Skin and Soft Tissue Infections Due to Nontuberculous Mycobacteria

  • Elizabeth Ann Misch
  • Christopher Saddler
  • James Muse Davis
Skin, Soft Tissue, Bone and Joint Infections (N Safdar and A Pop-Vicas, Section Editors)
Part of the following topical collections:
  1. Topical Collection on Skin, Soft Tissue, Bone and Joint Infections


Purpose of Review

This review describes recent trends in the epidemiology of nontuberculous mycobacteria (NTM), emerging pathogens, new insights into NTM pathogenesis, and advances in diagnosis and treatment.

Recent Findings

Emerging pathogens include Mycobacterium chimaera and drug-resistant subspecies of Mycobacterium abscessus. Important virulence mechanisms of pathogenic NTM include the ability to alter the macrophage’s permissiveness to intracellular bacterial growth. New diagnostic tools consist of DNA probes, gene sequencing, and matrix-assisted laser desorption ionization-time of flight. These methods allow rapid speciation of NTM species, in some cases directly from patient samples. There are few novel agents available to treat NTM, although some repurposed drugs show excellent activity.


The incidence of NTM infections appears to be increasing in a number of regions around the world. Molecular methods are now the diagnostic tools of choice. Discovery of novel effective agents and/or drug combinations with greater likelihood of cure, shorter treatment duration, and fewer side effects are research priorities.


Nontuberculous mycobacteria M. chimaera Skin and soft tissue Rapidly growing mycobacteria (RGM) Molecular diagnostics 


Compliance with Ethical Standards

Conflict of Interest

Each author reports no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.


Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Rastogi N, Legrand E, Sola C. The mycobacteria: an introduction to nomenclature and pathogenesis. Rev Sci Tech. 2001;20(1):21–54.PubMedCrossRefGoogle Scholar
  2. 2.
    Daley CL, Griffith DE. Pulmonary non-tuberculous mycobacterial infections. Int J Tuberc Lung Dis. 2010;14(6):665–71.PubMedGoogle Scholar
  3. 3.
    • Griffith DE, et al. An official ATS/IDSA statement: diagnosis, treatment, and prevention of nontuberculous mycobacterial diseases. Am J Respir Crit Care Med. 2007;175(4):367–416. Most recent US guidelines for treatment of nontuberculous Mycobacteria. PubMedCrossRefGoogle Scholar
  4. 4.
    van Ingen J, Blaak H, de Beer J, de Roda Husman AM, van Soolingen D. Rapidly growing nontuberculous mycobacteria cultured from home tap and shower water. Appl Environ Microbiol. 2010;76(17):6017–9.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Simner, P.J., G.L. Woods, and N.L. Wengenack, Mycobacteria. Microbiol Spectr, 2016. 4(4).
  6. 6.
    Falkinham JO III. Surrounded by mycobacteria: nontuberculous mycobacteria in the human environment. J Appl Microbiol. 2009;107(2):356–67.PubMedCrossRefGoogle Scholar
  7. 7.
    Gonzalez-Santiago TM, Drage LA. Nontuberculous mycobacteria: skin and soft tissue infections. Dermatol Clin. 2015;33(3):563–77.PubMedCrossRefGoogle Scholar
  8. 8.
    Fairchok MP, Rouse JH, Morris SL. Age-dependent humoral responses of children to mycobacterial antigens. Clin Diagn Lab Immunol. 1995;2(4):443–7.PubMedPubMedCentralGoogle Scholar
  9. 9.
    Larson EM, O’Donnell M, Chamblee S, Horsburgh CR Jr, Marsh BJ, Moreland JD, et al. Dual skin tests with Mycobacterium avium sensitin and PPD to detect misdiagnosis of latent tuberculosis infection. Int J Tuberc Lung Dis. 2011;15(11):1504–9. i PubMedCrossRefGoogle Scholar
  10. 10.
    Reed C, von Reyn CF, Chamblee S, Ellerbrock TV, Johnson JW, Marsh BJ, et al. Environmental risk factors for infection with Mycobacterium avium complex. Am J Epidemiol. 2006;164(1):32–40.PubMedCrossRefGoogle Scholar
  11. 11.
    Haverkamp MH, Arend SM, Lindeboom JA, Hartwig NG, van Dissel JT. Nontuberculous mycobacterial infection in children: a 2-year prospective surveillance study in the Netherlands. Clin Infect Dis. 2004;39(4):450–6.PubMedCrossRefGoogle Scholar
  12. 12.
    Tebruegge M, Pantazidou A, MacGregor D, Gonis G, Leslie D, Sedda L, et al. Nontuberculous mycobacterial disease in children—epidemiology, diagnosis & management at a tertiary center. PLoS One. 2016;11(1):e0147513.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Piersimoni C, Scarparo C. Extrapulmonary infections associated with nontuberculous mycobacteria in immunocompetent persons. Emerg Infect Dis. 2009;15(9):1351–8. quiz 1544 PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Ding LW, et al. Disease caused by non-tuberculous mycobacteria in a university hospital in Taiwan, 1997–2003. Epidemiol Infect. 2006;134(5):1060–7.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Bustamante J, Boisson-Dupuis S, Abel L, Casanova JL. Mendelian susceptibility to mycobacterial disease: genetic, immunological, and clinical features of inborn errors of IFN-gamma immunity. Semin Immunol. 2014;26(6):454–70.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Hawn TR, et al. A common human TLR1 polymorphism regulates the innate immune response to lipopeptides. Eur J Immunol. 2007;37(8):2280–9.PubMedCrossRefGoogle Scholar
  17. 17.
    Johnson CM, Lyle EA, Omueti KO, Stepensky VA, Yegin O, Alpsoy E, et al. Cutting edge: a common polymorphism impairs cell surface trafficking and functional responses of TLR1 but protects against leprosy. J Immunol. 2007;178(12):7520–4.Google Scholar
  18. 18.
    Misch EA, Macdonald M, Ranjit C, Sapkota BR, Wells RD, Siddiqui MR, et al. Human TLR1 deficiency is associated with impaired mycobacterial signaling and protection from leprosy reversal reaction. PLoS Negl Trop Dis. 2008;2(5):e231.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Ma M-j, Xie LP, Wu SC, Tang F, Li H, Zhang ZS, et al. Toll-like receptors, tumor necrosis factor-α, and interleukin-10 gene polymorphisms in risk of pulmonary tuberculosis and disease severity. Hum Immunol. 2010;71(10):1005–10.PubMedCrossRefGoogle Scholar
  20. 20.
    Thuong NT, et al. A polymorphism in human TLR2 is associated with increased susceptibility to tuberculous meningitis. Genes Immun. 2007;8(5):422–8.PubMedCrossRefGoogle Scholar
  21. 21.
    Petrini B. Mycobacterium marinum: ubiquitous agent of waterborne granulomatous skin infections. Eur J Clin Microbiol Infect Dis. 2006;25(10):609–13.PubMedCrossRefGoogle Scholar
  22. 22.
