Skip to main content

Advertisement

Log in

Next-Generation Sequencing to Help Monitor Patients Infected with HIV: Ready for Clinical Use?

  • HIV/AIDS (R MacArthur, Section Editor)
  • Published:
Current Infectious Disease Reports Aims and scope Submit manuscript

Abstract

Given the extreme variability of the human immunodeficiency virus (HIV) and its ability to replicate as complex viral populations, HIV variants with reduced susceptibility to antiretroviral drugs or with specific coreceptor tropism (CCR5 and/or CXCR4) may be present as minority members of the viral quasispecies. The sensitivity of current HIV genotypic or phenotypic assays is limited, and thus, these tests usually fail to detect low-abundance viral variants. Next-generation (deep) sequencing (NGS) produces an enormous amount of information that allows the detection of minority HIV variants at levels unimaginable using standard Sanger sequencing. NGS technologies continue to evolve, opening new and more affordable opportunities to implement this methodology in clinical laboratories, and HIV is not an exception. The ample use of a battery of more effective antiretroviral drugs, together with careful patient monitoring based on HIV resistance testing, has resulted in HIV-infected patients whose disease is usually well-controlled. The vast majority of adherent patients without detectable resistance become virologically suppressed; however, a subset of these patients with undetectable resistance by standard methods may fail antiretroviral therapy, perhaps due to the presence of minority HIV-resistant variants. Novel NGS-based HIV assays with increased sensitivity for identifying low-level drug resistance and/or coreceptor tropism may play an important role in the success of antiretroviral treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Marx JL. Drug-resistant strains of AIDS virus found. Science. 1989;243:1551–2.

    Article  CAS  PubMed  Google Scholar 

  2. MacArthur RD. Understanding HIV, phenotypic resistance testing: usefulness in managing treatment-experienced patients. AIDS Rev. 2009;11:223–30.

    PubMed  Google Scholar 

  3. Zolopa AR. The evolution of HIV treatment guidelines: current state-of-the-art of ART. Antiviral Res. 2010;85:241–4.

    Article  CAS  PubMed  Google Scholar 

  4. Rose JD, Rhea AM, Weber J, Quinones-Mateu ME. Current tests to evaluate HIV-1 coreceptor tropism. Curr Opin HIV AIDS. 2009;4:136–42.

    Article  PubMed  Google Scholar 

  5. Dunn DT, Coughlin K, Cane PA. Genotypic resistance testing in routine clinical care. Curr Opin HIV AIDS. 2011;6:251–7.

    Article  PubMed  Google Scholar 

  6. Grant PM, Zolopa AR. The use of resistance testing in the management of HIV-1-infected patients. Curr Opin HIV AIDS. 2009;4:474–80.

    Article  PubMed  Google Scholar 

  7. Cunningham S, Ank B, Lewis D, Lu W, Wantman M, Dileanis JA, et al. Performance of the applied biosystems ViroSeq human immunodeficiency virus type 1 (HIV-1) genotyping system for sequence-based analysis of HIV-1 in pediatric plasma samples. J Clin Microbiol. 2001;39:1254–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Grant RM, Kuritzkes DR, Johnson VA, Mellors JW, Sullivan JL, Swanstrom R, et al. Accuracy of the TRUGENE HIV-1 genotyping kit. J Clin Microbiol. 2003;41:1586–93.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Paar C, Palmetshofer C, Flieger K, Geit M, Kaiser R, Stekel H, et al. Genotypic antiretroviral resistance testing for human immunodeficiency virus type 1 integrase inhibitors by use of the TruGene sequencing system. J Clin Microbiol. 2008;46:4087–90.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Obermeier M, Symons J, Wensing AM. HIV population genotypic tropism testing and its clinical significance. Curr Opin HIV AIDS. 2012;7:470–7.

    Article  CAS  PubMed  Google Scholar 

  11. Poveda E, Alcami J, Paredes R, Cordoba J, Gutierrez F, Llibre JM, et al. Genotypic determination of HIV tropism - clinical and methodological recommendations to guide the therapeutic use of CCR5 antagonists. AIDS Rev. 2010;12:135–48.

