Skip to main content

Advertisement

Log in

Cholinergic Dysfunction in Parkinson’s Disease

  • Neuroimaging (DJ Brooks)
  • Published:
Current Neurology and Neuroscience Reports Aims and scope Submit manuscript

Abstract

There is increasing interest in the clinical effects of cholinergic basal forebrain and tegmental pedunculopontine complex (PPN) projection degeneration in Parkinson’s disease (PD). Recent evidence supports an expanded role beyond cognitive impairment, including effects on olfaction, mood, REM sleep behavior disorder, and motor functions. Cholinergic denervation is variable in PD without dementia and may contribute to clinical symptom heterogeneity. Early in vivo imaging evidence that impaired cholinergic integrity of the PPN associates with frequent falling in PD is now confirmed by human post-mortem evidence. Brainstem cholinergic lesioning studies in primates confirm the role of the PPN in mobility impairment. Degeneration of basal forebrain cholinergic projections correlates with decreased walking speed. Cumulatively, these findings provide evidence for a new paradigm to explain dopamine-resistant features of mobility impairments in PD. Recognition of the increased clinical role of cholinergic system degeneration may motivate new research to expand indications for cholinergic therapy in PD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Langston JW. The Parkinson’s complex: parkinsonism is just the tip of the iceberg. Ann Neurol. 2006;59:591–6.

    Article  PubMed  Google Scholar 

  2. Braak H, Del Tredici K, Rub U, et al. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging. 2003;24:197–211.

    Article  PubMed  Google Scholar 

  3. Bohnen NI, Kaufer DI, Ivanco LS, et al. Cortical cholinergic function is more severely affected in parkinsonian dementia than in Alzheimer disease: an in vivo positron emission tomographic study. Arch Neurol. 2003;60:1745–8.

    Article  PubMed  Google Scholar 

  4. Bohnen NI, Albin RL. The cholinergic system and Parkinson disease. Behav Brain Res. 2011;221:564–73.

    Article  PubMed  CAS  Google Scholar 

  5. Mesulam MM, Geula C. Nucleus basalis (Ch4) and cortical cholinergic innervation in the human brain: observations based on the distribution of acetylcholinesterase and choline acetyltransferase. J Comp Neurol. 1988;275:216–40.

    Article  PubMed  CAS  Google Scholar 

  6. Heckers S, Geula C, Mesulam MM. Cholinergic innervation of the human thalamus: dual origin and differential nuclear distribution. J Comp Neurol. 1992;325:68–82.

    Article  PubMed  CAS  Google Scholar 

  7. de Lacalle S, Hersh LB, Saper CB. Cholinergic innervation of the human cerebellum. J Comp Neurol. 1993;328:364–76.

    Article  PubMed  Google Scholar 

  8. Fibiger HC. The organization and some projections of cholinergic neurons of the mammalian forebrain. Brain Res. 1982;257:327–88.

    PubMed  CAS  Google Scholar 

  9. Lecourtier L, Kelly PH. A conductor hidden in the orchestra? Role of the habenular complex in monoamine transmission and cognition. Neurosci Biobehav Rev. 2007;31:658–72.

    Article  PubMed  CAS  Google Scholar 

  10. Mesulam MM, Mash D, Hersh L, et al. Cholinergic innervation of the human striatum, globus pallidus, subthalamic nucleus, substantia nigra, and red nucleus. J Comp Neurol. 1992;323:252–68.

    Article  PubMed  CAS  Google Scholar 

  11. Flores CM, Rogers SW, Pabreza LA, et al. A subtype of nicotinic cholinergic receptor in rat brain is composed of α4 and β2 subunits and is up-regulated by chronic nicotine treatment. Mol Pharmacol. 1992;41:31–7.

    PubMed  CAS  Google Scholar 

  12. Court J, Clementi F. Distribution of nicotinic subtypes in human brain. Alzheimer Dis Assoc Disord. 1995;9 Suppl 2:6–14.