    Jernigan JA, Farr BM. Incubation period and sources of exposure for cutaneous Mycobacterium marinum infection: case report and review of the literature. Clin Infect Dis. 2000;31(2):439–43.PubMedCrossRefGoogle Scholar
  23. 23.
    Saubolle MA, Kiehn TE, White MH, Rudinsky MF, Armstrong D. Mycobacterium haemophilum: microbiology and expanding clinical and geographic spectra of disease in humans. Clin Microbiol Rev. 1996;9(4):435–47.PubMedPubMedCentralGoogle Scholar
  24. 24.
    Fleming P, Keystone JS. Mycobacterium marinum infection with sporotrichoid spread from fish tank exposure. CMAJ : Can Med Assoc J. 2017;189(2):E76.CrossRefGoogle Scholar
  25. 25.
    Cheng A, Liu YC, Chen ML, Hung CC, Tsai YT, Sheng WH, et al. Extrapulmonary infections caused by a dominant strain of Mycobacterium massiliense (Mycobacterium abscessus subspecies bolletii). Clin Microbiol Infect. 2013;19(10):E473–82.PubMedCrossRefGoogle Scholar
  26. 26.
    Leao SC, Tortoli E, Viana-Niero C, Ueki SYM, Lima KVB, Lopes ML, et al. Characterization of mycobacteria from a major Brazilian outbreak suggests that revision of the taxonomic status of members of the mycobacterium chelonae-M. abscessus group is needed. J Clin Microbiol. 2009;47(9):2691–8.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Ichihara A, Jinnin M, Fukushima S, Inoue Y, Ihn H. Case of disseminated cutaneous mycobacterium chelonae infection mimicking cutaneous vasculitis. J Dermatol. 2014;41(5):414–7.PubMedCrossRefGoogle Scholar
  28. 28.
    Bryant JM, et al. Whole-genome sequencing to identify transmission of Mycobacterium abscessus between patients with cystic fibrosis: a retrospective cohort study. Lancet. 2013;381(9877):1551–60.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Aitken ML, Limaye A, Pottinger P, Whimbey E, Goss CH, Tonelli MR, et al. Respiratory outbreak of Mycobacterium abscessus subspecies massiliense in a lung transplant and cystic fibrosis center. Am J Respir Crit Care Med. 2012;185(2):231–2.PubMedCrossRefGoogle Scholar
  30. 30.
    Russell AD, Hammond SA, Morgan JR. Bacterial resistance to antiseptics and disinfectants. J Hosp Infect. 1986;7(3):213–25.PubMedCrossRefGoogle Scholar
  31. 31.
    Russell AD. Activity of biocides against mycobacteria. Soc Appl Bacteriol Symp Ser. 1996;25:87S–101S.PubMedCrossRefGoogle Scholar
  32. 32.
    Selvaraju SB, Khan IU, Yadav JS. Biocidal activity of formaldehyde and nonformaldehyde biocides toward Mycobacterium immunogenum and Pseudomonas fluorescens in pure and mixed suspensions in synthetic metalworking fluid and saline. Appl Environ Microbiol. 2005;71(1):542–6.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Carson LA, Petersen NJ, Favero MS, Aguero SM. Growth characteristics of atypical mycobacteria in water and their comparative resistance to disinfectants. Appl Environ Microbiol. 1978;36(6):839–46.PubMedPubMedCentralGoogle Scholar
  34. 34.
    Smithwick RW, Stratigos CB, David HL. Use of cetylpyridinium chloride and sodium chloride for the decontamination of sputum specimens that are transported to the laboratory for the isolation of Mycobacterium tuberculosis. J Clin Microbiol. 1975;1(5):411–3.PubMedPubMedCentralGoogle Scholar
  35. 35.
    Balsam LB, Louie E, Hill F, Levine J, Phillips MS. Mycobacterium chimaera left ventricular assist device infections. J Card Surg. 2017;32(6):402–4.PubMedCrossRefGoogle Scholar
  36. 36.
    Ben Appenheimer A, et al. Mycobacterium chimaera outbreak response: experience from four United States healthcare systems. Open Forum Infect Dis. 2016;3(suppl_1):2392.CrossRefGoogle Scholar
  37. 37.
    • Li T, et al. A systematic review of waterborne infections from nontuberculous mycobacteria in health care facility water systems. Int J Hyg Environ Health. 2017;220(3):611–20. This comprehensive review of 22 observational studies provides a thorough analysis of NTM infection outbreaks associated with healthcare facility water systems. PubMedCrossRefGoogle Scholar
  38. 38.
    Schreiber PW, Kuster SP, Hasse B, Bayard C, Rüegg C, Kohler P, et al. Reemergence of Mycobacterium chimaera in heater-cooler units despite intensified cleaning and disinfection protocol. Emerg Infect Dis. 2016;22(10):1830–3.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Schnabel D, Esposito DH, Gaines J, Ridpath A, Barry MA, Feldman KA, et al. Multistate US outbreak of rapidly growing mycobacterial infections associated with medical tourism to the Dominican Republic, 2013–2014(1). Emerg Infect Dis. 2016;22(8):1340–7.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Zosso C, Lienhard R, Siegrist HH, Malinverni R, Clerc O. Post liposuction infections by rapidly growing mycobacteria. Infect Dis (Lond). 2015;47(2):69–72.CrossRefGoogle Scholar
  41. 41.
    Kennedy BS, et al. Outbreak of Mycobacterium chelonae infection associated with tattoo ink. N Engl J Med. 2012;367(11):1020–4.PubMedCrossRefGoogle Scholar
  42. 42.
    LeBlanc PM, Hollinger KA, Klontz KC. Tattoo ink-related infections—awareness, diagnosis, reporting, and prevention. N Engl J Med. 2012;367(11):985–7.PubMedCrossRefGoogle Scholar
  43. 43.
    Centers for Disease, C. and Prevention. Tattoo-associated nontuberculous mycobacterial skin infections—multiple states, 2011–2012. MMWR Morb Mortal Wkly Rep. 2012;61(33):653–6.Google Scholar
  44. 44.
    Yacisin K, et al. Outbreak of non-tuberculous mycobacteria skin or soft tissue infections associated with handling fish—New York City, 2013–2014. Epidemiol Infect. 2017;145(11):2269–79.PubMedCrossRefGoogle Scholar
  45. 45.
    Wertman R, Miller M, Groben P, Morrell DS, Culton DA. Mycobacterium bolletii/Mycobacterium massiliense furunculosis associated with pedicure footbaths: a report of 3 cases. Arch Dermatol. 2011;147(4):454–8.PubMedCrossRefGoogle Scholar
  46. 46.
    Vugia DJ, Jang Y, Zizek C, Ely J, Winthrop KL, Desmond E. Mycobacteria in nail salon whirlpool footbaths, California. Emerg Infect Dis. 2005;11(4):616–8.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Li B, Yang S, Chu H, Zhang Z, Liu W, Luo L, et al. Relationship between antibiotic susceptibility and genotype in Mycobacterium abscessus clinical isolates. Front Microbiol. 2017;8:1739.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Haworth CS, Floto RA. Introducing the new BTS guideline: management of non-tuberculous mycobacterial pulmonary disease (NTM-PD). Thorax. 2017;72(11):969–70.PubMedCrossRefGoogle Scholar
  49. 49.
