Follow your Gut: Microbiome-Based Approaches in the Developmental Pipeline for the Prevention and Adjunctive Treatment of Clostridioides difficile Infection (CDI)

Abstract

Purpose of Review

Antibiotic use is the most important modifiable risk factor for the development of Clostridioides difficile infection (CDI). In addition, up to a quarter of patients treated with standard-of-care antibiotics experience disease recurrence. Until 2016, when bezlotoxumab was approved by the U.S. Food and Drug Administration (FDA), antibiotics were the only medication class approved for use in CDI. A growing knowledge of the roles that the gut microbiome and immune system play in CDI progression and recovery demands new approaches to treatment. As a result, there are many agents, including adjunctive biotherapeutics, nontoxigenic C. difficile competitors, enzymes, and antibiotic binders, used to prevent and treat CDI in the developmental pipeline. The purpose of this focused review is to summarize these unique therapies in all stages of development.

Recent Findings

Here, we discuss 13 agents in development, including four that have completed phase II trials, four in phase II trials, three in phase I trials, and two still undergoing preclinical trials. A number of new approaches including adjunctive biotherapeutics (n = 7), nontoxigenic C. difficile competitors (n = 1), enzymes used to prevent gut dysbiosis (n = 4), and antibiotic binders (n = 1) are discussed here.

Summary

The CDI therapeutic pipeline contains a variety of unique microbiome-based approaches targeting both prevention and adjunctive treatment of CDI. The future of CDI management promises a variety of innovative approaches to better manage this disease state.

This is a preview of subscription content, log in to check access.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.

    Bartlett JG. Historical perspectives on studies of Clostridium difficile and C. difficile infection. Clin Infect Dis. 2008;46(Suppl 1):S4–S11.

    PubMed  Google Scholar 

  2. 2.

    Magill SS, O'Leary E, Janelle SJ, Thompson DL, Dumyati G, Nadle J, et al. Changes in prevalence of health care-associated infections in U.S. hospitals. N Engl J Med. 2018;379(18):1732–44.

    PubMed  Google Scholar 

  3. 3.

    • Guh AY, Mu Y, Winston LG, et al. Trends in U.S. burden of Clostridioides difficile infection and outcomes. N Engl J Med. 2020;382:1320–30 Updated surveillance results from the Centers for Disease Control and Prevention (CDC) Emerging Infections Program (EIP) demonstrating a decreasing burden of CDI between 2011 and 2017.

    CAS  PubMed  Google Scholar 

  4. 4.

    Centers for Disease Control and Prevention (CDC). Antibiotic resistance threats in the United States (U.S.). Atlanta: Department of Health and Human Services, CDC; 2019. 2019

    Google Scholar 

  5. 5.

    Johnson S, Louie TJ, Gerding DN, Cornely OA, Chasan-Taber S, Fitts D, et al. Vancomycin, metronidazole, or tolevamer for Clostridium difficile infection: results from two multinational, randomized, controlled trials. Clin Infect Dis. 2014;59(3):345–54.

    CAS  PubMed  Google Scholar 

  6. 6.

    Louie TJ, Miller MA, Mullane KM, Weiss K, Lentnek A, Golan Y, et al. Fidaxomicin versus vancomycin for Clostridium difficile infection. N Engl J Med. 2011;364(5):422–31.

    CAS  PubMed  Google Scholar 

  7. 7.

    Johnson S. Recurrent Clostridium difficile infection: a review of risk factors, treatments, and outcomes. J Inf Secur. 2009;58:403–10.

    Google Scholar 

  8. 8.

    Olsen MA, Yan Y, Reske KA, Zilberberg M, Dubberke ER. Impact of Clostridium difficile recurrence on hospital readmissions. Am J Infect Control. 2015;43(4):318–22.

    PubMed  Google Scholar 

  9. 9.

    Rodrigues R, Barber GE, Ananthakrishnan AN. A comprehensive study of costs associated with recurrent Clostridium difficile infection. Infect Control Hosp Epidemiol. 2017;38(2):196–202.