    Article  PubMed  Google Scholar 

  13. Cortes R, Palacios JM. Muscarinic cholinergic receptor subtypes in the rat brain. I. Quantitative autoradiographic studies. Brain Res. 1986;362:227–38.

    Article  PubMed  CAS  Google Scholar 

  14. Cortes R, Probst A, Tobler HJ, Palacios JM. Muscarinic cholinergic receptor subtypes in the human brain. II. Quantitative autoradiographic studies. Brain Res. 1986;362:239–53.

    Article  PubMed  CAS  Google Scholar 

  15. Mesulam M, Shaw P, Mash D, Weintraub S. Cholinergic nucleus basalis tauopathy emerges early in the aging-MCI-AD continuum. Ann Neurol. 2004;55:815–28.

    Article  PubMed  CAS  Google Scholar 

  16. Kotagal V, Muller ML, Kaufer DI, et al. Thalamic cholinergic innervation is spared in Alzheimer disease compared with parkinsonian disorders. Neurosci Lett. 2012;514:169–72.

    Article  PubMed  CAS  Google Scholar 

  17. Davis KL, Mohs RC, Marin D, et al. Cholinergic markers in elderly patients with early signs of Alzheimer disease. JAMA. 1999;281:1401–6.

    Article  PubMed  CAS  Google Scholar 

  18. DeKosky ST, Ikonomovic MD, Styren SD, et al. Upregulation of choline acetyltransferase activity in hippocampus and frontal cortex of elderly subjects with mild cognitive impairment. Ann Neurol. 2002;51:145–55.

    Article  PubMed  CAS  Google Scholar 

  19. Mufson EJ, Ma SY, Dills J, et al. Loss of basal forebrain P75(NTR) immunoreactivity in subjects with mild cognitive impairment and Alzheimer’s disease. J Comp Neurol. 2002;443:136–53.

    Article  PubMed  CAS  Google Scholar 

  20. Tiraboschi P, Hansen LA, Alford M, et al. The decline in synapses and cholinergic activity is asynchronous in Alzheimer’s disease. Neurology. 2000;55:1278–83.

    Article  PubMed  CAS  Google Scholar 

  21. Geula C, Mesulam MM. Systematic regional variations in the loss of cortical cholinergic fibers in Alzheimer’s disease. Cereb Cortex. 1996;6:165–77.

    Article  PubMed  CAS  Google Scholar 

  22. Geula C, Mesulam MM. Cortical cholinergic fibers in aging and Alzheimer’s disease: a morphometric study. Neuroscience. 1989;33:469–81.

    Article  PubMed  CAS  Google Scholar 

  23. Schliebs R, Arendt T. The cholinergic system in aging and neuronal degeneration. Behav Brain Res. 2011;221:555–63.

    Article  PubMed  CAS  Google Scholar 

  24. Holdorff B. Fritz Heinrich Lewy (1885–1950). J Neurol. 2006;253:677–8.

    Article  PubMed  Google Scholar 

  25. Candy JM, Perry RH, Perry EK, et al. Pathological changes in the nucleus of Meynert in Alzheimer’s and Parkinson’s diseases. J Neurol Sci. 1983;59:277–89.

    Article  PubMed  CAS  Google Scholar 

  26. Nakano I, Hirano A. Parkinson’s disease: neuron loss in the nucleus basalis without concomitant Alzheimer’s disease. Ann Neurol. 1984;15:415–8.

    Article  PubMed  CAS  Google Scholar 

  27. Rogers JD, Brogan D, Mirra SS. The nucleus basalis of Meynert in neurological disease: a quantitative morphological study. Ann Neurol. 1985;17:163–70.

    Article  PubMed  CAS  Google Scholar 

  28. Tagliavini F, Pilleri G, Bouras C, Constantinidis J. The basal nucleus of Meynert in idiopathic Parkinson’s disease. Acta Neurol Scand. 1984;70:20–8.