    Schoenfeld N, Haas W, Richter E, Bauer T, Boes L, Castell S, et al. Recommendations of the German central committee against tuberculosis (DZK) and the German respiratory society (DGP) for the diagnosis and treatment of non-tuberculous Mycobacterioses. Pneumologie. 2016;70(4):250–76.PubMedCrossRefGoogle Scholar
  50. 50.
    Floto RA, Olivier KN, Saiman L, Daley CL, Herrmann JL, Nick JA, et al. US Cystic Fibrosis Foundation and European cystic fibrosis society consensus recommendations for the management of non-tuberculous mycobacteria in individuals with cystic fibrosis: executive summary. Thorax. 2016;71(1):88–90.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    van der Werf MJ, Ködmön C, Katalinić-Janković V, Kummik T, Soini H, Richter E, et al. Inventory study of non-tuberculous mycobacteria in the European Union. BMC Infect Dis. 2014;14:62.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    van Ingen J, Ferro BE, Hoefsloot W, Boeree MJ, van Soolingen D. Drug treatment of pulmonary nontuberculous mycobacterial disease in HIV-negative patients: the evidence. Expert Rev Anti-Infect Ther. 2013;11(10):1065–77.PubMedCrossRefGoogle Scholar
  53. 53.
    Nessar R, Cambau E, Reyrat JM, Murray A, Gicquel B. Mycobacterium abscessus: a new antibiotic nightmare. J Antimicrob Chemother. 2012;67(4):810–8.PubMedCrossRefGoogle Scholar
  54. 54.
    Tortoli E. Impact of genotypic studies on mycobacterial taxonomy: the new mycobacteria of the 1990s. Clin Microbiol Rev. 2003;16(2):319–54.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Vemulapalli RK, et al. Emergence of resistance to clarithromycin during treatment of disseminated cutaneous Mycobacterium chelonae infection: case report and literature review. J Inf Secur. 2001;43(3):163–8.Google Scholar
  56. 56.
    Nash KA, Zhang Y, Brown-Elliott BA, Wallace RJ Jr. Molecular basis of intrinsic macrolide resistance in clinical isolates of Mycobacterium fortuitum. J Antimicrob Chemother. 2005;55(2):170–7.PubMedCrossRefGoogle Scholar
  57. 57.
    Swenson JM, Wallace RJ, Silcox VA, Thornsberry C. Antimicrobial susceptibility of five subgroups of Mycobacterium fortuitum and Mycobacterium chelonae. Antimicrob Agents Chemother. 1985;28(6):807–11.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Brown BA, Wallace RJ, Onyi GO, de Rosas V, Wallace RJ. Activities of four macrolides, including clarithromycin, against Mycobacterium fortuitum, Mycobacterium chelonae, and M. chelonae-like organisms. Antimicrob Agents Chemother. 1992;36(1):180–4.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Wallace RJ Jr, Brown BA, Onyi GO. Susceptibilities of Mycobacterium fortuitum biovar. fortuitum and the two subgroups of Mycobacterium chelonae to imipenem, cefmetazole, cefoxitin, and amoxicillin-clavulanic acid. Antimicrob Agents Chemother. 1991;35(4):773–5.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Chiesi S, Piacentini D, Salerno ND, Luise D, Peracchi M, Concia E, et al. Disseminated Mycobacterium chimaera infection after open heart surgery in an Italian woman: a case report and a review of the literature. Infez Med. 2017;25(3):267–9.PubMedGoogle Scholar
  61. 61.
    Cross GB, le Q, Webb B, Jenkin GA, Korman TM, Francis M, et al. Mycobacterium haemophilum bone and joint infection in HIV/AIDS: case report and literature review. Int J STD AIDS. 2015;26(13):974–81.PubMedCrossRefGoogle Scholar
  62. 62.
    Lindeboom JA, Bruijnesteijn van Coppenraet LES, van Soolingen D, Prins JM, Kuijper EJ. Clinical manifestations, diagnosis, and treatment of Mycobacterium haemophilum infections. Clin Microbiol Rev. 2011;24(4):701–17.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Stürenburg E, Horstkotte MA, Aberle J, Meyer K, Richter E, Laufs R, et al. Disseminated Mycobacterium haemophilum infection as initial manifestation of AIDS. Tuberculosis. 2004;84(6):341–5.PubMedCrossRefGoogle Scholar
  64. 64.
    Takeo N, et al. Case of mycobacterium haemophilum infection in a Japanese renal transplant patient and a review of Japanese cases. J Dermatol. 2012;39(11):968–9.PubMedCrossRefGoogle Scholar
  65. 65.
    Aubry A, Jarlier V, Escolano S, Truffot-Pernot C, Cambau E. Antibiotic susceptibility pattern of Mycobacterium marinum. Antimicrob Agents Chemother. 2000;44(11):3133–6.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Aubry, A., Mougari F., Reibel F., Cambau E., Mycobacterium marinum. Microbiol Spectr, 2017. 5(2).
  67. 67.
    Braback M, Riesbeck K, Forsgren A. Susceptibilities of Mycobacterium marinum to gatifloxacin, gemifloxacin, levofloxacin, linezolid, moxifloxacin, telithromycin, and quinupristin-dalfopristin (Synercid) compared to its susceptibilities to reference macrolides and quinolones. Antimicrob Agents Chemother. 2002;46(4):1114–6.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    van der Werf TS, et al. Mycobacterium ulcerans disease. Bull World Health Organ. 2005;83(10):785–91.PubMedPubMedCentralGoogle Scholar
  69. 69.
    Forbes BR, Wannan JS, Kirkland WB. Indolent cutaneous ulceration due to infection with Mycobacterium ulcerans. Med J Aust. 1954;41(1 13):475–9.PubMedGoogle Scholar
  70. 70.
    Sakyi SA, et al. Clinical and laboratory diagnosis of buruli ulcer disease: a systematic review. Can J Infect Dis Med Microbiol. 2016;2016:5310718.PubMedPubMedCentralGoogle Scholar
  71. 71.
    Vincent QB, Ardant MF, Marsollier L, Chauty A, Alcaïs A, Franco-Beninese Buruli Research Group (listed in appendix). HIV infection and Buruli ulcer in Africa. Lancet Infect Dis. 2014;14(9):796–7.PubMedCrossRefGoogle Scholar
  72. 72.
    Ross BC, Marino L, Oppedisano F, Edwards R, Robins-Browne RM, Johnson PD. Development of a PCR assay for rapid diagnosis of Mycobacterium ulcerans infection. J Clin Microbiol. 1997;35(7):1696–700.PubMedPubMedCentralGoogle Scholar
  73. 73.
    Bretzel G, Siegmund V, Nitschke J, Herbinger KH, Thompson W, Klutse E, et al. A stepwise approach to the laboratory diagnosis of Buruli ulcer disease. Tropical Med Int Health. 2007;12(1):89–96.Google Scholar
  74. 74.