    PubMed  Google Scholar 

  12. Larder BA, Kohli A, Kellam P, Kemp SD, Kronick M, Henfrey RD. Quantitative detection of HIV-1 drug resistance mutations by automated DNA sequencing. Nature. 1993;365:671–3.

    Article  CAS  PubMed  Google Scholar 

  13. Church JD, Jones D, Flys T, Hoover D, Marlowe N, Chen S, et al. Sensitivity of the ViroSeq HIV-1 genotyping system for detection of the K103N resistance mutation in HIV-1 subtypes A, C, and D. J Mol Diagn: JMD. 2006;8:430–2. quiz 527.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Halvas EK, Aldrovandi GM, Balfe P, Beck IA, Boltz VF, Coffin JM, et al. Blinded, multicenter comparison of methods to detect a drug-resistant mutant of human immunodeficiency virus type 1 at low frequency. J Clin Microbiol. 2006;44:2612–4.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Leitner T, Halapi E, Scarlatti G, Rossi P, Albert J, Fenyo EM, et al. Analysis of heterogeneous viral populations by direct DNA sequencing. Biotechniques. 1993;15:120–7.

    CAS  PubMed  Google Scholar 

  16. Swenson LC, Daumer M, Paredes R. Next-generation sequencing to assess HIV tropism. Curr Opin HIV AIDS. 2012;7:478–85.

    Article  CAS  PubMed  Google Scholar 

  17. Scally A, Dutheil JY, Hillier LW, Jordan GE, Goodhead I, Herrero J, et al. Insights into hominid evolution from the gorilla genome sequence. Nature. 2012;483:169–75.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Howden BP, McEvoy CR, Allen DL, Chua K, Gao W, Harrison PF, et al. Evolution of multidrug resistance during Staphylococcus aureus infection involves mutation of the essential two component regulator WalKR. PLoS Pathog. 2011;7:e1002359.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Quan PL, Firth C, Conte JM, Williams SH, Zambrana-Torrelio CM, Anthony SJ, et al. Bats are a major natural reservoir for hepaciviruses and pegiviruses. Proc Natl Acad Sci U S A. 2013;110:8194–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Loman NJ, Misra RV, Dallman TJ, Constantinidou C, Gharbia SE, Wain J, et al. Performance comparison of benchtop high-throughput sequencing platforms. Nat Biotechnol. 2012. An excellent study comparing 454’s GS jr., Illumina’s MiSeq, and Ion Torrent’s PGM.

  21. Liu L, Li Y, Li S, Hu N, He Y, Pong R, et al. Comparison of next-generation sequencing systems. J Biomed Biotechnol. 2012;2012:251364.

    PubMed Central  PubMed  Google Scholar 

  22. Quail MA, Smith M, Coupland P, Otto TD, Harris SR, Connor TR, et al. A tale of three next generation sequencing platforms: comparison of Ion Torrent, Pacific Biosciences and Illumina MiSeq sequencers. BMC Genom. 2012;13:341.

    Article  CAS  Google Scholar 

  23. Wong LJ. Challenges of bringing next generation sequencing technologies to clinical molecular diagnostic laboratories. Neurother: J Am Soc Exp Neurother. 2013;10:262–72.

    Article  CAS  Google Scholar 

  24. Gullapalli RR, Lyons-Weiler M, Petrosko P, Dhir R, Becich MJ, LaFramboise WA. Clinical integration of next-generation sequencing technology. Clin Lab Med. 2012;32:585–99.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Avidor B, Girshengorn S, Matus N, Talio H, Achsanov S, Zeldis I, et al. Evaluation of a benchtop HIV ultradeep pyrosequencing drug resistance assay in the clinical laboratory. J Clin Microbiol. 2013;51:880–6. Description of an HIV-1 genotyping assay based on the 454 GS Jr. platform.