    Article  PubMed  CAS  Google Scholar 

  29. Whitehouse PJ, Hedreen JC, White III CL, Price DL. Basal forebrain neurons in the dementia of Parkinson disease. Ann Neurol. 1983;13:243–8.

    Article  PubMed  CAS  Google Scholar 

  30. Arendt T, Bigl V, Arendt A, Tennstedt A. Loss of neurons in the nucleus basalis of Meynert in Alzheimer’s disease, paralysis agitans and Korsakoff’s Disease. Acta Neuropathol. 1983;61:101–8.

    Article  PubMed  CAS  Google Scholar 

  31. Jellinger K. The pedunculopontine nucleus in Parkinson’s disease, progressive supranuclear palsy and Alzheimer’s disease. J Neurol Neurosurg Psychiatry. 1988;51:540–3.

    Article  PubMed  CAS  Google Scholar 

  32. Gai WP, Halliday GM, Blumbergs PC, et al. Substance P-containing neurons in the mesopontine tegmentum are severely affected in Parkinson’s disease. Brain. 1991;114:2253–67.

    Article  PubMed  Google Scholar 

  33. Hirsch EC, Graybiel AM, Duyckaerts C, Javoy-Agid F. Neuronal loss in the pedunculopontine tegmental nucleus in Parkinson disease and in progressive supranuclear palsy. Proc Natl Acad Sci U S A. 1987;84:5976–80.

    Article  PubMed  CAS  Google Scholar 

  34. Zweig RM, Jankel WR, Hedreen JC, et al. The pedunculopontine nucleus in Parkinson’s disease. Ann Neurol. 1989;26:41–6.

    Article  PubMed  CAS  Google Scholar 

  35. McKeith IG, Dickson DW, Lowe J, et al. Diagnosis and management of dementia with Lewy bodies: third report of the DLB Consortium. Neurology. 2005;65:1863–72.

    Article  PubMed  CAS  Google Scholar 

  36. Zaccai J, Brayne C, McKeith I, et al. Patterns and stages of alpha-synucleinopathy: relevance in a population-based cohort. Neurology. 2008;70:1042–8.

    Article  PubMed  CAS  Google Scholar 

  37. Perry EK, Irving D, Kerwin JM, et al. Cholinergic transmitter and neurotrophic activities in Lewy body dementia: similarity to Parkinson’s and distinction from Alzheimer disease. Alzheimer Dis Assoc Disord. 1993;7:69–79.

    Article  PubMed  CAS  Google Scholar 

  38. Samuel W, Alford M, Hofstetter CR, Hansen L. Dementia with Lewy bodies vs pure Alzheimer disease: differences in cognition, neuropathology, cholinergic dysfunction, and synapse density. J Neuropathol Exp Neurol. 1997;56:499–508.

    Article  PubMed  CAS  Google Scholar 

  39. Tiraboschi P, Hansen LA, Alford M, et al. Early and widespread cholinergic losses differentiate dementia with Lewy bodies from Alzheimer disease. Arch Gen Psychiatry. 2002;59:946–51.

    Article  PubMed  Google Scholar 

  40. Tiraboschi P, Hansen LA, Alford M, et al. Cholinergic dysfunction in diseases with Lewy bodies. Neurology. 2000;54:407–11.

    Article  PubMed  CAS  Google Scholar 

  41. Wenning GK, Ebersbach G, Verny M, et al. Progression of falls in postmortem-confirmed parkinsonian disorders. Mov Disord. 1999;14:947–50.

    Article  PubMed  CAS  Google Scholar 

  42. Shinotoh H, Namba H, Yamaguchi M, et al. Positron emission tomographic measurement of acetylcholinesterase activity reveals differential loss of ascending cholinergic systems in Parkinson’s disease and progressive supranuclear palsy. Ann Neurol. 1999;46:62–9.

    Article  PubMed  CAS  Google Scholar 

  43. Gilman S, Koeppe RA, Nan B, et al. Cerebral cortical and subcortical cholinergic deficits in parkinsonian syndromes. Neurology. 2010;74:1416–23.