    Siegmund V, Adjei O, Nitschke J, Thompson W, Klutse E, Herbinger KH, et al. Dry reagent-based polymerase chain reaction compared with other laboratory methods available for the diagnosis of Buruli ulcer disease. Clin Infect Dis. 2007;45(1):68–75.PubMedCrossRefGoogle Scholar
  75. 75.
    Herbinger KH, Adjei O, Awua-Boateng NY, Nienhuis WA, Kunaa L, Siegmund V, et al. Comparative study of the sensitivity of different diagnostic methods for the laboratory diagnosis of Buruli ulcer disease. Clin Infect Dis. 2009;48(8):1055–64.PubMedCrossRefGoogle Scholar
  76. 76.
    Beissner M, Phillips RO, Battke F, Bauer M, Badziklou K, Sarfo FS, et al. Loop-mediated isothermal amplification for laboratory confirmation of Buruli ulcer disease—towards a point-of-care test. PLoS Negl Trop Dis. 2015;9(11):e0004219.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Babonneau J, Bernard C, Marion E, Chauty A, Kempf M, Robert R, et al. Development of a dry-reagent-based qPCR to facilitate the diagnosis of mycobacterium ulcerans infection in endemic countries. PLoS Negl Trop Dis. 2015;9(4):e0003606.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Converse PJ, Xing Y, Kim KH, Tyagi S, Li SY, Almeida DV, et al. Accelerated detection of mycolactone production and response to antibiotic treatment in a mouse model of Mycobacterium ulcerans disease. PLoS Negl Trop Dis. 2014;8(1):e2618.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Friedman ND, Athan E, Walton AL, O'Brien DP. Increasing experience with primary oral medical therapy for Mycobacterium ulcerans disease in an Australian cohort. Antimicrob Agents Chemother. 2016;60(5):2692–5.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Cowan R, Athan E, Friedman ND, Hughes AJ, McDonald A, Callan P, et al. Mycobacterium ulcerans treatment—can antibiotic duration be reduced in selected patients? PLoS Negl Trop Dis. 2015;9(2):e0003503.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    • Prevots DR, Marras TK. Epidemiology of human pulmonary infection with nontuberculous mycobacteria: a review. Clin Chest Med. 2015;36(1):13–34. Valuable summary of known data on NTM incidence trends in Europe, Asia, North and South America, Africa, and Australia. PubMedCrossRefGoogle Scholar
  82. 82.
    Hermansen TS, Ravn P, Svensson E, Lillebaek T. Nontuberculous mycobacteria in Denmark, incidence and clinical importance during the last quarter-century. Sci Rep. 2017;7(1):6696.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Yu X, et al. The prevalence of non-tuberculous mycobacterial infections in mainland China: systematic review and meta-analysis. J Inf Secur. 2016;73(6):558–67.Google Scholar
  84. 84.
    Parija S, Verma A. Prevalence of non-tuberculous mycobacterium in a tertiary care hospital from South India. J Commun Dis. 2012;4(3):129–37.Google Scholar
  85. 85.
    • Cassidy PM, Hedberg K, Saulson A, McNelly E, Winthrop KL. Nontuberculous mycobacterial disease prevalence and risk factors: a changing epidemiology. Clin Infect Dis. 2009;49(12):e124–9. A detailed prevalence study of pulmonary and extrapulmonary NTM infections in the state of Oregon, USA. PubMedCrossRefGoogle Scholar
  86. 86.
    Smith GS, Ghio AJ, Stout JE, Messier KP, Hudgens EE, Murphy MS, et al. Epidemiology of nontuberculous mycobacteria isolations among central North Carolina residents, 2006–2010. J Infect. 2016;72(6):678–86.PubMedCrossRefGoogle Scholar
  87. 87.
    • Wentworth AB, et al. Increased incidence of cutaneous nontuberculous mycobacterial infection, 1980 to 2009: a population-based study. Mayo Clin Proc. 2013;88(1):38–45. This study documents a rising incidence of NTM infections in Olmstead County, Minnesota, USA. PubMedCrossRefGoogle Scholar
  88. 88.
    Blanc P, Dutronc H, Peuchant O, Dauchy FA, Cazanave C, Neau D, et al. Nontuberculous mycobacterial infections in a French hospital: a 12-year retrospective study. PLoS One. 2016;11(12):e0168290.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    • Lai C-C, et al. Increasing incidence of nontuberculous Mycobacteria, Taiwan, 2000–2008. Emerg Infect Dis. 2010;16(2):294–6. This study shows an increasing incidence of NTM isolation from both pulmonary and extrapulmonary sources using a national hospital laboratory database. It is not clear how persons from whom the isolates were derived were defined as infected vs colonized. PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Lopez-Varela E, et al. Non-tuberculous mycobacteria in children: muddying the waters of tuberculosis diagnosis. Lancet Respir Med. 2015;3(3):244–56.PubMedCrossRefGoogle Scholar
  91. 91.
    Al Yazidi LS, et al. Nontuberculous mycobacteria in children: a focus on bloodstream infections. Pediatr Infect Dis J. 2017;36(4):374–8.PubMedCrossRefGoogle Scholar
  92. 92.
    Apiwattankul N, Flynn PM, Hayden RT, Adderson EE. Infections caused by rapidly growing Mycobacteria spp in children and adolescents with cancer. J Pediatric Infect Dis Soc. 2015;4(2):104–13.PubMedCrossRefGoogle Scholar
  93. 93.
    Iroh Tam PY, et al. Non-tuberculous mycobacterial infection in hospitalized children: a case series. Epidemiol Infect. 2015;143(15):3173–81.PubMedCrossRefGoogle Scholar
  94. 94.
    Ng SS, et al. Pediatric cutaneous nontuberculous mycobacterium infections in Singapore. Pediatr Dermatol. 2015;32(4):488–94.PubMedCrossRefGoogle Scholar
  95. 95.
    Sax H, Bloemberg G, Hasse B, Sommerstein R, Kohler P, Achermann Y, et al. Prolonged outbreak of Mycobacterium chimaera infection after open-chest heart surgery. Clin Infect Dis. 2015;61(1):67–75.PubMedCrossRefGoogle Scholar
  96. 96.
    • Sommerstein R, et al. Transmission of Mycobacterium chimaera from heater-cooler units during cardiac surgery despite an ultraclean air ventilation system. Emerg Infect Dis. 2016;22(6):1008–13. This experimental study used multiple methods, including particle counter, smoke dispersal, and sedimentation plates, to demonstrate airborne transmission of M. chimaera. PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Gotting T, et al. Heater-cooler units: contamination of crucial devices in cardiothoracic surgery. J Hosp Infect. 2016;93(3):223–8.PubMedCrossRefGoogle Scholar
  98. 98.
    • Chand M, et al. Insidious risk of severe Mycobacterium chimaera infection in cardiac surgery patients. Clin Infect Dis. 2017;64(3):335–42. This 18-patient series is the result of a UK national investigation and provides the best current estimate of incidence, timing, and outcome of M. chimaera infection. PubMedCrossRefGoogle Scholar
  99. 99.