    PubMed  Google Scholar 

  10. 10.

    Cornely OA, Crook DW, Esposito R, Poirier A, Somero MS, Weiss K, et al. Fidaxomicin versus vancomycin for infection with Clostridium difficile in Europe, Canada, and the USA: a double-blind, non-inferiority, randomised controlled trial. Lancet Infect Dis. 2012;12:281–9.

    CAS  PubMed  Google Scholar 

  11. 11.

    Merck & Co., Inc. Zinplava (bezlotoxumab). Whitehouse Station: Merck & Co., Inc; 2016.

    Google Scholar 

  12. 12.

    Johnson SW, Brown SV, Priest DH. Effectiveness of oral vancomycin for prevention of healthcare facility-onset Clostridioides difficile infection in targeted patients during systemic antibiotic exposure. Clin Infect Dis 2019. https://doi.org/10.1093/cid/ciz966.

  13. 13.

    • Mullane KM, Winston DJ, Nooka A, et al. A randomized, placebo-controlled trial of fidaxomicin for prophylaxis of Clostridium difficile-associated diarrhea in adults undergoing hematopoietic stem cell transplantation. Clin Infect Dis. 2019;68(2):196–203 The first double-blind, placebo-controlled clinical trial of fidaxomicin prophylaxis for CDI.

    CAS  PubMed  Google Scholar 

  14. 14.

    Knight EM, Schiller DS, Fulman MK, Rastogi R. Long-term efficacy of oral vancomycin prophylaxis for the prevention of Clostridium difficile recurrence. J Pharm Pract. 2019;089719001982599. https://doi.org/10.1177/0897190019825994

  15. 15.

    Ganetsky A, Han JH, Hughes ME, Babushok DV, Frey NV, Gill SI, et al. Oral vancomycin prophylaxis is highly effective in preventing Clostridium difficile infection in allogeneic hematopoietic cell transplant recipients. Clin Infect Dis. 2019;68(12):2003–9.

    CAS  PubMed  Google Scholar 

  16. 16.

    Vickers RJ, Tillotson GS, Nathan R, Hazan S, Pullman J, Lucasti C, et al. Efficacy and safety of ridinilazole compared with vancomycin for the treatment of Clostridium difficile infection: a phase 2, randomised, double-blind, active-controlled, non-inferiority study. Lancet Infect Dis. 2017;17:735–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Human Microbiome Project Consortium. A framework for human microbiome research. Nature. 2012;486(7402):215–21.

    Google Scholar 

  18. 18.

    Goodwin S, McPherson J, McCombie W. Coming of age: ten years of next-generation sequencing technologies. Nat Rev Genet. 2016;17:333–51.

    CAS  PubMed  Google Scholar 

  19. 19.

    Turnbaugh PJ, Ley RE, Hamady M, Fraser-Liggett CM, Knight R, Gordon JI. The human microbiome project. Nature. 2007;449:804–10.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Proctor LM. The human microbiome project in 2011 and beyond. Cell Host Microbe. 2011;10(4):287–91.

    CAS  PubMed  Google Scholar 

  21. 21.

    Eckburg PB, Bik EM, Bernstein CN, et al. Diversity of the human intestinal microbial flora. Science. 2005;308(5728):1635–8.

    PubMed  PubMed Central  Google Scholar 

  22. 22.

    Ley RE, Peterson DA, Gordon JI. Review ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell. 2006;124(4):837–48.

    CAS  PubMed  Google Scholar 

  23. 23.

    Buffie CG, Pamer EG. Microbiota-mediated colonization resistance against intestinal pathogens. Nat Rev Immunol. 2013;13(11):790–801.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Theriot CM, Young VB. Interactions between the gastrointestinal microbiome and Clostridium difficile. Annu Rev Microbiol. 2015;69:445–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Ducarmon QR, Zwittink RD, Hornung BVH, et al. Gut microbiota and colonization resistance against bacterial enteric infection. Microbiol Mol Biol Rev. 2019;83(3):e00007–19.

