Skip to main content
Log in

How Might We Cure HIV?

  • HIV/AIDS (R MacArthur, Section Editor)
  • Published:
Current Infectious Disease Reports Aims and scope Submit manuscript

Abstract

Antiretroviral therapy (ART) does not eliminate HIV-1 from latently infected reservoirs, and this remains the critical obstacle to the eradication of infection. Although ART is effective in suppressing viral load, life-long ART is burdensome in many respects. Given expanding numbers of HIV-infected individuals on ART worldwide, there is an urgent need to examine the possibility that innovative therapies might eradicate infection, and obviate the need for life-long medical therapy for HIV-positive people around the world. Several approaches to eradicating the latent HIV reservoir and curing infection have been proposed and are under study. An initial strategy seeks to induce the expression of the latent integrated proviral genomes within resting CD4+ T cells, so that viral proteins or particles may be revealed and allow these cellular reservoirs to be cleared. The inducing agents that have been studied recently are inhibitors of histone deacetylase (HDAC) such as suberoylanilide hydroxamic acid (SAHA). Such induction of viral expression seems unlikely in itself to efficiently clear all latently infected cells. Therefore, it seems likely that parallel efforts to augment the HIV-specific immune response with specific immunotherapies or vaccination may be required. Recently, efforts to achieve immune augmentation by ex vivo expansion of viral specific cytotoxic T-cell lymphocytes derived from HIV-infected patients have yielded an augmented HIV-specific immune response in vivo, as have cellular vaccinations delivered by administration of dendritic cells. As HIV latency and the persistence of infection despite effective ART is multifactorial, the eradication of HIV infection may require multiple approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. UNAIDS. UNAIDS world AIDS day report. Geneva: UNAIDS; 2012.

    Google Scholar 

  2. Barton KM, Burch BD, Soriano-Sarabia N, Margolis DM. Prospects for treatment of latent HIV. Clin Pharmacol Ther. 2013;93(1):46–56.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  3. Van Lint C, Bouchat S, Marcello A. HIV-1 transcription and latency: an update. Retrovirology. 2013;10:67.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  4. Choudhary SK, Margolis DM. Curing HIV: pharmacologic approaches to target HIV-1 latency. Annu Rev Pharmacol Toxicol. 2011;51:397–418.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  5. Archin NM, Liberty AL, Kashuba AD, Choudhary SK, Kuruc JD, Crooks AM, et al. Administration of vorinostat disrupts HIV-1 latency in patients on antiretroviral therapy. Nature. 2012;487(7408):482–5. A proof-of-concept study in humans demonstrating disruption of latent infection by a therapeutic approach.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  6. Tolstrup M. Cyclic panobinostat (LBH589) dosing in HIV-1 patients: findings from the CLEAR trial. IAS 2013 Symposium: Towards an HIV Cure. Kuala Lumpur, July 2013. Geneva: International AIDS Society; 2013. http://iasociety.org/Web/WebContent/File/HIV_Cure_Symposium_2013/Session%203_Martin%20Tolstrup.pdf. Accessed 13 Jan 2014.

    Google Scholar 

  7. Boehm D, Conrad RJ, Ott M. Bromodomain proteins in HIV infection. Viruses. 2013;5(6):1571–86.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  8. Boehm D, Calvanese V, Dar RD, Xing S, Schroeder S, Martins L, et al. BET bromodomain-targeting compounds reactivate HIV from latency via a Tat-independent mechanism. Cell Cycle. 2013;12(3):452–62. This and several other papers in 2012 demonstrated that BRD inhibitors may be a new class of antilatency compound.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  9. Li Z, Guo J, Wu Y, Zhou Q. The BET bromodomain inhibitor JQ1 activates HIV latency through antagonizing Brd4 inhibition of Tat-transactivation. Nucleic Acids Res. 2013;41(1):277–87.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  10. Zhu J, Gaiha GD, John SP, Pertel T, Chin CR, Gao G, et al. Reactivation of latent HIV-1 by inhibition of BRD4. Cell Rep. 2012;2(4):807–16.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  11. Banerjee C, Archin N, Michaels D, Belkina AC, Denis GV, Bradner J, et al. BET bromodomain inhibition as a novel strategy for reactivation of HIV-1. J Leukoc Biol. 2012;92(6):1147–54.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  12. Fernandez G, Zaikos TD, Khan SZ, Jacobi AM, Behlke MA, Zeichner SL. Targeting IκB proteins for HIV latency activation: the role of individual IκB and NF-κB proteins. J Virol. 2013;87(7):3966–78.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  13. Gustafson KR, Cardellina 2nd JH, McMahon JB, Gulakowski RJ, Ishitoya J, Szallasi Z, et al. A nonpromoting phorbol from the samoan medicinal plant Homalanthus nutans inhibits cell killing by HIV-1. J Med Chem. 1992;35(11):1978–86.

    Article  PubMed  CAS  Google Scholar 

  14. Williams SA, Chen LF, Kwon H, Fenard D, Bisgrove D, Verdin E, et al. Prostratin antagonizes HIV latency by activating NF-kappaB. J Biol Chem. 2004;279(40):42008–17.

