Skip to main content

Advertisement

Log in

Irregularities of Coagulation in Hypertension

  • Mechanisms of Hypertension and Target-Organ Damage (JE Hall and ME Hall, Section Editors)
  • Published:
Current Hypertension Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

This review article summarizes the role of coagulation in the pathogenesis of hypertension. It specifically focuses on significant factors and markers associated with coagulation, including D-dimer, fibrinogen and fibrin, prothrombin, P-selectin, soluble urokinase plasminogen activator receptor, thrombomodulin, tissue factor, tissue plasminogen activator, von Willebrand factor, β-thromboglobulin, and Stuart-Prower factor.

Recent Findings

D-dimer levels were elevated in hypertensive individuals compared to healthy controls, and the levels increased with the severity of hypertension. These findings indicate that increased coagulation activity of fibrin plays a role in the development of thromboembolic complications in hypertensive patients. Additionally, both fibrinogen levels and D-dimer levels displayed a positive correlation with the duration of hypertension, suggesting that these biomarkers were positively associated with the length of time an individual had been hypertensive. Increased systolic and diastolic blood pressures have been linked to higher levels of prothrombin time and activated partial thromboplastin time in individuals with hypertension as well as those with normal blood pressure. Also, the presence of P-selectin, produced by activated platelets and endothelial cells during angiotensin II stimulation, played a role in the development of cardiac inflammation and fibrosis associated with hypertension. Moreover, the change in systolic blood pressure was associated with baseline soluble urokinase plasminogen activator receptor (suPAR) in hypertensive participants, and the change in suPAR levels was associated with the development of hypertension. Moreover, it was observed a decrease in thrombomodulin expression in the placenta of preeclamptic patients, suggesting its potential involvement in placental dysfunction, possibly driven by an imbalance in angiogenic factors. Tissue factors and autophagy might have significant implications in the pathogenesis of chronic thromboembolic pulmonary hypertension, particularly in the context of vascular remodelling. Likewise, ADAMTS13 (a disintegrin and metalloproteinase with a thrombospondin type 1 motif, member 13) might be a promising biomarker for the early detection of pulmonary arterial hypertension and the von Willebrand factor is a candidate prognostic biomarker. The arterial β-thromboglobulin levels were significantly lower than venous levels.

Summary

This article concludes that D-dimer, fibrinogen and fibrin, prothrombin, P-selectin, soluble urokinase plasminogen activator receptor, thrombomodulin, tissue factor, tissue plasminogen activator, von Willebrand factor, and β-thromboglobulin are important factors involved in the pathogenesis of hypertension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of Data and Materials

Not applicable.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Nadar S, Lip GY. The prothrombotic state in hypertension and the effects of antihypertensive treatment. Curr Pharm Des. 2003;9(21):1715–32.

    Article  CAS  PubMed  Google Scholar 

  2. Catena C, Zingaro L, Casaccio D, Sechi LA. Abnormalities of coagulation in hypertensive patients with reduced creatinine clearance. Am J Med. 2000;109(7):556–61.

    Article  CAS  PubMed  Google Scholar 

  3. Sechi LA, Novello M, Colussi G, Di Fabio A, Chiuch A, Nadalini E, et al. Relationship of plasma renin with a prothrombotic state in hypertension: relevance for organ damage. Am J Hypertens. 2008;21(12):1347–53.

    Article  CAS  PubMed  Google Scholar 

  4. Sechi LA, Zingaro L, Catena C, Casaccio D, De Marchi S. Relationship of fibrinogen levels and hemostatic abnormalities with organ damage in hypertension. Hypertension. 2000;36(6):978–85.

    Article  CAS  PubMed  Google Scholar 

  5. Poli KA, Tofler GH, Larson MG, Evans JC, Sutherland PA, Lipinska I, et al. Association of blood pressure with fibrinolytic potential in the Framingham offspring population. Circulation. 2000;101(3):264–9.

    Article  CAS  PubMed  Google Scholar 

  6. Tilly MJ, Geurts S, Pezzullo AM, Bramer WM, de Groot NM, Kavousi M, et al. The association of coagulation and atrial fibrillation: a systematic review and meta-analysis. Europace. 2023;25(1):28–39.

    Article  PubMed  Google Scholar 

  7. Palta S, Saroa R, Palta A. Overview of the coagulation system. Indian J Anaesth. 2014;58(5):515–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Olson JD. D-dimer: an overview of hemostasis and fibrinolysis, assays, and clinical applications. Adv Clin Chem. 2015;1(69):1–46.