    Perkins KM, Lawsin A, Hasan NA, Strong M, Halpin AL, Rodger RR, et al. Notes from the field: Mycobacterium chimaera contamination of heater-cooler devices used in cardiac surgery—United States. MMWR Morb Mortal Wkly Rep. 2016;65(40):1117–8.PubMedCrossRefGoogle Scholar
  100. 100.
    Svensson E, Jensen ET, Rasmussen EM, Folkvardsen DB, Norman A, Lillebaek T. Mycobacterium chimaera in heater-cooler units in Denmark related to isolates from the United States and United Kingdom. Emerg Infect Dis. 2017;23(3):507–9.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    • van Ingen, J., Kohl, TA., Kranzer, K., Hasse, B., Keller, PM., Szafrańska, AK., et al., Global outbreak of severe Mycobacterium chimaera disease after cardiac surgery: a molecular epidemiological study. Lancet Infect Dis, 2017;17(10):1033–41. This molecular epidemiologic study based on whole genome sequencing of 250 isolates from patient, equipment and environmental sources confirmed the LivaNova factory as the likely source for the global Mycobacterium chimaera outbreak and is an excellent overview. Google Scholar
  102. 102.
    Allen KB, Yuh DD, Schwartz SB, Lange RA, Hopkins R, Bauer K, et al. Nontuberculous mycobacterium infections associated with heater-cooler devices. Ann Thorac Surg. 2017;104:1237–42.PubMedCrossRefGoogle Scholar
  103. 103.
    Baker AW, Lewis SS, Alexander BD, Chen LF, Wallace RJ Jr, Brown-Elliott BA, et al. Two-phase hospital-associated outbreak of Mycobacterium abscessus: investigation and mitigation. Clin Infect Dis. 2017;64(7):902–11.PubMedPubMedCentralGoogle Scholar
  104. 104.
    Trudzinski, F.C., Schlotthauer U., Kamp A., Hennemann K., Muellenbach R.M., Reischl U., et al., Clinical implications of Mycobacterium chimaera detection in thermoregulatory devices used for extracorporeal membrane oxygenation (ECMO), Germany, 2015 to 2016. Euro Surveill. 2016;21(46).
  105. 105.
    Alexander DC, Vasireddy R, Vasireddy S, Philley JV, Brown-Elliott BA, Perry BJ, et al. Emergence of mmpT5 variants during bedaquiline treatment of mycobacterium intracellulare lung disease. J Clin Microbiol. 2017;55(2):574–84.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Zweifel SA, Mihic-Probst D, Curcio CA, Barthelmes D, Thielken A, Keller PM, et al. Clinical and histopathologic ocular findings in disseminated Mycobacterium chimaera infection after cardiothoracic surgery. Ophthalmology. 2017;124(2):178–88.PubMedCrossRefGoogle Scholar
  107. 107.
    Tortoli E, et al. Proposal to elevate the genetic variant MAC-A, included in the Mycobacterium avium complex, to species rank as Mycobacterium chimaera sp. nov. Int J Syst Evol Microbiol. 2004;54(Pt 4):1277–85.PubMedCrossRefGoogle Scholar
  108. 108.
    Chaisson RE, Benson CA, Dube MP, Heifets LB, Korvick JA, Elkin S, et al. Clarithromycin therapy for bacteremic Mycobacterium avium complex disease. A randomized, double-blind, dose-ranging study in patients with AIDS. AIDS Clinical Trials Group protocol 157 study team. Ann Intern Med. 1994;121(12):905–11.PubMedCrossRefGoogle Scholar
  109. 109.
    Griffith DE, Brown BA, Girard WM, Murphy DT, Wallace RJ. Azithromycin activity against Mycobacterium avium complex lung disease in patients who were not infected with human immunodeficiency virus. Clin Infect Dis. 1996;23(5):983–9.PubMedCrossRefGoogle Scholar
  110. 110.
    Wallace RJ Jr, et al. Initial clarithromycin monotherapy for Mycobacterium avium-intracellulare complex lung disease. Am J Respir Crit Care Med. 1994;149(5):1335–41.PubMedCrossRefGoogle Scholar
  111. 111.
    Nielsen C, Winther CL, Thomsen PK, Andreasen JJ. Elimination of Mycobacterium chimaera in a heater cooler device used during on-pump cardiothoracic surgery. Perfusion. 2017;32(6):507–10.PubMedCrossRefGoogle Scholar
  112. 112.
    Bryers JD. Medical biofilms. Biotechnol Bioeng. 2008;100(1):1–18.PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Walker J, Moore G, Collins S, Parks S, Garvey MI, Lamagni T, et al. Microbiological problems and biofilms associated with Mycobacterium chimaera in heater-cooler units used for cardiopulmonary bypass. J Hosp Infect. 2017;96(3):209–20.PubMedCrossRefGoogle Scholar
  114. 114.
    Mishra AK, Driessen NN, Appelmelk BJ, Besra GS. Lipoarabinomannan and related glycoconjugates: structure, biogenesis and role in mycobacterium tuberculosis physiology and host-pathogen interaction. FEMS Microbiol Rev. 2011;35(6):1126–57.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Kallenius G, et al. Lipoarabinomannan, and its related glycolipids, induce divergent and opposing immune responses to Mycobacterium tuberculosis depending on structural diversity and experimental variations. Tuberculosis (Edinb). 2016;96:120–30.CrossRefGoogle Scholar
  116. 116.
    Stoop EJ, et al. Mannan core branching of lipo(arabino)mannan is required for mycobacterial virulence in the context of innate immunity. Cell Microbiol. 2013;15(12):2093–108.PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Helguera-Repetto AC, et al. Differential macrophage response to slow- and fast-growing pathogenic mycobacteria. Biomed Res Int. 2014;2014:916521.PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Griffith DE, Brown-Elliott BA, L. Benwill J, Wallace RJ Jr. Mycobacterium abscessus. “Pleased to meet you, hope you guess my name ...”. Ann Am Thorac Soc. 2015;12(3):436–9.PubMedCrossRefGoogle Scholar
  119. 119.
    Griffith DE, Philley JV, Brown-Elliott BA, Benwill JL, Shepherd S, et al. The significance of Mycobacterium abscessus subspecies abscessus isolation during Mycobacterium avium complex lung disease therapy. Chest. 2015;147(5):1369–75.PubMedCrossRefGoogle Scholar
  120. 120.
    Nash KA, Brown-Elliott BA, Wallace RJ Jr. A novel gene, erm(41), confers inducible macrolide resistance to clinical isolates of Mycobacterium abscessus but is absent from Mycobacterium chelonae. Antimicrob Agents Chemother. 2009;53(4):1367–76.PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Ridell M. Mycobacterium abscessus: an environmental mycobacteria being a human pathogen. In: Farnia P, editor. 1st Asian-African Congress of International Journal of Mycobacteriology. Iran: Asian-African Society for Mycobacteriology; 2014. p. 41.Google Scholar
  122. 122.