    Article  PubMed  CAS  Google Scholar 

  15. Beans EJ, Fournogerakis D, Gauntlett C, Heumann LV, Kramer R, Marsden MD, et al. Highly potent, synthetically accessible prostratin analogs induce latent HIV expression in vitro and ex vivo. Proc Natl Acad Sci U S A. 2013;110(29):11698–703.

    Article  PubMed Central  PubMed  Google Scholar 

  16. Mehla R, Bivalkar-Mehla S, Zhang R, Handy I, Albrecht H, Giri S, et al. Bryostatin modulates latent HIV-1 infection via PKC and AMPK signaling but inhibits acute infection in a receptor independent manner. PLoS One. 2010;5(6):e11160.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  17. Pérez M, de Vinuesa AG, Sanchez-Duffhues G, Marquez N, Bellido ML, Muñoz-Fernandez MA, et al. Bryostatin-1 synergizes with histone deacetylase inhibitors to reactivate HIV-1 from latency. Curr HIV Res. 2010;8(6):418–29.

    Article  PubMed  Google Scholar 

  18. Schaufelberger DE, Koleck MP, Beutler JA, Vatakis AM, Alvarado AB, Andrews P, et al. The large-scale isolation of bryostatin 1 from Bugula neritina following current good manufacturing practices. J Nat Prod. 1991;54(5):1265–70.

    Article  PubMed  CAS  Google Scholar 

  19. DeChristopher BA, Loy BA, Marsden MD, Schrier AJ, Zack JA, Wender PA. Designed, synthetically accessible bryostatin analogues potently induce activation of latent HIV reservoirs in vitro. Nat Chem. 2012;4(9):705–10.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  20. International AIDS Society Scientific Working Group on HIV Cure. Towards an HIV cure: a global scientific strategy. Nat Rev Immunol. 2012;12:607–14.

    Article  CAS  Google Scholar 

  21. Badley AD, Sainski A, Wightman F, Lewin SR. Altering cell death pathways as an approach to cure HIV infection. Cell Death Dis. 2013;4:e718.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  22. Berger EA, Pastan I. Immunotoxin complementation of HAART to deplete persisting HIV-infected cell reservoirs. PLoS Pathog. 2013;6(6):e1000803.

    Article  CAS  Google Scholar 

  23. Shan L, Deng K, Shroff NS, Durand CM, Rabi SA, Yang HC, et al. Stimulation of HIV-1-specific cytolytic T lymphocytes facilitates elimination of latent viral reservoir after virus reactivation. Immunity. 2012;36(3):491–501. In a relevant model system, cytolytic immune responses were not uniformly successful in clearing latent HIV infection.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  24. Chapuis AG, Casper C, Kuntz S, Zhu J, Tjernlund A, Diem K, et al. HIV-specific CD8+ T cells from HIV + individuals receiving HAART can be expanded ex vivo to augment systemic and mucosal immunity in vivo. Blood. 2011;117:5391–402.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  25. Porichis F, Kaufmann DE. HIV-specific CD4 T cells and immune control of viral replication. Curr Opin HIV AIDS. 2011;6(3):174–80.

    Article  PubMed Central  PubMed  Google Scholar 

  26. Casazza JP, Bowman KA, Adzaku S, Smith EC, Enama ME, Bailer RT, et al. Therapeutic vaccination expands and improves the function of the HIV-specific memory T-cell repertoire. J Infect Dis. 2013;207(12):1829–40.

    Article  PubMed  CAS  Google Scholar 

  27. Van Gulck E, Vlieghe E, Vekemans M, Van Tendeloo VF, Van De Velde A, Smits E, et al. mRNA-based dendritic cell vaccination induces potent antiviral T-cell responses in HIV-1 infected patients. AIDS. 2012;26(4):F1–F12.

    Article  PubMed  CAS  Google Scholar 

  28. García F, Climent N, Guardo AC, Gil C, León A, Autran B, et al. A dendritic cell-based vaccine elicits T cell responses associated with control of HIV-1 replication. Sci Transl Med. 2013;5(166):166ra2.

    Article  PubMed  CAS  Google Scholar 

  29. Routy JP, Boulassel MR, Yassine-Diab B, Nicolette C, Healey D, Jain R, et al. Immunologic activity and safety of autologous HIV RNA-electroporated dendritic cells in HIV-1 infected patients receiving antiretroviral therapy. Clin Immunol. 2010;134(2):140–7.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  30. Nicollete C. Design and development considerations for immune augmentation to assist in virus eradication. IAS 2013 Symposium: Towards an HIV Cure. Kuala Lumpur, July 2013. http://iasociety.org/Web/WebContent/File/HIV_Cure_Symposium_2013/RT1-1_Charles%20Nicolette.pdf. Geneva: International AIDS Society; 2013. Accessed 13 Jan 2014.

  31. Graf EH, O'Doherty U. Quantitation of integrated proviral DNA in viral reservoirs. Curr Opin HIV AIDS. 2013;8(2):100–5.

    Article  PubMed  CAS  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

David Margolis is a consultant for Merck and has received grant support from them.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by the author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David M. Margolis.

Additional information

This article is part of the Topical Collection on HIV/AIDS

Rights and permissions

Reprints and permissions

About this article

Cite this article

Margolis, D.M. How Might We Cure HIV?. Curr Infect Dis Rep 16, 392 (2014). https://doi.org/10.1007/s11908-014-0392-2

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11908-014-0392-2

Keywords

Navigation