Skip to main content

Advertisement

Log in

Newer Drugs to Reduce High Blood Pressure and Mitigate Hypertensive Target Organ Damage

  • Mechanisms of Hypertension and Target-Organ Damage (JE Hall and ME Hall, Section Editors)
  • Published:
Current Hypertension Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

This review aims to investigate the blood pressure (BP)-lowering effects of emerging drugs developed to treat diabetic kidney disease and heart failure (HF). We summarize the potential pathophysiological mechanisms responsible for mitigating hypertensive target organ damage and evaluating the available clinical data on these newer drugs.

Recent Findings

Nonsteroidal dihydropyridine-based mineralocorticoid receptor antagonists (MRAs), dual angiotensin II receptor-neprilysin inhibitors (valsartan with sacubitril), sodium-glucose cotransporter 2 inhibitors (SGLT2i), and soluble guanylate cyclase stimulators are new classes of chemical agents that have distinct mechanisms of action and have been shown to be effective for the treatment of cardiovascular (CV) disease (CVD), HF, and type 2 diabetes mellitus (T2D). These drugs can be used either alone or in combination with other antihypertensive and CV drugs. Among these, SGLT2i and valsartan with sacubitril offer new avenues to reduce CVD mortality. SGLT2i have a mild-to-moderate effect on BP lowering with a favorable effect on CV and renal hemodynamics and have been shown to produce a significant reduction in the incidence of major adverse CVD events (as monotherapy or add-on therapy) compared with controls (placebo or non-SGLT2i treatment). Most of the participants in these studies had hypertension (HTN) at baseline and were receiving antihypertensive therapy, including renin-angiotensin system blockers. The combination of valsartan with sacubitril also lowers BP in the short term and has demonstrated a striking reduction in CVD mortality and morbidity in HF patients with a reduced left ventricular ejection fraction. If widely adopted, these novel therapeutic agents hold significant promise for reducing the public health burden posed by HTN and CVD.

Summary

Based on the results of several clinical trials and considering the high prevalence of HTN and T2D, these new classes of agents have emerged as powerful therapeutic tools in managing and lowering the BP of patients with diabetic kidney disease and HF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. World Health Organization Global Health Observatory (GHO) data. Available from: https://www.who.int/gho/mortality_burden_disease/life_tables/situation_trends_text/en

  2. Nwabuo CC, Vasan RS. Pathophysiology of hypertensive heart disease: beyond left ventricular hypertrophy. Curr Hypertens Rep. 2020;22:11.

    Article  PubMed  Google Scholar 

  3. Drazner MH. The progression of hypertensive heart disease. Circulation. 2011;123:327–34.

    Article  PubMed  Google Scholar 

  4. Messerli FH, Rimoldi SF, Bangalore S. The transition from hypertension to heart failure: contemporary update. JACC Heart Fail. 2017;5:543–51.

    Article  PubMed  Google Scholar 

  5. Brooks JE, Soliman EZ, Upadhya B. Is left ventricular hypertrophy a valid therapeutic target? Curr Hypertens Rep. 2019;21:47.

    Article  PubMed  Google Scholar 

  6. Díez J, Frohlich ED. A translational approach to hypertensive heart disease. Hypertension. 2010;55:1–8.

    Article  PubMed  Google Scholar 

  7. McMaster WG, Kirabo A, Madhur MS, Harrison DG. Inflammation, immunity, and hypertensive end-organ damage. Circ Res. 2015;116:1022–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Dickhout JG, Carlisle RE, Austin RC. Interrelationship between cardiac hypertrophy, heart failure, and chronic kidney disease: endoplasmic reticulum stress as a mediator of pathogenesis. Circ Res. 2011;108:629–42.