    Article  PubMed  CAS  Google Scholar 

  44. Mesulam MM, Geula C. Overlap between acetylcholinesterase-rich and choline acetyltransferase-positive (cholinergic) axons in human cerebral cortex. Brain Res. 1992;577:112–20.

    Article  PubMed  CAS  Google Scholar 

  45. Atack JR, Perry EK, Bonham JR, et al. Molecular forms of acetylcholinesterase and butyrylcholinesterase in the aged human central nervous system. J Neurochem. 1986;47:263–77.

    Article  PubMed  CAS  Google Scholar 

  46. Hilker R, Thomas AV, Klein JC, et al. Dementia in Parkinson disease: functional imaging of cholinergic and dopaminergic pathways. Neurology. 2005;65:1716–22.

    Article  PubMed  CAS  Google Scholar 

  47. Kuhl DE, Minoshima S, Fessler JA, et al. In vivo mapping of cholinergic terminals in normal aging, Alzheimer’s disease, and Parkinson’s disease. Ann Neurol. 1996;40:399–410.

    Article  PubMed  CAS  Google Scholar 

  48. Shimada H, Hirano S, Shinotoh H, et al. Mapping of brain acetylcholinesterase alterations in Lewy body disease by PET. Neurology. 2009;73:273–8.

    Article  PubMed  CAS  Google Scholar 

  49. Klein JC, Eggers C, Kalbe E, et al. Neurotransmitter changes in dementia with Lewy bodies and Parkinson disease dementia in vivo. Neurology. 2010;74:885–92.

    Article  PubMed  CAS  Google Scholar 

  50. Marcone A, Garibotto V, Moresco RM, et al. [11C]-MP4A PET cholinergic measurements in amnestic mild cognitive impairment, probable Alzheimer’s disease, and dementia with Lewy bodies: a Bayesian method and voxel-based analysis. J Alzheimers Dis. 2012;31:387–99.

    PubMed  CAS  Google Scholar 

  51. Pimlott SL, Piggott M, Owens J, et al. Nicotinic acetylcholine receptor distribution in Alzheimer’s disease, dementia with Lewy bodies, Parkinson’s disease, and vascular dementia: in vitro binding study using 5-[125I]-A-85380. Neuropsychopharmacology. 2004;29:108–16.

    Article  PubMed  CAS  Google Scholar 

  52. Kas A, Bottlaender M, Gallezot JD, et al. Decrease of nicotinic receptors in the nigrostriatal system in Parkinson’s disease. J Cereb Blood Flow Metab. 2009;29:1601–8.

    Article  PubMed  CAS  Google Scholar 

  53. Fujita M, Ichise M, Zoghbi SS, et al. Widespread decrease of nicotinic acetylcholine receptors in Parkinson’s disease. Ann Neurol. 2006;59:174–7.

    Article  PubMed  CAS  Google Scholar 

  54. Meyer PM, Strecker K, Kendziorra K, et al. Reduced α4β2*-nicotinic acetylcholine receptor binding and its relationship to mild cognitive and depressive symptoms in Parkinson disease. Arch Gen Psychiatry. 2009;66:866–77.

    Article  PubMed  CAS  Google Scholar 

  55. Asahina M, Suhara T, Shinotoh H, et al. Brain muscarinic receptors in progressive supranuclear palsy and Parkinson’s disease: a positron emission tomographic study. J Neurol Neurosurg Psychiatry. 1998;65:155–63.

    Article  PubMed  CAS  Google Scholar 

  56. • Bohnen NI, Muller ML, Kotagal V, et al. Heterogeneity of cholinergic denervation in Parkinson’s disease without dementia. J Cereb Blood Flow Metab. 2012;32:1609–17. This study shows that cholinergic loss is variable in nondemented PD patients. The heterogeneity of cholinergic losses across nondemented patients suggests that cholinergic treatment in these patients should be targeted.

