Skip to main content

Advertisement

Log in

Key Neuroanatomical Structures for Post-Stroke Cognitive Impairment

  • Behavior (HS Kirshner, Section Editor)
  • Published:
Current Neurology and Neuroscience Reports Aims and scope Submit manuscript

Abstract

The neuroanatomical substrate of vascular cognitive impairment (VCI) has traditionally included the subcortex of the brain, especially sub-frontal white matter circuits, strategic areas of single infarction that may mediate cognitive impairment such as the dominant thalamus or angular gyrus, and the left hemisphere, and bilateral brain infarcts or volume-driven cortical-subcortical infarctions reaching a critical threshold of tissue loss or injury. We provide an update on the neuroanatomical substrates of VCI and emphasize the following structures or areas: (1) new concepts in relation to hippocampal involvement in VCI based on neuropathological and MRI studies of microinfarcts and the role of traditional cardiovascular risk factors in possibly mediating or potentiating cognitive impairment; (2) advances in our understanding of cerebral microbleeds; and (3) an update on white matter hyperintensities and small vessel disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Hachinski V. Vascular dementia: a radical redefinition. Dementia. 1994;5:130–2.

    PubMed  CAS  Google Scholar 

  2. Wetterling T, Kanitz RD, Borgis KJ. The ICD-10 criteria of vascular dementia. Dementia. 1994;5:185–8.

    PubMed  CAS  Google Scholar 

  3. Erkinjuntti T. Clinical criteria for vascular dementia: the NINDS-AIREN Criteria. Dementia. 1994;5:189–92.

    PubMed  CAS  Google Scholar 

  4. •• Gorelick PB, Scuteri A, Black SE, et al. Vascular contributions to cognitive impairment and dementia: a statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2011;42:2672–713. It is a guidance paper on vascular contributions to cognitive impairment.

    Article  PubMed  Google Scholar 

  5. O’Brien MD. How does cerebrovascular disease cause dementia? Dementia. 1994;5:133–6.

    PubMed  Google Scholar 

  6. Gorelick PB. Status of risk factors for dementia associated with stroke. Stroke. 1997;28:459–63.

    Article  PubMed  CAS  Google Scholar 

  7. Tomlinson BE, Blessed G, Roth M. Observations of the brains of demented old people. J Neurol Sci. 1970;11:205–42.

    Article  PubMed  CAS  Google Scholar 

  8. Pantoni L. Cerebral small vessel disease: from pathogenesis and clinical characteristics to therapeutic challenges. Lancet Neurol. 2010;9:689–701.

    Article  PubMed  Google Scholar 

  9. Mori E. Functional brain imaging. In: Erkinjuntti T, Gauthier S, editors. Vascular cognitive impairment. London: Martin Dunitz Ltd; 2002. p. 417–31.

    Google Scholar 

  10. DeCarli C, Scheltens P. Structural brain imaging. In: Erkinjuntti T, Gauthier S, editors. Vascular cognitive impairment. London: Martin Dunitz Ltd; 2002. p. 433–57.

    Google Scholar 

  11. Stebbins GT, Nyenhuis DL, Wang C, et al. Gray matter atrophy in patients with ischemic stroke with cognitive impairment. Stroke. 2008;39:785–93.

    Article  PubMed  Google Scholar 

  12. Gorelick PB, Bowler JV. Advances in vascular cognitive impairment 2007. Stroke. 2008;39:279–82.

    Article  PubMed  Google Scholar 

  13. Gorelick PB, Bowler JV. Advances in vascular cognitive impairment. Stroke. 2010;41:e93–8.

    Article  PubMed  Google Scholar 

  14. Debette S, Seshadri S, Beiser A, et al. Midlife vascular risk factor exposure accelerates structural brain aging and cognitive decline. Neurology. 2011;77:461–8.

    Article  PubMed  CAS  Google Scholar 

  15. Viswanathan A, Greenberg SM. Cerebral amyloid angiopathy in the elderly. Ann Neurol. 2011;70:871–80.

    Article  PubMed  CAS  Google Scholar 

  16. • Ballard C, Gauthier S, Corbett A, et al. Alzheimer’s disease. Lancet. 2011;377:1019–31. This is instrumental in revising the definition of VAD.