    PubMed  PubMed Central  Google Scholar 

  26. 26.

    Rashid MU, Zaura E, Buijs MJ, Keijser BJF, Crielaard W, Nord CE, et al. Determining the long-term effect of antibiotic administration on the human normal intestinal microbiota using culture and pyrosequencing methods. Clin Infect Dis. 2015;60(Suppl 2):S77–84.

    CAS  PubMed  Google Scholar 

  27. 27.

    Hensgens MP, Goorhuis A, Dekkers OM, et al. Time interval of increased risk for Clostridium difficile infection after exposure to antibiotics. J Antimicrob Chemother. 2012;67(3):742–8.

    CAS  PubMed  Google Scholar 

  28. 28.

    Thorpe CM, Kane AV, Chang J, et al. Enhanced preservation of the human intestinal microbiota by ridinilazole, a novel Clostridium difficile targeting antibacterial, compared to vancomycin. PLoS One. 2018;13(8):e0199810. https://doi.org/10.1371/journal.pone.0199810.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Chang JY, Antonopoulos DA, Kalra A, Tonelli A, Khalife WT, Schmidt TM, et al. Decreased diversity of the fecal microbiome in recurrent Clostridium difficile-associated diarrhea. J Infect Dis. 2008;197(3):435–8.

    PubMed  Google Scholar 

  30. 30.

    Chilton CH, Pickering DS, Freeman J. Microbiologic factors affecting Clostridium difficile recurrence. Clin Microbiol Infect. 2018;24(5):476–82.

    CAS  PubMed  Google Scholar 

  31. 31.

    • McDonald LC, Gerding DN, Johnson S, Bakken JS, Carroll KC, Coffin SE, et al. Clinical practice guidelines for Clostridium difficile infection in adults and children: 2017 update by the Infectious Diseases Society of America (IDSA) and Society for Healthcare Epidemiology of America (SHEA). Clin Infect Dis. 2018;66(7):e1–e48. https://doi.org/10.1093/cid/cix1085An update to the 2010 Infectious Diseases Society of America (IDSA) CDI treatment guideline.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Defilipp Z, Bloom PP, Torres Soto M, et al. Drug-resistant bacteremia transmitted by fecal microbiota transplant. N Engl J Med. 2019;381(21):2043–50.

    PubMed  Google Scholar 

  33. 33.

    U.S. Food and Drug Administration. Fecal microbiota for transplantation: Safety alert - risk of serious adverse events likely due to transmission of pathogenic organisms. 2020. Available from: https://www.fda.gov/safety/medical-product-safety-information/fecal-microbiota-transplantation-safety-alert-risk-serious-adverse-events-likely-due-transmission. Accessed March 16, 2020.

  34. 34.

    Collins J, Auchtung JM. Control of Clostridium difficile infection by defined microbial communities. Microbiol Spectr. 2017;5(5):BAD-0009-2016.

  35. 35.

    SER-109 versus placebo to prevent recurrent Clostridium difficile infection (RCDI) (ECOSPOR). https://ClinicalTrials.gov/show/NCT02437487. Accessed March 1, 2020.

  36. 36.

    Weingarden AR, Chen C, Bobr A, Yao D, Lu Y, Nelson VM, et al. Microbiota transplantation restores normal fecal bile acid composition in recurrent Clostridium difficile infection. Am J Physiol Gastrointest Liver Physiol. 2014;306(4):G310–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Buffie CG, Bucci V, Stein RR, McKenney PT, Ling L, Gobourne A, et al. Precision microbiome restoration of bile acid-mediated resistance to Clostridium difficile. Nature. 2015;517(7533):205–8.

    CAS  PubMed  Google Scholar 

  38. 38.

    Koransky JR, Allen SD, Dowell VR Jr. Use of ethanol for selective isolation of spore forming microorganisms. Appl Environ Microbiol. 1978;35(4):762–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. 39.