  26. Chang MW, Oliveira G, Yuan J, Okulicz JF, Levy S, Torbett BE. Rapid deep sequencing of patient-derived HIV with ion semiconductor technology. J Virol Methods. 2013;189:232–4.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Dudley DM, Chin EN, Bimber BN, Sanabani SS, Tarosso LF, Costa PR, et al. Low-cost ultra-wide genotyping using Roche/454 pyrosequencing for surveillance of HIV drug resistance. PloS One. 2012;7:e36494.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Messiaen P, Verhofstede C, Vandenbroucke I, Dinakis S, Van Eygen V, Thys K, et al. Ultra-deep sequencing of HIV-1 reverse transcriptase before start of an NNRTI-based regimen in treatment-naive patients. Virology. 2012;426:7–11.

    Article  CAS  PubMed  Google Scholar 

  29. Armenia D, Vandenbroucke I, Fabeni L, Van Marck H, Cento V, D’Arrigo R, et al. Study of genotypic and phenotypic HIV-1 dynamics of integrase mutations during raltegravir treatment: a refined analysis by ultra-deep 454 pyrosequencing. J Infect Dis. 2012;205:557–67.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Mukherjee R, Jensen ST, Male F, Bittinger K, Hodinka RL, Miller MD, et al. Switching between raltegravir resistance pathways analyzed by deep sequencing. AIDS. 1951–1959;2011:25.

    Google Scholar 

  31. Simen BB, Simons JF, Hullsiek KH, Novak RM, Macarthur RD, Baxter JD, et al. Low-abundance drug-resistant viral variants in chronically HIV-infected, antiretroviral treatment-naive patients significantly impact treatment outcomes. J Infect Dis. 2009;199:693–701.

    Article  PubMed  Google Scholar 

  32. Liu J, Miller MD, Danovich RM, Vandergrift N, Cai F, Hicks CB, et al. Analysis of low-frequency mutations associated with drug resistance to raltegravir before antiretroviral treatment. Antimicrob Agents Chemother. 2011;55:1114–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Shao W, Boltz VF, Spindler JE, Kearney MF, Maldarelli F, Mellors JW, et al. Analysis of 454 sequencing error rate, error sources, and artifact recombination for detection of Low-frequency drug resistance mutations in HIV-1 DNA. Retrovirology. 2013;10:18.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Gibson RM, Meyer AM, Winner D, Archer J, Feyertag F, Robertson DL, et al. Characterization and validation of a deep sequencing-based HIV-1 genotypic and coreceptor tropism assay to simultaneously monitor susceptibility to maturation, protease, reverse transcriptase, and integrase inhibitors, and CCR5 antagonists. Antivir Ther. 2013;18:A43. Original description of the first all-inclusive HIV-1 genotyping and coreceptor tropism assay based on deep sequencing.

  35. Swenson LC, Mo T, Dong WW, Zhong X, Woods CK, Thielen A, et al. Deep V3 sequencing for HIV type 1 tropism in treatment-naive patients: a reanalysis of the MERIT trial of maraviroc. Clin Infect Dis: Off Publ Infect Dis Soc Am. 2011;53:732–42.

    Article  CAS  Google Scholar 

  36. Swenson LC, Mo T, Dong WW, Zhong X, Woods CK, Jensen MA, et al. Deep sequencing to infer HIV-1 co-receptor usage: application to three clinical trials of maraviroc in treatment-experienced patients. J Infect Dis. 2011;203:237–45. Excellent study describing the use of an deep sequencing-based HIV-1 coreceptor tropism test in the clinical setting.

  37. Saliou A, Delobel P, Dubois M, Nicot F, Raymond S, Calvez V, et al. Concordance between two phenotypic assays and ultradeep pyrosequencing for determining HIV-1 tropism. Antimicrob Agents Chemother. 2011;55:2831–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Kagan RM, Johnson EP, Siaw MF, Van Baelen B, Ogden R, Platt JL, et al. Comparison of genotypic and phenotypic HIV Type 1 tropism assay: results from the screening samples of cenicriviroc study 202, a randomized phase II trial in treatment-naive subjects. AIDS Res Hum Retrovir. 2013;29.

  39. Kagan RM, Johnson EP, Siaw M, Biswas P, Chapman DS, Su Z, et al. A genotypic test for HIV-1 tropism combining Sanger sequencing with ultradeep sequencing predicts virologic response in treatment-experienced patients. PloS One. 2012;7:e46334. Description of a commercial HIV-1 coreceptor tropism assay based on deep sequencing.