    Article  PubMed  Google Scholar 

  17. Mayeux R. Early Alzheimer’s disease. N Engl J Med. 2010;362:2194–201.

    Article  PubMed  CAS  Google Scholar 

  18. Szabo K, Forster A, Jager T, et al. Hippocampal lesion patterns in acute posterior cerebral artery stroke. Clinical and MRI findings. Stroke. 2009;40:2042–5.

    Article  PubMed  Google Scholar 

  19. Stephens RG, Stilwell KL. Arteries and veins of the human brain. Springfield: Charles C. Thomas; 1969.

    Google Scholar 

  20. Wu W, Brickman AM, Luchsinger J, et al. The brain in the age of old: the hippocampal formation is targeted differentially by diseases of late life. Ann Neurol. 2008;64:698–706.

    Article  PubMed  Google Scholar 

  21. Craft S. The role of metabolic disorders in Alzheimer disease and vascular dementia. Arch Neurol. 2009;66:300–5.

    Article  PubMed  Google Scholar 

  22. Blum S, Luchsinger JA, Manly JJ, et al. Memory after silent stroke. Hippocampus and infarcts both matter. Neurology. 2012;78:38–46.

    Article  PubMed  CAS  Google Scholar 

  23. Arvanitakis Z, Leurgans S, Barnes LL, et al. Microinfarct pathology, dementia, and cognitive systems. Stroke. 2011;42:722–7.

    Article  PubMed  Google Scholar 

  24. Launer LJ, Hughes TM, White LR. Microinfarcts, brain atrophy, and cognitive function: the Honolulu Asia Aging study Autopsy study. Ann Neurol. 2011;70:774–80.

    Article  PubMed  Google Scholar 

  25. Gemmell E, Bosomworth H, Allan L, et al. Hippocampal neuronal atrophy and cognitive function in delayed poststroke and aging-related dementias. Stroke. 2012;43:808–14.

    Article  PubMed  Google Scholar 

  26. Kantarci K, Senjem ML, Avula R, et al. Diffusion tensor imaging and cognitive function in older adults with no dementia. Neurology. 2011;77:26–34.

    Article  PubMed  CAS  Google Scholar 

  27. Knopman DS, Penman AD, Catellier DJ, et al. Vascular risk factors and longitudinal changes on brain MRI. The ARIC study. Neurology. 2011;76:1879–85.

    Article  PubMed  CAS  Google Scholar 

  28. Greenberg SM, Vernooij MW, Cordonnier C, et al. Cerebral microbleeds: a guide to detection and interpretation. Lancet Neurol. 2009;8:165–74.

    Article  PubMed  Google Scholar 

  29. Fazekas F, Kleinert R, Roob G, et al. Histopathologic analysis of foci of signal loss on gradient-echo T2*-weighted MR images in patients with spontaneous intracerebral hemorrhage: evidence of microangiopathy-related microbleeds. Am J Neuroradiol. 1999;20:637–42.

    PubMed  CAS  Google Scholar 

  30. Poels MF, Meike VW, Ikram A, et al. Prevalence and risk factors of cerebral microbleeds. An update of the Rotterdam Scan study. Stroke. 2010;41:S103–6.

    Article  PubMed  Google Scholar 

  31. Vernooij MW, van der Lugt A, Ikram MA, et al. Prevalence and risk factors of cerebral microbleeds: the Rotterdam scan study. Neurology. 2008;70(14):1208–14.

    Article  PubMed  CAS  Google Scholar 

  32. Gregoire SM, Brown MM, Kallis C, et al. MRI detection of new microbleeds in patients with ischemic stroke: five-year cohort follow-up study. Stroke. 2010;41:184–6.

    Article  PubMed  Google Scholar 

  33. Chodhury MH, Nagai A, Bokura H, et al. Age-related changes in white matter lesions, hippocampal atrophy, and cerebral microbleeds in healthy subjects without major cerebrovascular risk factors. J Stroke Cerebrovasc Dis. 2011;20(4):203–309.

    Google Scholar 

  34. Arvanitakis Z, Leurgans SE, Wang Z, et al. Cerebral amyloid angiopathy pathology and cognitive domains in older persons. Ann Neurol. 2011;69:320–7.

    Article  PubMed  Google Scholar 

  35. Gregoire SM, Smith K, Jager HR, et al. Cerebral microbleeds and long-term cognitive outcome: longitudinal cohort study of stroke clinic patients. Cerebrovasc Dis. 2012;33:430–5.