    • Khanna S, Pardi DS, Kelly CR, et al. A novel microbiome therapeutic increases gut microbial diversity and prevents recurrent Clostridium difficile infection. J Infect Dis. 2016;214(2):173–81 A dose-finding phase Ib trial demonstrating efficacy of SER-109 in preventing recurrent CDI during an 8-week follow-up period.

    PubMed  Google Scholar 

  40. 40.

    Seres Therapeutics Inc. Seres Therapeutics announces key findings from SER-109 phase 2 study analyses. 2017. Available from: http://ir.serestherapeutics.com/news-releases/news-release-details/seres-therapeutics-announces-key-findings-ser-109-phase-2-study?ID=2240833&c=254006&p=irol-newsArticle#/. Accessed March 11, 2020.

  41. 41.

    Seres Therapeutics announces completion of enrollment in SER-109 phase 3 ECOSPOR III study for recurrent Clostridium difficile infection and provides clinical pipeline updates. 2020. Available from: http://ir.serestherapeutics.com/news-releases/news-release-details/seres-therapeutics-announces-completion-enrollment-ser-109-phase. Accessed April 13, 2020.

  42. 42.

    • Orenstein R, Dubberke E, Hardi R, et al. Safety and durability of RBX2660 (microbiota suspension) for recurrent Clostridium difficile infection: Results of the PUNCH CD study. Clin Infect Dis. 2016;62(5):596–602 The open-label PUNCH CD phase II trial demonstrating safety and efficacy of RBX2660.

    PubMed  Google Scholar 

  43. 43.

    •• Dubberke ER, Lee CH, Orenstein R, et al. Results from a randomized, placebo-controlled clinical trial of a RBX2660 - a microbiota-based drug for the prevention of recurrent Clostridium difficile infection. Clin Infect Dis. 2018;67(8):1198–204 The randomized double-blind PUNCH CD 2 phase II demonstrating one, but not two, doses of RBX2660 was superior to placebo in preventing recurrent CDI.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Rebiotix, Inc. Rebiotix reports positive top line data from open-label phase 2 trial of RBX2660 in recurrent Clostridium difficile. 2017. Available from: https://www.rebiotix.com/news-media/press-releases/positive-top-line-data-open-label-phase-2-trial-rbx2660-recurrent-clostridium-difficile/. Accessed March 1, 2020.

  45. 45.

    Contagion Live. Phase 2 results: microbiota-based RBX2660 safe, efficacious for preventing C. difficile recurrence. Available from: https://www.contagionlive.com/news/phase-2-results-microbiotabased-rbx2660-safe-efficacious-for-preventing-c-diff-recurrence. Accessed March 20, 2020.

  46. 46.

    Blount KF, Shannon WD, Deych E, et al. Restoration of bacterial microbiome composition and diversity among treatment responders in a phase 2 trial of RBX2660: an investigational microbiome restoration therapeutic. Open Forum Infect Dis. 2019;6(4):ofz095.

    PubMed  PubMed Central  Google Scholar 

  47. 47.

    Seal D, Borriello SP, Barclay F, Welch A, Piper M, Bonnycastle M. Treatment of relapsing Clostridium difficile diarrhoea by administration of a non-toxigenic strain. Eur J Clin Microbiol. 1987;6(1):51–3.

    CAS  PubMed  Google Scholar 

  48. 48.

    Gerding DN, Sambol SP, Johnson S. Non-toxigenic Clostridioides (formerly Clostridium) difficile for prevention of C. difficile infection: from bench to bedside back to bench and back to bedside. Front Microbiol. 2018;9:1700.

    PubMed  PubMed Central  Google Scholar 

  49. 49.

    Villano SA, Seiberling M, Tatarowicz W, Monnot-Chase E, Gerding DN. Evaluation of an oral suspension of VP20621, spores of nontoxigenic Clostridium difficile strain M3, in healthy subjects. Antimicrob Agents Chemother. 2012;56(10):5224–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. 50.

