Neurol. 2013;74:905–13.

    Article  PubMed  CAS  Google Scholar 

  91. Duara R, Loewenstein DA, Shen Q, Barker W, Potter E, Varon D, et al. Amyloid positron emission tomography with (18)F-flutemetamol and structural magnetic resonance imaging in the classification of mild cognitive impairment and Alzheimer's disease. Alzheimers Dement. 2013;9:295–301.

    Article  PubMed  Google Scholar 

  92. Jack Jr CR, Wiste HJ, Lesnick TG, Weigand SD, Knopman DS, Vemuri P, et al. Brain β-amyloid load approaches a plateau. Neurology. 2013;80:890–6.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgements

Supported by FWO grants G.0076.02 (R.V.), KU Leuven Research grants OT/08/056, OT/12/097 (R.V.), Federaal Wetenschapsbeleid belspo Inter-University Attraction Pole P6/29 and P7/11, Stichting Alzheimer Onderzoek grant 11020, Vlaams Initiatief voor Netwerken voor Dementie Onderzoek (IWT) and Transformationeel Geneeskundig Onderzoek BioAdaptAD (IWT). R.V. is a senior clinical investigator of the Fund for Scientific Research, Flanders, Belgium (FWO). I thank Katarzyna Adamczuk for helpful comments.

Compliance with Ethics Guidelines

Conflict of Interest

Rik Vandenberghe has received consultancy fees from GE Healthcare (Consultancy agreement with GEHC from 24 May 2013 to 24 May 2014). Clinical trial agreement between GEHC and my institution (UZ Leuven) for the phase 1 and 2 18 F-flutemetamol trial (PI Rik Vandenberghe).

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rik Vandenberghe.

Additional information

This article is part of the Topical Collection on Neuroimaging

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vandenberghe, R. The Relationship between Amyloid Deposition, Neurodegeneration, and Cognitive Decline in Dementia. Curr Neurol Neurosci Rep 14, 498 (2014). https://doi.org/10.1007/s11910-014-0498-9

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11910-014-0498-9

Keywords

Navigation