    Bernut A, Herrmann JL, Kissa K, Dubremetz JF, Gaillard JL, Lutfalla G, et al. Mycobacterium abscessus cording prevents phagocytosis and promotes abscess formation. Proc Natl Acad Sci U S A. 2014;111(10):E943–52.PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Jonsson B, Ridell M, Wold AE. Phagocytosis and cytokine response to rough and smooth colony variants of Mycobacterium abscessus by human peripheral blood mononuclear cells. APMIS. 2013;121(1):45–55.PubMedCrossRefGoogle Scholar
  124. 124.
    Roux AL, Viljoen A, Bah A, Simeone R, Bernut A, Laencina L, et al. The distinct fate of smooth and rough Mycobacterium abscessus variants inside macrophages. Open Biol. 2016;6(11).
  125. 125.
    Rhoades ER, Archambault AS, Greendyke R, Hsu FF, Streeter C, Byrd TF. Mycobacterium abscessus glycopeptidolipids mask underlying cell wall phosphatidyl-myo-inositol mannosides blocking induction of human macrophage TNF-alpha by preventing interaction with TLR2. J Immunol. 2009;183(3):1997–2007.Google Scholar
  126. 126.
    Ripoll F, Pasek S, Schenowitz C, Dossat C, Barbe V, Rottman M, et al. Non mycobacterial virulence genes in the genome of the emerging pathogen Mycobacterium abscessus. PLoS One. 2009;4(6):e5660.PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Bakala N'Goma JC, le Moigne V, Soismier N, Laencina L, le Chevalier F, Roux AL, et al. Mycobacterium abscessus phospholipase C expression is induced during coculture within amoebae and enhances M. abscessus virulence in mice. Infect Immun. 2015;83(2):780–91.PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Delafont V, Mougari F, Cambau E, Joyeux M, Bouchon D, Héchard Y, et al. First evidence of amoebae-mycobacteria association in drinking water network. Environ Sci Technol. 2014;48(20):11872–82.PubMedCrossRefGoogle Scholar
  129. 129.
    Adekambi T, Drancourt M. Dissection of phylogenetic relationships among 19 rapidly growing Mycobacterium species by 16S rRNA, hsp65, sodA, recA and rpoB gene sequencing. Int J Syst Evol Microbiol. 2004;54(Pt 6):2095–105.PubMedCrossRefGoogle Scholar
  130. 130.
    Peterson TS, Ferguson JA, Watral VG, Mutoji KN, Ennis DG, Kent ML. Paramecium caudatum enhances transmission and infectivity of Mycobacterium marinum and M. chelonae in zebrafish Danio rerio. Dis Aquat Org. 2013;106(3):229–39.PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Cabello-Vilchez AM, et al. Endosymbiotic Mycobacterium chelonae in a Vermamoeba vermiformis strain isolated from the nasal mucosa of an HIV patient in lima, Peru. Exp Parasitol. 2014;145(Suppl):S127–30.PubMedCrossRefGoogle Scholar
  132. 132.
    Brown-Elliott BA, Philley JV, Rapidly growing mycobacteria. Microbiol Spectr. 2017;5(1).
  133. 133.
    Lee GJ, Lee HM, Kim TS, Kim JK, Sohn KM, Jo EK. Mycobacterium fortuitum induces A20 expression that impairs macrophage inflammatory responses. Pathog Dis. 2016;74(3):ftw015.PubMedCrossRefGoogle Scholar
  134. 134.
    Datta D, Khatri P, Banerjee C, Singh A, Meena R, Saha DR, et al. Calcium and superoxide-mediated pathways converge to induce nitric oxide-dependent apoptosis in mycobacterium fortuitum-infected fish macrophages. PLoS One. 2016;11(1):e0146554.PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Davis JM, Clay H, Lewis JL, Ghori N, Herbomel P, Ramakrishnan L. Real-time visualization of mycobacterium-macrophage interactions leading to initiation of granuloma formation in zebrafish embryos. Immunity. 2002;17(6):693–702.PubMedCrossRefGoogle Scholar
  136. 136.
    Davis JM, Ramakrishnan L. The role of the granuloma in expansion and dissemination of early tuberculous infection. Cell. 2009;136(1):37–49.PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Volkman HE, Pozos TC, Zheng J, Davis JM, Rawls JF, Ramakrishnan L. Tuberculous granuloma induction via interaction of a bacterial secreted protein with host epithelium. Science. 2010;327(5964):466–9.PubMedCrossRefGoogle Scholar
  138. 138.
    • Cambier CJ, et al. Mycobacteria manipulate macrophage recruitment through coordinated use of membrane lipids. Nature. 2014;505(7482):218–22. This basic research article exemplifies how the zebrafish/ M. marinum model of tuberculosis has advanced our understanding of mycobacterial pathogenesis. PubMedCrossRefGoogle Scholar
  139. 139.
    Cambier CJ, O’Leary SM, O’Sullivan MP, Keane J, Ramakrishnan L. Phenolic glycolipid facilitates mycobacterial escape from Microbicidal tissue-resident macrophages. Immunity. 2017;47:552–565.e4.PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Mortimer TD, Weber AM, Pepperell CS. Evolutionary thrift: mycobacteria repurpose plasmid diversity during adaptation of type VII secretion systems. Genome Biol Evol. 2017;9(3):398–413.PubMedPubMedCentralGoogle Scholar
  141. 141.
    • Groschel MI, et al. ESX secretion systems: mycobacterial evolution to counter host immunity. Nat Rev Microbiol. 2016;14(11):677–91. This review provides an introduction to the evolution and functions of the family of type VII secretion systems and how they function to promote mycobacterial survival and expansion in various hosts. PubMedCrossRefGoogle Scholar
  142. 142.
    de Jonge MI, Pehau-Arnaudet G, Fretz MM, Romain F, Bottai D, Brodin P, et al. ESAT-6 from mycobacterium tuberculosis dissociates from its putative chaperone CFP-10 under acidic conditions and exhibits membrane-lysing activity. J Bacteriol. 2007;189(16):6028–34.PubMedPubMedCentralCrossRefGoogle Scholar
  143. 143.
    Conrad WH, Osman MM, Shanahan JK, Chu F, Takaki KK, Cameron J, et al. Mycobacterial ESX-1 secretion system mediates host cell lysis through bacterium contact-dependent gross membrane disruptions. Proc Natl Acad Sci U S A. 2017;114(6):1371–6.PubMedPubMedCentralCrossRefGoogle Scholar
  144. 144.
    Lienard J, Movert E, Valfridsson C, Sturegård E, Carlsson F. ESX-1 exploits type I IFN-signalling to promote a regulatory macrophage phenotype refractory to IFN gamma-mediated autophagy and growth restriction of intracellular mycobacteria. Cell Microbiol. 2016;18(10):1471–85.Google Scholar
  145. 145.
    Abdallah AM, Bestebroer J, Savage NDL, de Punder K, van Zon M, Wilson L, et al. Mycobacterial secretion systems ESX-1 and ESX-5 play distinct roles in host cell death and Inflammasome activation. J Immunol. 2011;187(9):4744–53.PubMedCrossRefGoogle Scholar
  146. 146.