    Article  CAS  PubMed  Google Scholar 

  9. Ruilope LM. Aldosterone, hypertension, and cardiovascular disease: an endless story. Hypertension. 2008;52:207–8.

    Article  CAS  PubMed  Google Scholar 

  10. Williams B, MacDonald TM, Morant S, Webb DJ, Sever P, McInnes G, et al. Spironolactone versus placebo, bisoprolol, and doxazosin to determine the optimal treatment for drug-resistant hypertension (PATHWAY-2): a randomized, double-blind, crossover trial. Lancet. 2015;386:2059–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Samuel JL, Delcayre C. Heart failure: aldosterone antagonists are underused by clinicians. Nat Rev Cardiol. 2010;7:125–7.

    Article  CAS  PubMed  Google Scholar 

  12. Bramlage P, Swift SL, Thoenes M, Minguet J, Ferrero C, Schmieder RE. Nonsteroidal mineralocorticoid receptor antagonism for the treatment of cardiovascular and renal disease. Eur J Heart Fail. 2016;18:28–37.

    Article  CAS  PubMed  Google Scholar 

  13. Gueret A, Harouki N, Favre J, Galmiche G, Nicol L, Henry JP, et al. Vascular smooth muscle mineralocorticoid receptor contributes to coronary and left ventricular dysfunction after myocardial infarction. Hypertension. 2016;67:717–23.

    Article  CAS  PubMed  Google Scholar 

  14. Grune J, Beyhoff N, Smeir E, Chudek R, Blumrich A, Ban Z, et al. Selective mineralocorticoid receptor cofactor modulation as molecular basis for finerenone’s antifibrotic activity. Hypertension. 2018;71:599–608.

    Article  CAS  PubMed  Google Scholar 

  15. Kolkhof P, Delbeck M, Kretschmer A, Steinke W, Hartmann E, Bärfacker L, et al. Finerenone, a novel selective nonsteroidal mineralocorticoid receptor antagonist protects from rat cardiorenal injury. J Cardiovasc Pharmacol. 2014;64:69–78.

    Article  CAS  PubMed  Google Scholar 

  16. Pitt B, Kober L, Ponikowski P, Gheorghiade M, Filippatos G, Krum H, et al. Safety and tolerability of the novel nonsteroidal mineralocorticoid receptor antagonist BAY 94–8862 in patients with chronic heart failure and mild or moderate chronic kidney disease: a randomized, double-blind trial. Eur Heart J. 2013;34:2453–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Filippatos G, Anker SD, Böhm M, Gheorghiade M, Køber L, Krum H, et al. A randomized controlled study of finerenone vs. eplerenone in patients with worsening chronic heart failure and diabetes mellitus and/or chronic kidney disease. Eur Heart J. 2016; 37:2105–14.

  18. Bakris GL, Agarwal R, Chan JC, Cooper ME, Gansevoort RT, Haller H, et al. Effect of finerenone on albuminuria in patients with diabetic nephropathy: a randomized clinical trial. JAMA. 2015;314:884–94.

    Article  CAS  PubMed  Google Scholar 

  19. Bakris GL, Agarwal R, Anker SD, Pitt B, Ruilope LM, Rossing P, et al. Effect of finerenone on chronic kidney disease outcomes in type 2 diabetes. N Engl J Med. 2020;383:2219–29.

    Article  CAS  PubMed  Google Scholar 

  20. Filippatos G, Anker SD, Agarwal R, Pitt B, Ruilope LM, Rossing P, et al. Finerenone and cardiovascular outcomes in patients with chronic kidney disease and type 2 diabetes. Circulation. 2020. Online ahead of print.

  21. Nielsen PM, Grimm D, Wehland M, Simonsen U, Krüger M. The combination of valsartan and sacubitril in the treatment of hypertension and heart failure - an update. Basic Clin Pharmacol Toxicol. 2018;122:9–18.

    Article  CAS  PubMed  Google Scholar 

  22. Bavishi C, Messerli FH, Kadosh B, Ruilope LM, Kario K. Role of neprilysin inhibitor combinations in hypertension: insights from hypertension and heart failure trials. Eur Heart J. 2015;36:1967–73.54.