    Article  PubMed  CAS  Google Scholar 

  57. Aarsland D, Kurz MW. The epidemiology of dementia associated with Parkinson disease. J Neurol Sci. 2010;289:18–22.

    Article  PubMed  Google Scholar 

  58. Koerts J, Leenders KL, Brouwer WH. Cognitive dysfunction in nondemented Parkinson’s disease patients: controlled and automatic behavior. Cortex. 2009;45:922–9.

    Article  PubMed  Google Scholar 

  59. Sawamoto N, Piccini P, Hotton G, et al. Cognitive deficits and striato-frontal dopamine release in Parkinson’s disease. Brain. 2008;131:1294–302.

    Article  PubMed  Google Scholar 

  60. Cools R. Dopaminergic modulation of cognitive function-implications for L-DOPA treatment in Parkinson’s disease. Neurosci Biobehav Rev. 2006;30:1–23.

    Article  PubMed  CAS  Google Scholar 

  61. Ruberg M, Rieger F, Villageois A, et al. Acetylcholinesterase and butyrylcholinesterase in frontal cortex and cerebrospinal fluid of demented and nondemented patients with Parkinson’s disease. Brain Res. 1986;362:83–91.

    Article  PubMed  CAS  Google Scholar 

  62. Mattila PM, Roytta M, Lonnberg P, et al. Choline acetytransferase activity and striatal dopamine receptors in Parkinson’s disease in relation to cognitive impairment. Acta Neuropathol. 2001;102:160–6.

    PubMed  CAS  Google Scholar 

  63. Bohnen NI, Kaufer DI, Hendrickson R, et al. Cognitive correlates of cortical cholinergic denervation in Parkinson’s disease and parkinsonian dementia. J Neurol. 2006;253:242–7.

    Article  PubMed  CAS  Google Scholar 

  64. Kehagia AA, Barker RA, Robbins TW. Cognitive impairment in Parkinson’s disease: the dual syndrome hypothesis. Neurodegener Dis. 2013;11:79–92.

    Article  PubMed  Google Scholar 

  65. Williams-Gray CH, Evans JR, Goris A, et al. The distinct cognitive syndromes of Parkinson’s disease: 5-year follow-up of the CamPaIGN cohort. Brain. 2009;132:2958–69.

    Article  PubMed  Google Scholar 

  66. Aubert I, Araujo DM, Cecyre D, et al. Comparative alterations of nicotinic and muscarinic binding sites in Alzheimer’s and Parkinson’s diseases. J Neurochem. 1992;58:529–41.

    Article  PubMed  CAS  Google Scholar 

  67. Whitehouse PJ, Martino AM, Wagster MV, et al. Reductions in [3H]nicotinic acetylcholine binding in Alzheimer’s disease and Parkinson’s disease: an autoradiographic study. Neurology. 1988;38:720–3.

    Article  PubMed  CAS  Google Scholar 

  68. Petrou M, Kotagal V, Bohnen NI. An update on brain imaging in parkinsonian dementia. Imaging Med. 2012;4:201–13.

    Article  PubMed  CAS  Google Scholar 

  69. Kulisevsky J, Pagonabarraga J, Pascual-Sedano B, et al. Prevalence and correlates of neuropsychiatric symptoms in Parkinson’s disease without dementia. Mov Disord. 2008;23:1889–96.

    Article  PubMed  Google Scholar 

  70. Bohnen NI, Kaufer DI, Hendrickson R, et al. Cortical cholinergic denervation is associated with depressive symptoms in Parkinson’s disease and parkinsonian dementia. J Neurol Neurosurg Psychiatry. 2007;78:641–3.

    Article  PubMed  CAS  Google Scholar 

  71. Troster AI, Stalp LD, Paolo AM, et al. Neuropsychological impairment in Parkinson’s disease with and without depression. Arch Neurol. 1995;52:1164–9.

    Article  PubMed  CAS  Google Scholar 

  72. Mayeux R, Stern Y, Rosen J, Leventhal J. Depression, intellectual impairment, and Parkinson disease. Neurology. 1981;31:645–50.