    Google Scholar 

  9. Chekol E, Genet S, Menon M, Geto Z, Asmamaw T, Lejisa T, et al. Assessment of plasma D-dimer level and its correlation with disease severity among hypertensive patients. Journal of Science and Inclusive Development. 2020:21–40.

  10. • Ebar MH, Ali AG, Adan MQ, Ahmed A, Isse MO. Measurement of plasma fibrinogen and D-dimer levels in sudanese hypertensive patients at Khartoum state. J Drug Del Therapeutics. 2022;12(6):48–51. The results of this research suggest that there was a notable increase in both fibrinogen and D-dimer levels when comparing the cases and control group. Furthermore, a negative association was found between the development of hypertension and gender, while a positive association was observed between age and the development of hypertension.

    Article  Google Scholar 

  11. •• Long Y, Li Y, Zhang L, Tao L, Xiao H, Li Y, et al. Plasma D-dimer levels are correlated with disease severity among hypertensive patients: a comparative cross-sectional study. Medicine. 2022;101(36):e30281. Findings from this study indicate that hypertensive individuals had higher levels of D-dimer compared to the control groups, and these levels increased significantly with the severity of hypertension. This suggests that an increased tendency for blood clot formation, indicated by higher levels of fibrin degradation product (D-dimer), contributes to the occurrence of thromboembolic complications in hypertensive patients.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lammertyn L, Schutte AE, Pieters M, Schutte R. D-dimer relates positively with increased blood pressure in Black South Africans: the SABPA study. Thromb Res. 2014;133(6):1152–7.

    Article  CAS  PubMed  Google Scholar 

  13. Mukaz DK, Guo B, Long DL, Judd SE, Plante TB, McClure LA, et al. D-dimer and the risk of hypertension: the REasons for Geographic And Racial Differences in Stroke Cohort Study. Res Practice Thrombosis Haemostasis. 2023;7(1):100016.

    Article  Google Scholar 

  14. Jin Y, Xu H, Wu M, Yi B, Zhu M, Zhou Y, et al. Correlation of gestational hypertension with abnormal lipid metabolism, insulin resistance and D-dimer and their clinical significance. Exp Ther Med. 2019;17(2):1346–50.

    CAS  PubMed  Google Scholar 

  15. Kim SJ, Ahn HJ, Park JY, Kim BJ, Hwang KR, Lee TS, et al. The clinical significance of D-dimer concentrations in patients with gestational hypertensive disorders according to the severity. Obs Gynecol Sci. 2017;60(6):542–8.

    Article  Google Scholar 

  16. Shitrit D, Bendayan D, Bar-Gil-Shitrit A, Huerta M, Rudensky B, Fink G, et al. Significance of a plasma D-dimer test in patients with primary pulmonary hypertension. Chest. 2002;122(5):1674–8.

    Article  PubMed  Google Scholar 

  17. Foris V, Prüller F, Kovacs G, Avian A, Douschan P, Herrmann M, Olschewski H. Utility of D-Dimer for mortality prediction in patients at risk for pulmonary hypertension. Eur Respir J. 2020;56:1527. https://doi.org/10.1183/13993003.congress-2020.1527.

    Article  Google Scholar 

  18. Shaheen H, Sobhy S, El Mously S, El Khatib M, Hamdy A. Quantitative D-dimer level and anticoagulant therapy in idiopathic intracranial hypertension. Egypt J Neurol Psych Neurosurg. 2019;55(1):1–6.

    Google Scholar 

  19. Yang Q, Zhou Y, Wang X, Gao S, Xiao Y, Zhang W, et al. Effect of hypertension on outcomes of adult inpatients with COVID-19 in Wuhan, China: a propensity score–matching analysis. Respir Res. 2020;21:1–9.

    Article  Google Scholar 

  20. Budzynski AZ, Shainoff JR. Fibrinogen and fibrin: biochemistry and pathophysiology. Crit Rev Oncol Hematol. 1986;6(2):97–146.

    Article  CAS  PubMed  Google Scholar 

  21. Eldour AA, Khalafallah TO, Noja HM, Saad ES, Elsayid M, Babker AM. Fibrinogen levels in hypertensive and normotensive: a cross-sectional study from El-Obied City. Sudan J Biosci Med. 2016;4(2):28–32.