    Sizaire V, Nackers F, Comte E, Portaels F. Mycobacterium ulcerans infection: control, diagnosis, and treatment. Lancet Infect Dis. 2006;6(5):288–96.PubMedCrossRefGoogle Scholar
  147. 147.
  148. 148.
    George KM, Chatterjee D, Gunawardana G, Welty D, Hayman J, Lee R, et al. Mycolactone: a polyketide toxin from Mycobacterium ulcerans required for virulence. Science. 1999;283(5403):854–7.Google Scholar
  149. 149.
    Sarfo FS, Phillips R, Wansbrough-Jones M, Simmonds RE. Recent advances: role of mycolactone in the pathogenesis and monitoring of Mycobacterium ulcerans infection/Buruli ulcer disease. Cell Microbiol. 2016;18(1):17–29.PubMedCrossRefGoogle Scholar
  150. 150.
    •• Guenin-Mace L, et al. Mycolactone activation of Wiskott-Aldrich syndrome proteins underpins Buruli ulcer formation. J Clin Invest. 2013;123(4):1501–12. One of two recent studies to provide the first molecular explanation for the cytopathic effects of mycolactone, the key toxin produced by M. ulcerans. PubMedPubMedCentralCrossRefGoogle Scholar
  151. 151.
    •• Hall BS, et al. The pathogenic mechanism of the Mycobacterium ulcerans virulence factor, mycolactone, depends on blockade of protein translocation into the ER. PLoS Pathog. 2014;10(4):e1004061. One of two recent studies to provide the first molecular explanation for the cytopathic effects of mycolactone, the key toxin produced by M. ulcerans . PubMedPubMedCentralCrossRefGoogle Scholar
  152. 152.
    Merritt RW, Walker ED, Small PLC, Wallace JR, Johnson PDR, Benbow ME, et al. Ecology and transmission of Buruli ulcer disease: a systematic review. PLoS Negl Trop Dis. 2010;4(12):e911.PubMedPubMedCentralCrossRefGoogle Scholar
  153. 153.
    Brown-Elliott BA, Wallace RJ Jr. Enhancement of conventional phenotypic methods with molecular-based methods for the more definitive identification of nontuberculous Mycobacteria. Clin Microbiol Newsl. 2012;34(14):109–15.CrossRefGoogle Scholar
  154. 154.
    • van Ingen J. Diagnosis of nontuberculous mycobacterial infections. Semin Respir Crit Care Med. 2013;34(1):103–9. A nice overview of new molecular tools for the diagnosis of NTM. PubMedCrossRefGoogle Scholar
  155. 155.
    Springer B, Stockman L, Teschner K, Roberts GD, Böttger EC. Two-laboratory collaborative study on identification of mycobacteria: molecular versus phenotypic methods. J Clin Microbiol. 1996;34(2):296–303.PubMedPubMedCentralGoogle Scholar
  156. 156.
    Pranada AB, Witt E, Bienia M, Kostrzewa M, Timke M. Accurate differentiation of Mycobacterium chimaera from Mycobacterium intracellulare by MALDI-TOF MS analysis. J Med Microbiol. 2017;66(5):670–7.PubMedCrossRefGoogle Scholar
  157. 157.
    Richter E, Rüsch-Gerdes S, Hillemann D. Evaluation of the GenoType Mycobacterium assay for identification of mycobacterial species from cultures. J Clin Microbiol. 2006;44(5):1769–75.PubMedPubMedCentralCrossRefGoogle Scholar
  158. 158.
    Russo C, Tortoli E, Menichella D. Evaluation of the new GenoType mycobacterium assay for identification of mycobacterial species. J Clin Microbiol. 2006;44(2):334–9.PubMedPubMedCentralCrossRefGoogle Scholar
  159. 159.
    Mougari F, Loiseau J, Veziris N, Bernard C, Bercot B, Sougakoff W, et al. Evaluation of the new GenoType NTM-DR kit for the molecular detection of antimicrobial resistance in non-tuberculous mycobacteria. J Antimicrob Chemother. 2017;72(6):1669–77.PubMedCrossRefGoogle Scholar
  160. 160.
    Tortoli E, Mariottini A, Mazzarelli G. Evaluation of INNO-LiPA MYCOBACTERIA v2: improved reverse hybridization multiple DNA probe assay for Mycobacterial identification. J Clin Microbiol. 2003;41(9):4418–20.PubMedPubMedCentralCrossRefGoogle Scholar
  161. 161.
    Garcia-Agudo L, et al. Evaluation of INNO-LiPA mycobacteria v2 assay for identification of rapidly growing mycobacteria. Braz J Microbiol. 2011;42(3):1220–6.PubMedPubMedCentralCrossRefGoogle Scholar
  162. 162.
    Hall L, Doerr KA, Wohlfiel SL, Roberts GD. Evaluation of the MicroSeq system for identification of mycobacteria by 16S ribosomal DNA sequencing and its integration into a routine clinical mycobacteriology laboratory. J Clin Microbiol. 2003;41(4):1447–53.PubMedPubMedCentralCrossRefGoogle Scholar
  163. 163.
    Arnold C, Barrett A, Cross L, Magee JG. The use of rpoB sequence analysis in the differentiation of Mycobacterium abscessus and Mycobacterium chelonae: a critical judgement in cystic fibrosis? Clin Microbiol Infect. 2012;18(5):E131–3.PubMedCrossRefGoogle Scholar
  164. 164.
    Wang H, Yue J, Han M, Yang J, Zhao Y. Rapid method for identification of six common species of mycobacteria based on multiplex SNP analysis. J Clin Microbiol. 2010;48(1):247–50.PubMedCrossRefGoogle Scholar
  165. 165.
    Schweickert B, Goldenberg O, Richter E, Göbel UB, Petrich A, Buchholz P, et al. Occurrence and clinical relevance of Mycobacterium chimaera sp. nov., Germany. Emerg Infect Dis. 2008;14(9):1443–6.PubMedPubMedCentralCrossRefGoogle Scholar
  166. 166.
    Chen R, Gao XB, Liu ZH, Shen XB, Guo AZ, Duan YY, et al. Combination of multiplex PCR with denaturing high-performance liquid chromatography for rapid detection of Mycobacterium genus and simultaneous identification of the mycobacterium tuberculosis complex. Diagn Microbiol Infect Dis. 2013;77(1):53–7.PubMedCrossRefGoogle Scholar
  167. 167.
    Singhal N, et al. MALDI-TOF mass spectrometry: an emerging technology for microbial identification and diagnosis. Front Microbiol. 2015;6:791.PubMedPubMedCentralCrossRefGoogle Scholar
  168. 168.
    Murray PR. What is new in clinical microbiology—microbial identification by MALDI-TOF mass spectrometry: a paper from the 2011 William Beaumont Hospital symposium on molecular pathology. J Mol Diagn. 2012;14(5):419–23.PubMedPubMedCentralCrossRefGoogle Scholar
  169. 169.
    Krieger D, Schönfeld N, Vesenbeckh S, Bettermann G, Bauer TT, Rüssmann H, et al. Is delamanid a potential agent in the treatment of diseases caused by Mycobacterium avium-intracellulare? Eur Respir J. 2016;48(6):1803–4.PubMedCrossRefGoogle Scholar
  170. 170.