  40. Archer J, Weber J, Henry K, Winner D, Gibson R, Lee L, et al. Use of Four Next-Generation Sequencing Platforms to Determine HIV-1 Coreceptor Tropism. PloS One. 2012;7:e49602. First study comparing all four deep sequencing technologies (454, Illumina, Ion Torrent, and Pacific Biosciences) to quantify HIV-1 coreceptor tropism.

  41. Swenson LC, Moores A, Low AJ, Thielen A, Dong W, Woods C, et al. Improved detection of CXCR4-using HIV by V3 genotyping: application of population-based and “deep” sequencing to plasma RNA and proviral DNA. J Acquir Immune Defic Syndr. 2010;54:506–10.

    Article  CAS  PubMed  Google Scholar 

  42. Archer J, Braverman MS, Taillon BE, Desany B, James I, Harrigan PR, et al. Detection of low-frequency pretherapy chemokine (CXC motif) receptor 4 (CXCR4)-using HIV-1 with ultra-deep pyrosequencing. AIDS. 2009;23:1209–18.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Vandenbroucke I, Van Marck H, Mostmans W, Van Eygen V, Rondelez E, Thys K, et al. HIV-1 V3 envelope deep sequencing for clinical plasma specimens failing in phenotypic tropism assays. AIDS Res Ther. 2010;7:4.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Archer J, Rambaut A, Taillon BE, Harrigan PR, Lewis M, Robertson DL. The evolutionary analysis of emerging low frequency HIV-1 CXCR4 using variants through time–an ultra-deep approach. PLoS Comput Biol. 2010;6:e1001022.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Raymond S, Saliou A, Nicot F, Delobel P, Dubois M, Cazabat M, et al. Frequency of CXCR4-using viruses in primary HIV-1 infections using ultra-deep pyrosequencing. AIDS. 2011;25:1668–70.

    Article  PubMed  Google Scholar 

  46. Abbate I, Vlassi C, Rozera G, Bruselles A, Bartolini B, Giombini E, et al. Detection of quasispecies variants predicted to use CXCR4 by ultra-deep pyrosequencing during early HIV infection. AIDS. 2011;25:611–7.

    Article  PubMed  Google Scholar 

  47. Lee GQ, Harrigan PR, Dong W, Poon AF, Heera J, Demarest J, et al. Comparison of population and 454 “deep” sequence analysis for HIV type 1 tropism versus the original trofile assay in non-B subtypes. AIDS Res Hum Retrovir. 2013;29:979–84.

    Article  CAS  PubMed  Google Scholar 

  48. Wu X, Zhou T, Zhu J, Zhang B, Georgiev I, Wang C, et al. Focused evolution of HIV-1 neutralizing antibodies revealed by structures and deep sequencing. Science. 2011;333:1593–602.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Henn MR, Boutwell CL, Charlebois P, Lennon NJ, Power KA, Macalalad AR, et al. Whole genome deep sequencing of HIV-1 reveals the impact of early minor variants upon immune recognition during acute infection. PLoS Pathog. 2012;8:e1002529.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Raymond S, Delobel P, Izopet J. Phenotyping methods for determining HIV tropism and applications in clinical settings. Curr Opin HIV AIDS. 2012;7:463–9.