    •• Gerding DN, Meyer T, Lee C, et al. Administration of spores of nontoxigenic Clostridium difficile strain M3 for prevention of recurrent C. difficile infection: a randomized clinical trial. JAMA. 2015;313(17):1719–27 A randomized, double-blind, placebo-controlled, dose-ranging phase II study demonstrating safety and tolerability of NTCD-M3 in preventing recurrent CDI.

    PubMed  Google Scholar 

  51. 51.

    Stein RR, Tanoue T, Szabady RL, Bhattarai SK, Olle B, Norman JM, et al. Computer-guided design of optimal microbial consortia for immune system modulation. Elife. 2018;7:e30916.

    PubMed  PubMed Central  Google Scholar 

  52. 52.

    Vedanta Biosciences, Inc. Vedanta Biosciences initiates phase 2 study for lead rationally defined bacterial consortium product candidate, VE303. 2018. Available from: https://www.vedantabio.com/news-media/press-releases/detail/2493/vedanta-biosciences-initiates-phase-2-study-for-lead. Accessed February 28, 2020.

  53. 53.

    Vedanta Biosciences, Inc. Vedanta Biosciences announces successful phase 1a/1b data demonstrating safety, tolerability, and proof of mechanism for lead, rationally defined bacterial consortium product candidate, VE303. 2018. Available from: https://www.vedantabio.com/news-media/press-releases/detail/2488/vedanta-biosciences-announces-successful-phase-1a1b-data. Accessed February 28, 2020.

  54. 54.

    Bobilev D, Bhattarai S, Menon R, et al. VE303, a rationally designed bacterial consortium for prevention of recurrent Clostridioides difficile (C. difficile) infection (rCDI), stably restores the gut microbiota after vancomycin-induced dysbiosis in adult healthy volunteers. Open Forum Infect Dis. 2019;6(Suppl 2):S60.

    PubMed Central  Google Scholar 

  55. 55.

    Staley C, Hamilton MJ, Vaughn BP, Graiziger CT, Newman KM, Kabage AJ, et al. Successful resolution of recurrent Clostridium difficile infection using freeze-dried, encapsulated fecal microbiota: a pragmatic cohort study. Am J Gastroenterol. 2017;112(6):940–7.

    PubMed  PubMed Central  Google Scholar 

  56. 56.

    Finch Therapeutics Group, Inc. Finch Therapeutics completes enrollment in potentially pivotal trial of CP101, an investigational oral Full-Spectrum Microbiota® therapy for the prevention of recurrent C. difficile infection. Available from: https://finchtherapeutics.com/blog/finch-therapeutics-completes-enrollment-in-potentially-pivotal-trial-of-cp101-an-investigational-oral-full-spectrum-microbiota-therapy-for-the-prevention-of-recurrent-c-difficile-infection. Accessed March 1, 2020.

  57. 57.

    Khanna S, Pardi DS, Gerding DN, et al. A lyophilized, non-frozen, oral microbiota-based drug RBX7455 is safe, reduces Clostridium difficile infection recurrence, and restores the microbiome. Gastroenterology. 2018;54(6) (Suppl 1):S1047.

    Google Scholar 

  58. 58.

    Wortman JR, Lachey J, Lombardo M-J, et al. Design and evaluation of SER-262: a fermentation-derived microbiome therapeutic for the prevention of recurrence in patients with primary Clostridium difficile infection. Poster presented at:. Boston: American Society for Microbiology (ASM) Microbe; 2016. p. 16–20.

    Google Scholar 

  59. 59.

    Ford C, Litcofsky K, McGovern B, Pardi D, Nathan R, Hansen V, et al. 1503. Engraftment of investigational microbiome drug, SER-262, in subjects receiving vancomycin is associated with reduced rates of recurrence after primary Clostridium difficile infection (CDI). Open Forum Infect Dis. 2019;6(Suppl 2):S547–8.

    PubMed Central  Google Scholar 

  60. 60.