    CAS  Google Scholar 

  22. Lee AJ, Lowe GD, Woodward M, Tunstall-Pedoe H. Fibrinogen in relation to personal history of prevalent hypertension, diabetes, stroke, intermittent claudication, coronary heart disease, and family history: the Scottish Heart Health Study. Heart. 1993;69(4):338–42.

    Article  CAS  Google Scholar 

  23. Shankar A, Wang JJ, Rochtchina E, Mitchell P. Positive association between plasma fibrinogen level and incident hypertension among men: population-based cohort study. Hypertension. 2006;48(6):1043–9.

    Article  CAS  PubMed  Google Scholar 

  24. Özdemir M, Yurtdaş M, Asoğlu R, Yildirim T, Aladağ N, Asoğlu E. Fibrinogen to albumin ratio as a powerful predictor of the exaggerated morning blood pressure surge in newly diagnosed treatment-naive hypertensive patients. Clin Exp Hypertens. 2020;42(8):692–9.

    Article  PubMed  Google Scholar 

  25. Majeed A, Rashid A, Maqbool R, Rashid W, Ahmed M, Gulzar U. Serum fibrinogen levels and its relation to hypertension. Int J Sci Study. 2016;3(12):72–5.

    Google Scholar 

  26. Steptoe A, Kivimäki M, Lowe G, Rumley A, Hamer M. Blood pressure and fibrinogen responses to mental stress as predictors of incident hypertension over an 8-year period. Ann Behav Med. 2016;50(6):898–906.

    Article  PubMed  Google Scholar 

  27. Papadakis JA, Vrentzos G, Kalikaki A, Perisinaki G, Kois S, Ganotakis ES. P-4: effect of anti-hypertensive drugs on lipid profile and plasma fibrinogen levels in patients with essential hypertension. Am J Hypertens. 2002;15(S3):35A.

    Article  Google Scholar 

  28. Rajzer M, Wojciechowska W, Kawecka-Jaszcz K, Undas A. Plasma fibrin clot properties in arterial hypertension and their modification by antihypertensive medication. Thromb Res. 2012;130(1):99–103.

    Article  CAS  PubMed  Google Scholar 

  29. Ross H, Brenda B. Evaluation of prothrombin time test. 2012;57(4):56–61.

    Google Scholar 

  30. Schrader J. Stroke and hypertension. Der Internist. 2009;50(4):423–32.

    Article  CAS  PubMed  Google Scholar 

  31. Alhamami OM, AL-Mayah JY, AL-Mousawi NR, AL-Mousawi HI. Pleiotropic effects of antihypertensive drugs. IUG J Nat Stud. 2015;15(1).

  32. Blumenthal JA, Babyak MA, Hinderliter A, Watkins LL, Craighead L, Lin PH, et al. Effects of the DASH diet alone and in combination with exercise and weight loss on blood pressure and cardiovascular biomarkers in men and women with high blood pressure: the ENCORE study. Arch Intern Med. 2010;170(2):126–35.

    Article  PubMed  PubMed Central  Google Scholar 

  33. NnennaAdaeze N, UchennaEmeribe A, AbdullahiNasiru I, Babayo A, Uko EK. Evaluation of prothrombin time and activated partial thromboplastin time in hypertensive patients attending a tertiary hospital in calabar. Nigeria Adv Hematol. 2014;2014:932039.

    Google Scholar 

  34. Stone MC, Thorp JM. Plasma fibrinogen—a major coronary risk factor. J R Coll Gen Pract. 1985;35(281):565–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Wilhelmsen L, Svärdsudd K, Korsan-Bengtsen K, Larsson BO, Welin L, Tibblin G. Fibrinogen as a risk factor for stroke and myocardial infarction. N Engl J Med. 1984;311(8):501–5.

    Article  CAS  PubMed  Google Scholar 

  36. Nnenna Adaeze N, Uchenna Emeribe A, Abdullahi Nasiru I, Babayo A, Uko EK. Evaluation of prothrombin time and activated partial thromboplastin time in hypertensive patients attending a tertiary hospital in calabar, Nigeria. Adv Hematol. 2014;2014:932039. https://doi.org/10.1155/2014/932039. Epub 2014 Nov 16. PMID: 25477963; PMCID: PMC4248403.

  37. Giacchetti G, Turchi F, Boscaro M, Ronconi V. Management of primary aldosteronism: its complications and their outcomes after treatment. Curr Vasc Pharmacol. 2009;7(2):244–9.