  23. Gu J, Noe A, Chandra P, Al-Fayoumi S, Ligueros-Saylan M, Sarangapani R, et al. Pharmacokinetics and pharmacodynamics of LCZ696, a novel dual-acting angiotensin receptor-neprilysin inhibitor (ARNi). J Clin Pharmacol. 2010;50:401–14.

    Article  CAS  PubMed  Google Scholar 

  24. •• McMurray JJ, Packer M, Desai AS, Gong J, Lefkowitz MP, Rizkala AR, et al. Angiotensin-neprilysin inhibition versus enalapril in heart failure. N Engl J Med. 2014;371:993–1004. The trial was stopped early, according to prespecified rules, after a median follow-up of 27 months, because the boundary for an overwhelming benefit with LCZ696 in HFrEF had been crossed.

  25. Ruilope LM, Dukat A, Böhm M, Lacourcière Y, Gong J, Lefkowitz MP. Blood-pressure reduction with LCZ696, a novel dual-acting inhibitor of the angiotensin II receptor and neprilysin: a randomised, double-blind, placebo-controlled, active comparator study. Lancet. 2010;1255–66.

  26. Kario K, Sun N, Chiang F-T, Supasyndh O, Baek SH, Inubushi-Molessa A, et al. Efficacy and safety of LCZ696, a first-in-class angiotensin receptor neprilysin inhibitor, in Asian patients with hypertension. Hypertension. 2014;63:698–705.

    Article  CAS  PubMed  Google Scholar 

  27. •• Williams B, Cockcroft JR, Kario K, Zappe DH, Brunel PC, Wang Q, et al. Effects of sacubitril/valsartan versus olmesartan on central hemodynamics in the elderly with systolic hypertension. Hypertension. 2017;69:411–20. This randomized trial provides mechanistic insight that may underscore the utility of angiotensin II receptor neprilysin inhibitors (ARNI) on LVH regression through attenuation of central aortic pulse pressures.

  28. • Schmieder RE, Wagner F, Mayr M, Delles C, Ott C, Keicher C, et al. The effect of sacubitril/valsartan compared to olmesartan on cardiovascular remodelling in subjects with essential hypertension: The results of a randomized, double-blind, active-controlled study. Eur Heart J. 2017;38:3308–17. This is the first randomized controlled trial to highlight the efficacy of angiotensin II receptor blocker neprilysin inhibitors (ARNI) on LVH regression measured by cMRI.

  29. Hansen TW, Li Y, Boggia J, Thijs L, Richart T, Staessen JA. Predictive role of the nighttime blood pressure. Hypertension. 2011;57:3–10.

    Article  CAS  PubMed  Google Scholar 

  30. Haynes R, Judge PK, Staplin N, Herrington WG, Storey BC, Bethel A, et al. Effects of sacubitril/valsartan versus irbesartan in patients with chronic kidney disease. Circulation. 2018;138:1505–14.

    Article  CAS  PubMed  Google Scholar 

  31. Solomon SD, Zile M, Pieske B, Voors A, Shah A, Kraigher-Krainer E, et al. The angiotensin receptor neprilysin inhibitor LCZ696 in heart failure with preserved ejection fraction: a phase 2 double-blind randomised controlled trial. Lancet. 2012;380:1387–95.

    Article  CAS  PubMed  Google Scholar 

  32. Solomon SD, McMurray JJV, Anand IS, Ge J, Lam CSP, Maggioni AP, et al. Angiotensin-neprilysin inhibition in heart failure with preserved ejection fraction. N Engl J Med. 2019;381:1609–20.