    A phase I, open-label, single-centre study of the safety and efficacy of MET-2 in patients with recurrent Clostridium difficile infection (CDI). https://ClinicalTrials.gov/show/NCT02865616. Accessed March 20, 2020.

  61. 61.

    Harmoinen J, Vaali K, Koski P, Syrjänen K, Laitinen O, Lindevall K, et al. Enzymic degradation of a β-lactam antibiotic, ampicillin, in the gut: a novel treatment modality. J Antimicrob Chemother. 2003;51:361–5.

    CAS  PubMed  Google Scholar 

  62. 62.

    Harmoinen J, Mentula S, Heikkila M, et al. Orally administered targeted recombinant beta-lactamase prevents ampicillin-induced selective pressure on the gut microbiota: a novel approach to reducing antimicrobial resistance. Antimicrob Agents Chemother. 2004;48(1):75–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. 63.

    Tarkkanen AM, Heinonen T, Jogi R, et al. P1A recombinant β-lactamase prevents emergence of antimicrobial resistance in gut microflora of healthy subjects during intravenous administration of ampicillin. Antimicrob Agents Chemother. 2009;53(6):2455–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. 64.

    Stiefel U, Pultz NJ, Harmoinen J, Koski P, Lindevall K, Helfand MS, et al. Oral administration of β-lactamase preserves colonization resistance of piperacillin-treated mice. J Infect Dis. 2003;188:1605–9.

    CAS  PubMed  Google Scholar 

  65. 65.

    Stiefel U, Harmoinen J, Koski P, Kääriäinen S, Wickstrand N, Lindevall K, et al. Orally administered recombinant metallo-β-lactamase preserves colonization resistance of piperacillin-tazobactam-treated mice. Antimicrob Agents Chemother. 2005;49(12):5190–1.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. 66.

    Connelly S, Fanelli B, Hasan NA, Colwell RR, Kaleko M. Oral metallo-beta-lactamase protects the gut microbiome from carbapenem-mediated damage and reduces propagation of antibiotic resistance in pigs. Front Microbiol. 2019;10:101. https://doi.org/10.3389/fmicb.2019.00101.

    Article  PubMed  PubMed Central  Google Scholar 

  67. 67.

    Roberts T, Kokai-Kun JF, Coughlin O, Lopez BV, Whalen H, Bristol JA, et al. Tolerability and pharmacokinetics of SYN-004, an orally administered β-lactamase for the prevention of Clostridium difficile-associated disease and antibiotic-associated diarrhea, in two phase 1 studies. Clin Drug Investig. 2016;36:725–34.

    CAS  PubMed  Google Scholar 

  68. 68.

    • Kokai-Kun JF, Roberts T, Coughlin O, et al. The oral β-lactamase SYN-004 (ribaxamase) degrades ceftriaxone excreted into the intestine in phase 2a clinical studies. Antimicrob Agents Chemother. 2017;61(3):e02197–16 Results from two phase IIa trials demonstrating ribaxamase efficacy in degrading ceftriaxone in the intestines of patients with functioning ileostomies without impacting plasma ceftriaxone levels.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. 69.

    •• Kokai-Kun JF, Roberts T, Coughlin O, et al. Use of ribaxamase (SYN-004), a β-lactamase, to prevent Clostridium difficile infection in β-lactam-treated patients: a double-blind, phase 2b, randomised placebo-controlled trial. Lancet Infect Dis. 2019;19:487–96 A randomized, double-blind, placebo-controlled, phase II of patients receiving ceftriaxone for lower respiratory tract infections showing a lower incidence of CDI in patients receiving ribaxamase versus placebo.

    CAS  PubMed  Google Scholar 

  70. 70.

    Synthetic Biologics. Synthetic Biologics Reports 2019 Year End Operational Highlights and Financial Results. Available from: https://www.syntheticbiologics.com/news-media/press-releases/detail/283/synthetic-biologics-reports-2019-year-end-operational. Accessed April 20, 2020.

  71. 71.