    Article  CAS  PubMed  Google Scholar 

  38. Eledo BO, Nwoga MI, Okamgba OC, Izah SC. Assessment of some haemostatic parameters among diabetes mellitus patients in bayelsa state: a case study at the federal medical centre, Yenagoa. Eur J Clin Biomed Sci. 2017;3(5):91–6.

    Article  Google Scholar 

  39. Jiskani AS, Memon S, Naseem L. Prothrombin time (PT), activated partial thromboplastin time (APTT) and international normalized ratio (INR) as predictive factors of coagulopathy in newly diagnosed hypertensive patients. Hematol Transfus Int J. 2017;4(3):84–8.

    Google Scholar 

  40. Nwovu AI, Ifeanyi OE, Uzoma OG, Irene NO. Evaluation of platelet and prothrombin time in hypertensive patients attending clinic in Federal Teaching Hospital Abakaliki. Age (years). 2018;36:36–43.

    Google Scholar 

  41. Polek A, Sobiczewski W, Matowicka-Karna J. P-selectin and its role in some diseases. Adv Hygiene Exp Med. 2009;19(63):465–70.

    Google Scholar 

  42. Sanada H, Midorikawa S, Yatabe J, Sasakiyatabe M, Katoh T, Baba T, et al. Elevation of serum soluble E-and P-selectin in patients with hypertension is reversed by benidipine, a long-acting calcium channel blocker. Hypertens Res. 2005;28(11):871–8.

    Article  CAS  PubMed  Google Scholar 

  43. Liu G, Liang B, Song X, Bai R, Qin W, Sun X, Lu Y, Bian Y, Xiao C. P-selectin increases angiotensin II-induced cardiac inflammation and fibrosis via platelet activation. Mol Med Rep. 2016;13(6):5021–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Spencer CG, Gurney D, Blann AD, Beevers DG, Lip GY. Von Willebrand factor, soluble P-selectin, and target organ damage in hypertension: a substudy of the Anglo-Scandinavian Cardiac Outcomes Trial (ASCOT). Hypertension. 2002;40(1):61–6.

    Article  PubMed  Google Scholar 

  45. Novoyatleva T, Kojonazarov B, Owczarek A, Veeroju S, Rai N, Henneke I, et al. Evidence for the fucoidan/P-selectin axis as a therapeutic target in hypoxia-induced pulmonary hypertension. Am J Respir Crit Care Med. 2019;199(11):1407–20.

    Article  CAS  PubMed  Google Scholar 

  46. Yang FF, Peng F, Xing YB, Yuan M, Ma XC, Li G, Guo HY. Impacts of serum P-selectin on blood pressure control after PCI in patients with coronary heart disease complicated with hypertension. Eur Rev Med Pharmacol Sci. 2017;21(3 Suppl):78–83.

    PubMed  Google Scholar 

  47. Shalia KK, Mashru MR, Vasvani JB, Mokal RA, Mithbawkar SM, Thakur PK. Circulating levels of cell adhesion molecules in hypertension. Indian J Clin Biochem. 2009;24:388–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Nadar SK, Blann AD, Kamath S, Beevers DG, Lip GY. Platelet indexes in relation to target organ damage in high-risk hypertensive patients: a substudy of the Anglo-Scandinavian Cardiac Outcomes Trial (ASCOT). J Am Coll Cardiol. 2004;44(2):415–22.

    Article  PubMed  Google Scholar 

  49. Ahmed AA, Al-Timimi RJ, Abdulrasol EA. Study the role of selenium in the P-selectin and E-cadherin serum levels in women with preeclampsia. Medico-Legal Update. 2020;20(1).

  50. Zhang Q, Li L, Chen H, Zhang G, Zhu S, Kong R, Chen H, Wang G, Sun B. Soluble urokinase plasminogen activator receptor associates with higher risk, advanced disease severity as well as inflammation, and might serve as a prognostic biomarker of severe acute pancreatitis. J Clin Lab Anal. 2020;34(3):e23097.

    Article  PubMed  Google Scholar 

  51. Botha S, Fourie CM, Schutte R, Eugen-Olsen J, Schutte AE. Soluble urokinase plasminogen activator receptor and hypertension among Black South Africans after 5 years. Hypertens Res. 2015;38(6):439–44.

    Article  CAS  PubMed  Google Scholar 

  52. Boffa MC, Karmochkine M. Thrombomodulin: an overview and potential implications in vascular disorders. Lupus. 1998;7(2_suppl):120–5.