    Andries K, Verhasselt P, Guillemont J, Göhlmann HW, Neefs JM, Winkler H, et al. A diarylquinoline drug active on the ATP synthase of Mycobacterium tuberculosis. Science. 2005;307(5707):223–7.PubMedCrossRefGoogle Scholar
  171. 171.
    Vesenbeckh S, Schönfeld N, Roth A, Bettermann G, Krieger D, Bauer TT, et al. Bedaquiline as a potential agent in the treatment of M. intracellulare and M. avium infections. Eur Respir J, 2017. 49(3).
  172. 172.
    Brown-Elliott BA, Philley JV, Griffith DE, Thakkar F, Wallace Jr RJ, In vitro susceptibility testing of bedaquiline against Mycobacterium avium Complex. Antimicrob Agents Chemother. 2017;61(2).
  173. 173.
    Pang Y, Zheng H, Tan Y, Song Y, Zhao Y. In vitro activity of bedaquiline against nontuberculous mycobacteria in China. Antimicrob Agents Chemother. 2017;61(5):e02627–16.PubMedPubMedCentralCrossRefGoogle Scholar
  174. 174.
    Dupont C, Viljoen A, Thomas S, Roquet-Banères F, Herrmann JL, Pethe K, et al. Bedaquiline inhibits the ATP synthase in mycobacterium abscessus and is effective in infected zebrafish. Antimicrob Agents Chemother. 2017;61:e01225–17.PubMedGoogle Scholar
  175. 175.
    Ji B, Lefrancois S, Robert J, Chauffour A, Truffot C, Jarlier V. In vitro and in vivo activities of rifampin, streptomycin, amikacin, moxifloxacin, R207910, linezolid, and PA-824 against mycobacterium ulcerans. Antimicrob Agents Chemother. 2006;50(6):1921–6.PubMedPubMedCentralCrossRefGoogle Scholar
  176. 176.
    Hards K, Robson JR, Berney M, Shaw L, Bald D, Koul A, et al. Bactericidal mode of action of bedaquiline. J Antimicrob Chemother. 2015;70(7):2028–37.PubMedGoogle Scholar
  177. 177.
    Chauffour A, Robert J, Veziris N, Aubry A, Jarlier V. Sterilizing activity of fully oral intermittent regimens against mycobacterium Ulcerans infection in mice. PLoS Negl Trop Dis. 2016;10(10):e0005066.PubMedPubMedCentralCrossRefGoogle Scholar
  178. 178.
    Lerat I, Cambau E, Roth dit Bettoni R, Gaillard JL, Jarlier V, Truffot C, et al. In vivo evaluation of antibiotic activity against Mycobacterium abscessus. J Infect Dis. 2014;209(6):905–12.PubMedCrossRefGoogle Scholar
  179. 179.
    Obregon-Henao A, et al. Susceptibility of Mycobacterium abscessus to antimycobacterial drugs in preclinical models. Antimicrob Agents Chemother. 2015;59(11):6904–12.PubMedPubMedCentralCrossRefGoogle Scholar
  180. 180.
    Philley JV, Wallace RJ Jr, Benwill JL, Taskar V, Brown-Elliott BA, Thakkar F, et al. Preliminary results of bedaquiline as salvage therapy for patients with nontuberculous mycobacterial lung disease. Chest. 2015;148(2):499–506.PubMedPubMedCentralCrossRefGoogle Scholar
  181. 181.
    Lounis N, Gevers T, van den Berg J, Andries K. Impact of the interaction of R207910 with rifampin on the treatment of tuberculosis studied in the mouse model. Antimicrob Agents Chemother. 2008;52(10):3568–72.PubMedPubMedCentralCrossRefGoogle Scholar
  182. 182.
    Brown-Elliott BA, Wallace RJ Jr. In vitro susceptibility testing of tedizolid against nontuberculous mycobacteria. J Clin Microbiol. 2017;55(6):1747–54.PubMedPubMedCentralCrossRefGoogle Scholar
  183. 183.
    Yuste JR, Bertó J, del Pozo JL, Leiva J. Prolonged use of tedizolid in a pulmonary non-tuberculous mycobacterial infection after linezolid-induced toxicity. J Antimicrob Chemother. 2017;72(2):625–8.PubMedCrossRefGoogle Scholar
  184. 184.
    •• Kumar P, Chauhan V, Silva JRA, Lameira J, d'Andrea FB, Li SG, et al., Mycobacterium abscessus l,d-transpeptidases are susceptible to inactivation by carbapenems and cephalosporins but not penicillins. Antimicrob Agents Chemother. 2017;61(10). This study examined the l,d- transpeptidases of M. abscessus and cloned, expressed, and studied the interactions of β-lactams with two of the L,D-transpeptidases, and demonstrated inhibition with carbapenems and cephalosporins, and potential role of dual-beta lactam therapy in treatment of M. abscessus.
  185. 185.
    Soroka D, Dubee V, Soulier-Escrihuela O, Cuinet G, Hugonnet JE, Gutmann L, et al. Characterization of broad-spectrum Mycobacterium abscessus class a beta-lactamase. J Antimicrob Chemother. 2014;69(3):691–6.PubMedCrossRefGoogle Scholar
  186. 186.
    Dubee V, et al. Beta-lactamase inhibition by avibactam in Mycobacterium abscessus. J Antimicrob Chemother. 2015;70(4):1051–8.PubMedGoogle Scholar
  187. 187.
    Kaushik A, Gupta C, Fisher S, Story-Roller E, Galanis C, Parrish N, et al. Combinations of avibactam and carbapenems exhibit enhanced potencies against drug-resistant Mycobacterium abscessus. Future Microbiol. 2017;12:473–80.PubMedCrossRefGoogle Scholar
  188. 188.
    •• Lefebvre AL, Le Moigne V, Bernut A, Veckerlé C, Compain F, Herrmann JL, et al. Inhibition of the β-lactamase BlaMab by avibactam improves the in vitro and in vivo efficacy of imipenem against Mycobacterium abscessus. Antimicrob Agents Chemother. 2017;61(4). The authors review the effects of BlaM ab on M abscessus susceptibility to β-lactams and demonstrate that the benefit of adding avibactam to imipenem is likely underestimated in vitro. They show that in human macrophages and zebrafish β-lactamase is produced at a high level. The addition of avibactam increases the efficacy of imipenem.

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Elizabeth Ann Misch
    • 1
  • Christopher Saddler
    • 2
  • James Muse Davis
    • 3
  1. 1.Division of Allergy and Infectious Disease, Department of Medicine, School of Medicine and Public HealthUniversity of WisconsinMadisonUSA
  2. 2.Division of Allergy and Infectious Disease, Department of Medicine, School of Medicine and Public HealthUniversity of WisconsinMadisonUSA
  3. 3.Division of Infectious Disease, Department of Pediatrics, School of Medicine and Public HealthUniversity of WisconsinMadisonUSA

Personalised recommendations