    Connelly S, Bristol JA, Hubert S, Subramanian P, Hasan NA, Colwell RR, et al. SYN-004 (ribaxamase), an oral beta-lactamase, mitigates antibiotic-mediated dysbiosis in a porcine gut microbiome model. J Appl Microbiol. 2017;123:66–79.

    CAS  PubMed  Google Scholar 

  72. 72.

    Connelly S, Fanelli B, Hasan NA, Colwell RR, Kaleko M. Oral beta-lactamase protects the canine gut microbiome from oral amoxicillin-mediated damage. Microorganisms. 2019;7(5):150. https://doi.org/10.3390/microorganisms7050150.

    CAS  Article  PubMed Central  Google Scholar 

  73. 73.

    Connelly S, Fanelli B, Hasan NA, Colwell RR, Kaleko M. SYN-007, an orally administered beta-lactamase enzyme, protects the gut microbiome from oral amoxicillin/clavulanate without adversely affecting antibiotic systemic absorption in dogs. Microorganisms. 2020;8(2):152. https://doi.org/10.3390/microorganisms8020152.

    Article  PubMed Central  Google Scholar 

  74. 74.

    Khoder M, Tsapis N, Domergue-Dupont V, Gueutin C, Fattal E. Removal of residual colonic ciprofloxacin in the rat by activated charcoal entrapped within zinc-pectinate beads. Eur J Pharm Sci. 2010;41:281–8.

    CAS  PubMed  Google Scholar 

  75. 75.

    de Gunzburg J, Ducher A, Modess C, Wegner D, Oswald S, Dressman J, et al. Targeted adsorption of molecules in the colon with the novel adsorbent-based medicinal product, DAV132: a proof of concept study in healthy subjects. J Clin Pharmacol. 2015;55(1):10–6.

    PubMed  Google Scholar 

  76. 76.

    de Gunzburg J, Ghozlane A, Ducher A, et al. Protection of the human gut microbiome from antibiotics. J Infect Dis. 2017;217:628–36.

    PubMed Central  Google Scholar 

  77. 77.

    A European multicenter, randomized, parallel-group study to evaluate the safety and efficacy/performance of DAV132 in hospitalized patients at high risk for Clostridium difficile infection and who receive fluoroquinolones for the treatment of acute infections. https://ClinicalTrials.gov/show/NCT03710694. Accessed March 17, 2020.

  78. 78.

    Grall N, Massias L, Nguyen TT, Sayah-Jeanne S, Ducrot N, Chachaty E, et al. Oral DAV131, a charcoal-based adsorbent, inhibits intestinal colonization by β-lactam-resistant Klebsiella pneumoniae in cefotaxime-treated mice. Antimicrob Agents Chemother. 2013;57(11):5423–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. 79.

    Burdet C, Sayah-Jeanne S, Nguyen TT, et al. Protection of hamsters from mortality by reducing fecal moxifloxacin concentration with DAV131A in a model of moxifloxacin-induced Clostridium difficile colitis. Antimicrob Agents Chemother. 2017;61:e00543–17.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. 80.

    Saint-Lu N, Burdet C, Sablier-Gallis F, et al. DAV131A protects hamsters from lethal Clostridioides difficile infection induced by fluoroquinolones. Antimicrob Agents Chemother. 2020;64:e01196–19.

    CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding authors

Correspondence to A. J. Gonzales-Luna or T. J. Carlson.

Ethics declarations

Conflict of Interest

All authors have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Antimicrobial Development and Drug Resistance

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gonzales-Luna, A.J., Carlson, T.J. Follow your Gut: Microbiome-Based Approaches in the Developmental Pipeline for the Prevention and Adjunctive Treatment of Clostridioides difficile Infection (CDI). Curr Infect Dis Rep 22, 22 (2020). https://doi.org/10.1007/s11908-020-00729-8

Download citation

Keywords

  • Clostridium difficile
  • Recurrent CDI
  • Biotherapeutic
  • Microbiome
  • Pipeline
  • Prevention