  53. Guo XQ, Ren W, Peng R, Liu YH, Li Y. Clinical application of endothelial injury marker in hypertensive patients. J Clin Lab Anal. 2018;32(5):e22387.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Demeulenaere M, Devreese K, Vanbelleghem H, De Zaeytijd J, VandeWalle J, Van Biesen W, et al. Thrombomodulin and endothelial dysfunction: a disease-modifier shared between malignant hypertension and atypical hemolytic uremic syndrome. Nephron. 2018;140(1):63–73.

    Article  CAS  PubMed  Google Scholar 

  55. Turner RJ, Bloemenkamp KW, Bruijn JA, Baelde HJ. Loss of thrombomodulin in placental dysfunction in preeclampsia. Arterioscler Thromb Vasc Biol. 2016;36(4):728–35.

    Article  CAS  PubMed  Google Scholar 

  56. Cacoub P, Karmochkine M, Dorent R, Nataf P, Piette JC, Godeau P, et al. Plasma levels of thrombomodulin in pulmonary hypertension. Am J Med. 1996;101(2):160–4.

    Article  CAS  PubMed  Google Scholar 

  57. Hsu CD, Copel JA, Hong SF, Chan DW. Thrombomodulin levels in preeclampsia, gestational hypertension, and chronic hypertension. Obstet Gynecol. 1995;86(6):897–9.

    Article  CAS  PubMed  Google Scholar 

  58. Jilani, TN, Siddiqui AH. Tissue plasminogen activator. In: StatPearls, StatPearls Publishing, Copyright © 2021. Treasure Island (FL): StatPearls Publishing LLC.; 2021.

  59. Tsivgoulis G, Frey JL, Flaster M, Sharma VK, Lao AY, Hoover SL, et al. Pre–tissue plasminogen activator blood pressure levels and risk of symptomatic intracerebral hemorrhage. Stroke. 2009;40(11):3631–4.

    Article  PubMed  Google Scholar 

  60. Martin-Schild S, Hallevi H, Albright KC, Khaja AM, Barreto AD, Gonzales NR, et al. Aggressive blood pressure–lowering treatment before intravenous tissue plasminogen activator therapy in acute ischemic stroke. Arch Neurol. 2008;65(9):1174–8.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Tomii Y, Toyoda K, Nakashima T, Nezu T, Koga M, Yokota C, Nagatsuka K, Minematsu K. Effects of hyperacute blood pressure and heart rate on stroke outcomes after intravenous tissue plasminogen activator. J Hypertens. 2011;29(10):1980–7.

    Article  CAS  PubMed  Google Scholar 

  62. Dell’Omo G, Ferrini L, Morale M, De Negri F, Melillo E, Carmassi F, et al. Acetylcholine-mediated vasodilatation and tissue-type plasminogen activator release in normal and hypertensive men. Angiology. 1999;50(4):273–82.

    Article  PubMed  Google Scholar 

  63. Butenas S, Orfeo T, Mann KG. Tissue factor in coagulation: which? Where? When? Arterioscler Thromb Vasc Biol. 2009;29(12):1989–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Cisowska-Czajka ME, Mazij MP, Kotschy MH, Lewczuk J. Plasma concentrations of tissue factor and its inhibitor in chronic thromboembolic pulmonary hypertension: a step closer to explanation of the disease aetiology? Kardiologia Polska (Polish Heart J). 2016;74(11):1332–8.

    Article  PubMed  Google Scholar 

  65. Deng C, Wu D, Yang M, Chen Y, Ding H, Zhong Z, et al. The role of tissue factor and autophagy in pulmonary vascular remodeling in a rat model for chronic thromboembolic pulmonary hypertension. Respir Res. 2016;17:1–1.

    Article  Google Scholar 

  66. Ma X, Wang XE, Xie LX, Lu S, Jiang C. The levels of TNF-α, tissue factor, and coagulation function in rats with pulmonary hypertension and the intervention effect of sildenafil encapsulated by targeted nanocarriers. Comput Math Methods Med. 2022;13(2022):8619092.

    Google Scholar 

  67. Celi A, Cianchetti S, Dell’Omo G, Pedrinelli R. Angiotensin II, tissue factor and the thrombotic paradox of hypertension. Expert Rev Cardiovasc Ther. 2010;8(12):1723–9.

    Article  CAS  PubMed  Google Scholar 

  68. Chopek MW, Girma JP, Fujikawa K, Davie EW, Titani K. Human von Willebrand factor: a multivalent protein composed of identical subunits. Biochemistry. 1986;25(11):3146–55.