    Article  PubMed  CAS  Google Scholar 

  36. Tang WK, Chen Y, Lu J, et al. Absence of cerebral microbleeds predicts reversion of vascular ‘cognitive impairment no dementia’ in stroke. Int J Stroke. 2011;6:498–505.

    Article  PubMed  Google Scholar 

  37. van Norden AGW, van den Berg HAC, de Laat KF, et al. Frontal and temporal microbleeds are related to cognitive function. The Radboud University Nijemegen Diffusion Tensor and Magnetic Resonance Cohort (RUN DMC) study. Stroke. 2011;42:3382–6.

    Article  PubMed  Google Scholar 

  38. van Es ACGM, van der Grond J, de Craen AJM, et al. Cerebral microbleeds and cognitive functioning in the PROSPER study. Neurology. 2011;77:1446–52.

    Article  PubMed  Google Scholar 

  39. Qui C, Corch MF, Sigurdsson S, et al. Cerebral microbleeds, retinopathy, and dementia. The AGES-Reykjavik study. Neurology. 2010;75:2221–8.

    Article  Google Scholar 

  40. Poels MMF, Ikram MA, van der Lugt A, et al. Cerebral microbleeds are associated with worse cognitive function. The Rotterdam Scan study. Neurology. 2012;78:326–33.

    Article  PubMed  CAS  Google Scholar 

  41. Wardlaw JM, Bastin ME, Hernandez V, et al. Brain aging, cognition in youth and old age and vascular disease in the Lothian Birth Cohort 1936: rationale, design and methodology of the imaging protocol. Int J Stroke. 2011;6:547–59.

    Article  PubMed  Google Scholar 

  42. Oxford Project to Investigate Memory and Ageing (OPTIMA) cohort. Cerebral subcortical small vessel disease and its relation to cognition in elderly subjects: a pathological study in the Oxford Project to Investigate Memory and Ageing (OPTIMA) cohort. Neuropathol Appl Neurobiol. 2012;38:337–43.

    Article  Google Scholar 

  43. Koga H, Takashima Y, Murakawa R, et al. Cognitive consequences of multiple lacunes and leukoaraiosis as vascular cognitive impairment in community-dwelling elderly individuals. J Stroke Cerebrovasc Dis. 2009;18:32–7.

    Article  PubMed  Google Scholar 

  44. Pantoni L. 2001-2011: a decade of the LADIS (Leukoaraiosis and Disability) study: what have we learned about white matter changes and small-vessel disease? A LADIS Study Goup. Cerebrovasc Dis. 2011;32:577–88.

    Article  PubMed  Google Scholar 

  45. Benistry S, Gouw AA, Prcher R, et al. Location of lacunar infarcts correlates with cognition in a sample of non-disabled subjects with age related white-matter changes: the LADIS study. J Neurol Neuosurg Psychiatry. 2009;80:478–83.

    Article  Google Scholar 

  46. Jokinen H, Kalska H, Ylikoski R, et al. Longitudinal cognitive decline in subcortical ischemia vascular disease. The LADIS study. Cerebrovasc Dis. 2009;27:384–91.

    Article  PubMed  Google Scholar 

  47. Verdelho A, Madureira S, Moleiro C, et al. White matter changes and diabetes predict cognitive decline in the elderly. The LADIS study. 2010;75:160–7.

    Google Scholar 

  48. Inaba M, White L, Bell C, et al. White matter lesions on brain magnetic resonance imaging scan and 5-year cognitive decline: the Honolulu-Asia Aging study. J Am Ceriatr Soc. 2011;59:1484–9.

    Article  Google Scholar 

  49. Haan M, Espeland MA, Klein BE, et al. Cognitive function and retinal and ischemic brain changes. The women’s health initiative. Neurology. 2012;78:942–9.

    Article  PubMed  CAS  Google Scholar 

Download references

Disclosure

No potential conflicts of interest relevant to this article were reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rebecca Grysiewicz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grysiewicz, R., Gorelick, P.B. Key Neuroanatomical Structures for Post-Stroke Cognitive Impairment. Curr Neurol Neurosci Rep 12, 703–708 (2012). https://doi.org/10.1007/s11910-012-0315-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11910-012-0315-2

Keywords

Navigation