    Article  PubMed  CAS  Google Scholar 

  73. Lieberman A. Are dementia and depression in Parkinson’s disease related? J Neurol Sci. 2006;248:138–42.

    Article  PubMed  Google Scholar 

  74. Weintraub D, Morales KH, Moberg PJ, et al. Antidepressant studies in Parkinson’s disease: a review and meta-analysis. Mov Disord. 2005;20:1161–9.

    Article  PubMed  Google Scholar 

  75. Haehner A, Boesveldt S, Berendse HW, et al. Prevalence of smell loss in Parkinson’s disease—a multicenter study. Parkinsonism Relat Disord. 2009;15:490–4.

    Article  PubMed  CAS  Google Scholar 

  76. Doty R. Olfactory dysfunction in Parkinson disease. Nat Rev Neurol. 2012;8:329–39.

    Article  PubMed  CAS  Google Scholar 

  77. Bohnen NI, Muller ML. In vivo neurochemical imaging of olfactory dysfunction in Parkinson’s disease. J Neural Transm. 2013;120:571–6.

    Article  PubMed  Google Scholar 

  78. Bohnen NI, Muller ML, Kotagal V, et al. Olfactory dysfunction, central cholinergic integrity and cognitive impairment in Parkinson’s disease. Brain. 2010;133:1747–54.

    Article  PubMed  Google Scholar 

  79. Bohnen NI, Gedela S, Herath P, et al. Selective hyposmia in Parkinson disease: association with hippocampal dopamine activity. Neurosci Lett. 2008;447:12–6.

    Article  PubMed  CAS  Google Scholar 

  80. Marion MH, Qurashi M, Marshall G, Foster O. Is REM sleep behaviour disorder (RBD) a risk factor of dementia in idiopathic Parkinson’s disease? J Neurol. 2008;255:192–6.

    Article  PubMed  Google Scholar 

  81. Vendette M, Gagnon JF, Decary A, et al. REM sleep behavior disorder predicts cognitive impairment in Parkinson disease without dementia. Neurology. 2007;69:1843–9.

    Article  PubMed  CAS  Google Scholar 

  82. Postuma RB, Gagnon JF, Montplaisir J. Cognition in REM sleep behavior disorder—a window into preclinical dementia? Sleep Med. 2008;9:341–2.

    Article  PubMed  Google Scholar 

  83. • Kotagal V, Albin RL, Muller ML, et al. Symptoms of rapid eye movement sleep behavior disorder are associated with cholinergic denervation in Parkinson disease. Ann Neurol. 2012;71:560–8. To the best of our knowledge this is the first in vivo PET study to show that REM sleep behavior disorder (RBD) is associated with cholinergic denervation in PD. RBD is one of the first prodromal symptoms of Lewy body disorders. This result may indicate early cholinergic system degeneration in some patients.

    Article  PubMed  CAS  Google Scholar 

  84. Postuma RB, Gagnon JF, Montplaisir JY. REM sleep behavior disorder: from dreams to neurodegeneration. Neurobiol Dis. 2012;46:553–8.

    Article  PubMed  Google Scholar 

  85. Muslimovic D, Post B, Speelman JD, et al. Determinants of disability and quality of life in mild to moderate Parkinson disease. Neurology. 2008;70:2241–7.

    Article  PubMed  CAS  Google Scholar 

  86. Sethi K. Levodopa unresponsive symptoms in Parkinson disease. Mov Disord. 2008;23 Suppl 3:S521–33.

    Article  PubMed  Google Scholar 

  87. •• Karachi C, Grabli D, Bernard FA, et al. Cholinergic mesencephalic neurons are involved in gait and postural disorders in Parkinson disease. J Clin Invest. 2010;120:2745–54. An elegant study that convincingly shows the role of the PPN in mobility impairment in parkinsonian monkeys and human patients with PD. Evidence for this is described in 3-fold in complementary human fMRI, human post-mortem, and primate lesioning studies. The finding that posture and gait deficits can occur with isolated PPN impairment in the absence of nigrostriatal dopaminergic lesions has major implications for current understanding of mobility impairments in PD.