    Article  CAS  PubMed  Google Scholar 

  69. Apostolova MH, Seaman CD, Comer DM, Yabes JG, Ragni MV. Prevalence and risk factors associated with hypertension in von Willebrand disease. Clin Appl Thromb Hemost. 2018;24(1):93–9.

    Article  PubMed  Google Scholar 

  70. Lopes AA, Maeda NY, Bydlowski SP. Abnormalities in circulating von Willebrand factor and survival in pulmonary hypertension. Am J Med. 1998;105(1):21–6.

    Article  CAS  PubMed  Google Scholar 

  71. Veyradier A, Nishikubo T, Humbert M, Wolf M, Sitbon O, Simonneau G, et al. Improvement of von Willebrand factor proteolysis after prostacyclin infusion in severe pulmonary arterial hypertension. Circulation. 2000;102(20):2460–2.

    Article  CAS  PubMed  Google Scholar 

  72. Manz XD, Szulcek R, Pan X, Symersky P, Dickhoff C, Majolée J, et al. Epigenetic modification of the von willebrand factor promoter drives platelet aggregation on the pulmonary endothelium in chronic thromboembolic pulmonary hypertension. Am J Respir Crit Care Med. 2022;205(7):806–18.

    Article  CAS  PubMed  Google Scholar 

  73. Ahmed A, Ahmed S, Rådegran G. Plasma ADAMTS13 and von Willebrand factor in diagnosis and prediction of prognosis in pulmonary arterial hypertension. Pulm Circ. 2021;11(4):20458940211041500.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Rodionova V, Khmel O. Platelet aggregation and von Willebrand factor in patients with artherial hypertension combined with osteoarthritis. J Clin Med Kazakhstan. 2017;1(43):34–41.

    Article  Google Scholar 

  75. Kjeldsen SE, Gjesdal K, Eide I, Aakesson I, Amundsen R, Foss OP, et al. Increased beta-thromboglobulin in essential hypertension: interactions between arterial plasma adrenaline, platelet function and blood lipids. Acta Med Scand. 1983;213(5):369–73.

    Article  CAS  PubMed  Google Scholar 

  76. Mehta J, Mehta P. Platelet function in hypertension and effect of therapy. Am J Cardiol. 1981;47(2):331–4.

    Article  CAS  PubMed  Google Scholar 

  77. Gomi T, Ikeda T, Yuhara M, Sakurai J, Nakayama D, Ikegami F. Plasma beta-thromboglobulin to platelet factor 4 ratios as indices of vascular complications in essential hypertension. J Hypertens. 1988;6(5):389–92.

    Article  CAS  PubMed  Google Scholar 

  78. Nadar S, Blann A, Lip G. Platelet morphology and plasma indices of platelet activation in essential hypertension: effects of amlodipine-based antihypertensive therapy. Ann Med. 2004;36(7):552–7.

    Article  CAS  PubMed  Google Scholar 

  79. De Vries JI, Vellenga E, Aarnoudse JG. Plasma beta-thromboglobulin in normal pregnancy and pregnancy-induced hypertension. Eur J Obs Gynecol Reproductive Biol. 1983;14(4):209–16.

    Article  Google Scholar 

  80. Douglas JT, Shah M, Lowe GD, Belch JJ, Forbes CD, Prentice CR. Plasma fibrinopeptide A and beta-thromboglobulin in pre-eclampsia and pregnancy hypertension. Thromb Haemost. 1982;47(01):054–5.

    Article  CAS  Google Scholar 

  81. Mundal HH, Nordby G, Lande K, Gjesdal K, Kjeldsen SE, Os I. Effect of cold pressor test and awareness of hypertension on platelet function in normotensive and hypertensive women. Scand J Clin Lab Invest. 1993;53(6):585–91.

    Article  CAS  PubMed  Google Scholar 

  82. Lip GY, Blann AD. Does hypertension confer a prothrombotic state? Virchow’s triad revisited. Circulation. 2000;101(3):218–20.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Saira Rafaqat.

Ethics declarations

Ethics Approval and Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

Our review article cites studies which have been approved by the local ethical approval boards of the respective universities.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Mechanisms of Hypertension and Target-Organ Damage

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rafaqat, S., Khalid, A., Riaz, S. et al. Irregularities of Coagulation in Hypertension. Curr Hypertens Rep 25, 271–286 (2023). https://doi.org/10.1007/s11906-023-01258-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11906-023-01258-0

Keywords

Navigation