    Article  CAS  PubMed  Google Scholar 

  51. Japour AJ, Mayers DL, Johnson VA, Kuritzkes DR, Beckett LA, Arduino JM, et al. Standardized peripheral blood mononuclear cell culture assay for determination of drug susceptibilities of clinical human immunodeficiency virus type 1 isolates. The RV-43 Study Group, the AIDS Clinical Trials Group Virology Committee Resistance Working Group. Antimicrob Agents Chemother. 1993;37:1095–101.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Hertogs K, de Bethune MP, Miller V, Ivens T, Schel P, Van Cauwenberge A, et al. A rapid method for simultaneous detection of phenotypic resistance to inhibitors of protease and reverse transcriptase in recombinant human immunodeficiency virus type 1 isolates from patients treated with antiretroviral drugs. Antimicrob Agents Chemother. 1998;42:269–76.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Kellam P, Larder BA. Recombinant virus assay: a rapid, phenotypic assay for assessment of drug susceptibility of human immunodeficiency virus type 1 isolates. Antimicrob Agents Chemother. 1994;38:23–30.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Petropoulos CJ, Parkin NT, Limoli KL, Lie YS, Wrin T, Huang W, et al. A novel phenotypic drug susceptibility assay for human immunodeficiency virus type 1. Antimicrob Agents Chemother. 2000;44:920–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Weber J, Vazquez AC, Winner D, Rose JD, Wylie D, Rhea AM, et al. Novel method for simultaneous quantification of phenotypic resistance to maturation, protease, reverse transcriptase, and integrase HIV inhibitors based on 3′Gag(p2/p7/p1/p6)/PR/RT/INT-recombinant viruses: a useful tool in the multitarget era of antiretroviral therapy. Antimicrob Agents Chemother. 2011;55:3729–42.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Meyerhans A, Cheynler R, Albert J, Seth M, Kwok S, Sninsky J, et al. Temporal Fluctuations in HIV Quasispecies In Vivo Are Not Reflected by Sequential HIV Isolations. Cell. 1989;58:901–10.

    Article  CAS  PubMed  Google Scholar 

  57. Race E, Dam E, Obry V, Paulous S, Clavel F. Analysis of HIV cross-resistance to protease inhibitors using a rapid single-cycle recombinant virus assay for patients failing on combination therapies. AIDS. 1999;13:2061–8.

    Article  CAS  PubMed  Google Scholar 

  58. Paredes R, Clotet B. Clinical management of HIV-1 resistance. Antiviral Res. 2010;85:245–65.

    Article  CAS  PubMed  Google Scholar 

  59. Shafer RW. Rationale and uses of a public HIV drug-resistance database. J Infect Dis. 2006;194 Suppl 1:S51–58.

    Article  PubMed Central  PubMed  Google Scholar 

  60. Dragic T, Litwin V, Allaway GP, Martin SR, Huang Y, Nagashima KA, et al. HIV-1 entry into CD4+ cells is mediated by the chemokine receptor CC- CKR-5. Nature. 1996;381:667–73.

    Article  CAS  PubMed  Google Scholar 

  61. Feng Y, Broder CC, Kennedy PE, Berger EA. HIV-1 entry cofactor: functional cDNA cloning of a seven-transmembrane, G protein-coupled receptor. Science. 1996;272:872–7.

    Article  CAS  PubMed  Google Scholar 

  62. Deng H, Liu R, Ellmeier W, Choe S, Unutmaz D, Burkhart M, et al. Identification of a major co-receptor for primary isolates of HIV-1. Nature. 1996;381:661–6.

    Article  CAS  PubMed  Google Scholar 

  63. Dorr P, Westby M, Dobbs S, Griffin P, Irvine B, Macartney M, et al. Maraviroc (UK-427,857), a potent, orally bioavailable, and selective small-molecule inhibitor of chemokine receptor CCR5 with broad-spectrum anti-human immunodeficiency virus type 1 activity. Antimicrob Agents Chemother. 2005;49:4721–32.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Poveda E, Briz V, Quinones-Mateu M, Soriano V. HIV tropism: diagnostic tools and implications for disease progression and treatment with entry inhibitors. AIDS. 2006;20:1359–67.

    Article  PubMed  Google Scholar 

  65. Weber J, Piontkivska H, Quinones-Mateu ME. HIV type 1 tropism and inhibitors of viral entry: clinical implications. AIDS Rev. 2006;8:60–77.