    Article  PubMed  CAS  Google Scholar 

  88. Bohnen NI, Muller ML, Koeppe RA, et al. History of falls in Parkinson disease is associated with reduced cholinergic activity. Neurology. 2009;73:1670–6.

    Article  PubMed  CAS  Google Scholar 

  89. Bakker M, de Lange FP, Stevens JA, et al. Motor imagery of gait: a quantitative approach. Exp Brain Res. 2007;179:497–504.

    Article  PubMed  CAS  Google Scholar 

  90. Cremers J, D’Ostilio K, Stamatakis J, et al. Brain activation pattern related to gait disturbances in Parkinson’s disease. Mov Disord. 2012;27:1498–505.

    Article  PubMed  Google Scholar 

  91. Snijders AH, Leunissen I, Bakker M, et al. Gait-related cerebral alterations in patients with Parkinson’s disease with freezing of gait. Brain. 2011;134:59–72.

    Article  PubMed  Google Scholar 

  92. Bohnen N, Kotagal V, Albin R, et al. Gait speed is preserved in oligosystem compared with multisystem neurodegeneration in Parkinson disease. Neurology. 2013;80, P04165.

    Google Scholar 

  93. Woollacott M, Shumway-Cook A. Attention and the control of posture and gait: a review of an emerging area of research. Gait Posture. 2002;16:1–14.

    Article  PubMed  Google Scholar 

  94. Yarnall AJ, Rochester L, Baker MR, et al. Short latency afferent inhibition: a biomarker for mild cognitive impairment in Parkinson’s disease? Mov Disord. 2013. doi:10.1002/mds.25360.

  95. Rochester L, Yarnall AJ, Baker MR, et al. Cholinergic dysfunction contributes to gait disturbance in early Parkinson’s disease. Brain. 2012;135:2779–88.

    Article  PubMed  Google Scholar 

  96. Albin RL, Koeppe RA, Bohnen NI, et al. Spared caudal brainstem SERT binding in early Parkinson’s disease. J Cereb Blood Flow Metab. 2008;28:441–4.

    Article  PubMed  CAS  Google Scholar 

  97. Maetzler W, Liepelt I, Reimold M, et al. Cortical PIB binding in Lewy body disease is associated with Alzheimer-like characteristics. Neurobiol Dis. 2009;34:107–12.

    Article  PubMed  CAS  Google Scholar 

  98. Maetzler W, Reimold M, Liepelt I, et al. [11C]PIB binding in Parkinson’s disease dementia. NeuroImage. 2008;39:1027–33.

    Article  PubMed  Google Scholar 

  99. Mann DM, Yates PO, Hawkes J. The pathology of the human locus ceruleus. Clin Neuropathol. 1983;2:1–7.

    PubMed  CAS  Google Scholar 

  100. Muller ML, Frey KA, Petrou M, et al. β-amyloid and postural instability and gait difficulty in Parkinson’s disease at risk for dementia. Mov Disord. 2013;28:296–301.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National of Institutes of Health grants P01 NS015655 & R01 NS070856, the Michael J. Fox Foundation, and the Department of Veterans Affairs. The authors have no potential conflict of interest relevant to this article to disclose.

Compliance with Ethics Guidelines

Conflict of Interest

Martijn L.T.M. Müller declares that he has no conflict of interest. Nicolaas I. Bohnen declares that he has no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martijn L. T. M. Müller.

Additional information

This article is part of the Topical Collection on Neuroimaging

Rights and permissions

Reprints and permissions

About this article

Cite this article

Müller, M.L.T.M., Bohnen, N.I. Cholinergic Dysfunction in Parkinson’s Disease. Curr Neurol Neurosci Rep 13, 377 (2013). https://doi.org/10.1007/s11910-013-0377-9

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11910-013-0377-9

Keywords

Navigation