    PubMed  Google Scholar 

  66. Trouplin V, Salvatori F, Cappello F, Obry V, Brelot A, Heveker N, et al. Determination of coreceptor usage of human immunodeficiency virus type 1 from patient plasma samples by using a recombinant phenotypic assay. J Virol. 2001;75:251–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Whitcomb JM, Huang W, Fransen S, Limoli K, Toma J, Wrin T, et al. Development and characterization of a novel single-cycle recombinant-virus assay to determine human immunodeficiency virus type 1 coreceptor tropism. Antimicrob Agents Chemother. 2007;51:566–75.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  68. Raymond S, Delobel P, Mavigner M, Cazabat M, Souyris C, Encinas S, et al. Development and performance of a new recombinant virus phenotypic entry assay to determine HIV-1 coreceptor usage. J Clin Virol: Off Publ Pan Am Soc Clin Virol. 2010;47:126–30.

    Article  CAS  Google Scholar 

  69. Holland AU, Munk C, Lucero GR, Nguyen LD, Landau NR. Alpha-complementation assay for HIV envelope glycoprotein-mediated fusion. Virology. 2004;319:343–52.

    Article  CAS  PubMed  Google Scholar 

  70. Grund S, Klein A, Adams O. Expression plasmids are only useful for the investigation of co-receptor tropism and fusion capacity of short HIV-1 envelope domains. J Virol Methods. 2010;166:106–9.

    Article  CAS  PubMed  Google Scholar 

  71. Weber J, Vazquez AC, Winner D, Gibson RM, Rhea AM, Rose JD, et al. Sensitive Cell-based Assay to Determine Human Immunodeficiency Virus Type 1 Coreceptor Tropism. J Clin Microbiol. 2013;51:1517–27.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  72. Sing T, Low AJ, Beerenwinkel N, Sander O, Cheung PK, Domingues FS, et al. Predicting HIV coreceptor usage on the basis of genetic and clinical covariates. Antivir Ther. 2007;12:1097–106.

    CAS  PubMed  Google Scholar 

  73. Jensen MA, Li FS, van’t Wout AB, Nickle DC, Shriner D, He HX, et al. Improved coreceptor usage prediction and genotypic monitoring of R5-to-X4 transition by motif analysis of human immunodeficiency virus type 1 env V3 loop sequences. J Virol. 2003;77:13376–88.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  74. Cardozo T, Kimura T, Philpott S, Weiser B, Burger H, Zolla-Pazner S. Structural basis for coreceptor selectivity by the HIV type 1 V3 loop. AIDS Res Hum Retrovir. 2007;23:415–26.

    Article  CAS  PubMed  Google Scholar 

  75. Rosen O, Sharon M, Quadt-Akabayov SR, Anglister J. Molecular switch for alternative conformations of the HIV-1 V3 region: implications for phenotype conversion. Proc Natl Acad Sci U S A. 2006;103:13950–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  76. Reeves JD, Coakley E, Petropoulos CJ, Whitcomb JM. An Enhanced-Sensitivity Trofile™ HIV Coreceptor Tropism Assay for Selecting Patients for Therapy with Entry Inhibitors Targeting CCR5: A Review of Analytical and Clinical Studies. J Viral Entry. 2009;3:94–102.

    Google Scholar 

  77. Metzker ML. Sequencing technologies - the next generation. Nat Rev Genet. 2010;11:31–46.

    Article  CAS  PubMed  Google Scholar 

  78. Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bemben LA, et al. Genome sequencing in microfabricated high-density picolitre reactors. Nature. 2005;437:376–80.

    CAS  PubMed Central  PubMed  Google Scholar 

  79. Bennett S. Solexa Ltd. Pharmacogenomics. 2004;5:433–8.

    Article  PubMed  Google Scholar 

  80. Rothberg JM, Hinz W, Rearick TM, Schultz J, Mileski W, Davey M, et al. An integrated semiconductor device enabling non-optical genome sequencing. Nature. 2011;475:348–52.

    Article  CAS  PubMed  Google Scholar 

  81. Eid J, Fehr A, Gray J, Luong K, Lyle J, Otto G, et al. Real-time DNA sequencing from single polymerase molecules. Science. 2009;323:133–8.

    Article  CAS  PubMed  Google Scholar 

  82. Howorka S, Cheley S, Bayley H. Sequence-specific detection of individual DNA strands using engineered nanopores. Nat Biotechnol. 2001;19:636–9.

    Article  CAS  PubMed  Google Scholar 

  83. Quinones-Mateu ME, Albright JL, Mas A, Soriano V, Arts EJ. Analysis of pol gene heterogeneity, viral quasispecies, and drug resistance in individuals infected with group O strains of human immunodeficiency virus type 1. J Virol. 1998;72:9002–15.

    CAS  PubMed Central  PubMed  Google Scholar 

  84. Willerth SM, Pedro HA, Pachter L, Humeau LM, Arkin AP, Schaffer DV. Development of a low bias method for characterizing viral populations using next generation sequencing technology. PloS One. 2010;5:e13564.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  85. Eriksson N, Pachter L, Mitsuya Y, Rhee SY, Wang C, Gharizadeh B, et al. Viral population estimation using pyrosequencing. PLoS Comput Biol. 2008;4:e1000074.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  86. Poon AF, Swenson LC, Dong WW, Deng W, Kosakovsky Pond SL, Brumme ZL, et al. Phylogenetic analysis of population-based and deep sequencing data to identify coevolving sites in the nef gene of HIV-1. Mol Biol Evol. 2010;27:819–32.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  87. Redd AD, Quinn TC, Tobian AA. Frequency and implications of HIV superinfection. Lancet Infect Dis. 2013;13:622–8.

    Article  PubMed  Google Scholar 

  88. Fisher R, van Zyl GU, Travers SA, Kosakovsky Pond SL, Engelbrech S, Murrell B, et al. Deep sequencing reveals minor protease resistance mutations in patients failing a protease inhibitor regimen. J Virol. 2012;86:6231–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  89. Wang C, Mitsuya Y, Gharizadeh B, Ronaghi M, Shafer RW. Characterization of mutation spectra with ultra-deep pyrosequencing: application to HIV-1 drug resistance. Genome Res. 2007;17:1195–201.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  90. Stelzl E, Proll J, Bizon B, Niklas N, Danzer M, Hackl C, et al. Human immunodeficiency virus type 1 drug resistance testing: Evaluation of a new ultra-deep sequencing-based protocol and comparison with the TRUGENE HIV-1 Genotyping Kit. J Virol Methods. 2011;178:94–7.

    Article  CAS  PubMed  Google Scholar 

  91. Lataillade M, Chiarella J, Yang R, DeGrosky M, Uy J, Seekins D, et al. Virologic failures on initial boosted-PI regimen infrequently possess low-level variants with major PI resistance mutations by ultra-deep sequencing. PloS One. 2012;7:e30118.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  92. Nicot F, Saliou A, Raymond S, Saune K, Dubois M, Massip P, et al. Minority variants associated with resistance to HIV-1 nonnucleoside reverse transcriptase inhibitors during primary infection. J Clin Virol: Off Publ Pan Am Soc Clin Virol. 2012;55:107–13.

    Article  CAS  Google Scholar 

  93. D’Aquila RT, Geretti AM, Horton JH, Rouse E, Kheshti A, Raffanti S, et al. Tenofovir (TDF)-selected or abacavir (ABC)-selected low-frequency HIV type 1 subpopulations during failure with persistent viremia as detected by ultradeep pyrosequencing. AIDS Res Hum Retrovir. 2011;27:201–9.

    Article  CAS  PubMed  Google Scholar 

  94. Bellecave P, Recordon-Pinson P, Papuchon J, Vandenhende MA, Reigadas S, Tauzin B, et al. Detection of low-frequency HIV Type 1 reverse transcriptase drug resistance mutations by Ultradeep Sequencing in Naive HIV Type 1-Infected individuals. AIDS Res Hum Retrovir. 2013.

  95. Li JZ, Kuritzkes DR. Clinical implications of HIV-1 minority variants. Clin Infect Dis: Off Publ Infect Dis Soc Am. 2013;56:1667–74. Excellent article that analyses the potential use of deep sequencing HIV-1 assays in the clinical setting.

  96. Li JZ, Paredes R, Ribaudo HJ, Svarovskaia ES, Metzner KJ, Kozal MJ, et al. Low-frequency HIV-1 drug resistance mutations and risk of NNRTI-based antiretroviral treatment failure: a systematic review and pooled analysis. JAMA: J Am Med Assoc. 2011;305:1327–35.

    Article  CAS  Google Scholar 

  97. Stekler JD, Ellis GM, Carlsson J, Eilers B, Holte S, Maenza J, et al. Prevalence and impact of minority variant drug resistance mutations in primary HIV-1 infection. PloS One. 2011;6:e28952.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  98. Li JZ, Paredes R, Ribaudo HJ, Kozal MJ, Svarovskaia ES, Johnson JA, et al. Impact of minority nonnucleoside reverse transcriptase inhibitor resistance mutations on resistance genotype after virologic failure. J Infect Dis. 2013;207:893–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  99. Li JZ, Paredes R, Ribaudo HJ, Svarovskaia ES, Kozal MJ, Hullsiek KH, et al. Relationship between minority nonnucleoside reverse transcriptase inhibitor resistance mutations, adherence, and the risk of virologic failure. AIDS. 2012;26:185–92.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  100. Codoner FM, Pou C, Thielen A, Garcia F, Delgado R, Dalmau D, et al. Added value of deep sequencing relative to population sequencing in heavily pre-treated HIV-1-infected subjects. PloS One. 2011;6:e19461.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  101. Gonzalez S, Tully DC, Gondwe C, Wood C. Low-abundance resistant mutations in HIV-1 subtype C antiretroviral therapy-naive individuals as revealed by pyrosequencing. Curr HIV Res. 2013;11:43–9.

    CAS  PubMed  Google Scholar 

  102. Bunnik EM, Swenson LC, Edo-Matas D, Huang W, Dong W, Frantzell A, et al. Detection of inferred CCR5- and CXCR4-using HIV-1 variants and evolutionary intermediates using ultra-deep pyrosequencing. PLoS Pathog. 2011;7:e1002106.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  103. Rozera G, Abbate I, Bruselles A, Vlassi C, D’Offizi G, Narciso P, et al. Archived HIV-1 minority variants detected by ultra-deep pyrosequencing in provirus may be fully replication competent. AIDS. 2009;23:2541–3.

    Article  PubMed  Google Scholar 

  104. Gonzalez-Serna A, McGovern RA, Harrigan PR, Vidal F, Poon AF, Ferrando-Martinez S, et al. Correlation of the virological response to short-term maraviroc monotherapy with standard and deep-sequencing-based genotypic tropism prediction methods. Antimicrob Agents Chemother. 2012;56:1202–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  105. Raymond S, Recordon-Pinson P, Saliou A, Delobel P, Nicot F, Descamps D, et al. Improved V3 genotyping with duplicate PCR amplification for determining HIV-1 tropism. J Antimicrob Chemother. 2011;66:1972–5.

    Article  CAS  PubMed  Google Scholar 

  106. Van HM, Picchio G, Van der Borght K, Pattery T, Lecocq P, Bacheler LT. A comparison of HIV-1 drug susceptibility as provided by conventional phenotyping and by a phenotype prediction tool based on viral genotype. J Med Virol. 2009;81:1702–9.

    Article  CAS  Google Scholar 

  107. Gonzalez-Serna A, Leal M, Genebat M, Abad MA, Garcia-Perganeda A, Ferrando-Martinez S, et al. TROCAI (tropism coreceptor assay information): a new phenotypic tropism test and its correlation with Trofile enhanced sensitivity and genotypic approaches. J Clin Microbiol. 2010;48:4453–8.

    Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Richard M. Gibson, Christine L. Schmotzer, and Miguel E. Quiñones-Mateu have developed the novel HIV-1 genotyping and coreceptor tropism assay, DEEPGEN™HIV.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel E. Quiñones-Mateu.

Additional information

This article is part of the Topical Collection on HIV/AIDS

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gibson, R.M., Schmotzer, C.L. & Quiñones-Mateu, M.E. Next-Generation Sequencing to Help Monitor Patients Infected with HIV: Ready for Clinical Use?. Curr Infect Dis Rep 16, 401 (2014). https://doi.org/10.1007/s11908-014-0401-5

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11908-014-0401-5

Keywords

Navigation