    Article  CAS  PubMed  Google Scholar 

  33. Desai AS, Solomon SD, Shah AM, Claggett BL, Fang JC, Izzo J, et al. Effect of sacubitril-valsartan vs enalapril on aortic stiffness in patients with heart failure and reduced ejection fraction. JAMA. 2019;322:1077.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Januzzi J, Prescott M, Butler J, Felker GM, Maisel AS, McCague K, et al. Association of change in N-terminal pro-B-type natriuretic peptide following initiation of sacubitril-valsartan treatment with cardiac structure and function in patients with heart failure with reduced ejection fraction. JAMA. 2019;17(322):1085–95.

    Article  Google Scholar 

  35. Zile MR, O’Meara E, Claggett B, Prescott MF, Solomon SD, Swedberg K, et al. Effects of sacubitril/valsartan on biomarkers of extracellular matrix regulation in patients with HFrEF. J Am Coll Cardiol. 2019;73:795–806.

    Article  CAS  PubMed  Google Scholar 

  36. Packer M, McMurray JJ, Desai AS, Gong J, Lefkowitz MP, Rizkala AR, et al. Angiotensin receptor neprilysin inhibition compared with enalapril on the risk of clinical progression in surviving patients with heart failure. Circulation. 2015;131:54–61.

    Article  CAS  PubMed  Google Scholar 

  37. Packer M, Claggett B, Lefkowitz MP, McMurray JJV, Rouleau JL, Solomon SD, et al. effect of neprilysin inhibition on renal function in patients with type 2 diabetes and chronic heart failure who are receiving target doses of inhibitors of the renin-angiotensin system: a secondary analysis of the PARADIGM-HF trial. Lancet Diabetes Endocrinol. 2018;6:547–54.

    Article  CAS  PubMed  Google Scholar 

  38. Voors AA, Gori M, Liu LC, Claggett B, Zile MR, Pieske B, et al. Renal effects of the angiotensin receptor neprilysin inhibitor LCZ696 in patients with heart failure and preserved ejection fraction. Eur J Heart Fail. 2015;17:510–7.

    Article  CAS  PubMed  Google Scholar 

  39. Shi V, Senni M, Streefkerk H, Modgill V, Zhou W, Kaplan A. Angioedema in heart failure patients treated with sacubitril/valsartan (LCZ696) or enalapril in the PARADIGM-HF study. Int J Cardiol. 2018;264:118–23.

    Article  PubMed  Google Scholar 

  40. Vodovar N, Paquet C, Mebazaa A, Launay JM, Hugon J, Cohen-Solal A. Neprilysin, cardiovascular, and Alzheimer’s diseases: the therapeutic split? Eur Heart J. 2015;36:902–5.

    Article  CAS  PubMed  Google Scholar 

  41. Colosia AD, Palencia R, Khan S. Prevalence of hypertension and obesity in patients with type 2 diabetes mellitus in observational studies: a systematic literature review. Diabetes Metab Syndr Obes. 2013;6:327–38.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Ayala DE, Moyá A, Crespo JJ, Castiñeira C, Domínguez-Sardiña M, et al. Circadian pattern of ambulatory blood pressure in hypertensive patients with and without type 2 diabetes. Chronobiol Int. 2013;30:99–115.

    Article  PubMed  Google Scholar 

  43. Franklin SS, Thijs L, Li Y, Hansen TW, Boggia J, Liu Y, et al. Masked hypertension in diabetes mellitus: treatment implications for clinical practice. Hypertension. 2013;61:964–71.

    Article  CAS  PubMed  Google Scholar 

  44. Ferrannini E, Cushman WC. Diabetes and hypertension: the bad companions. Lancet. 2012;380:601–10.

    Article  PubMed  Google Scholar 

  45. Maliha G, Townsend RR. SGLT2 inhibitors: their potential reduction in blood pressure. J Am Soc Hypertens. 2015;9:48–53.

    Article  CAS  PubMed  Google Scholar 

  46. Zelniker TA, Braunwald E. Cardiac and renal effects of sodium-glucose cotransporter 2 inhibitors in diabetes: JACC state-of-the-art review. J Am Coll Cardiol. 2018;72:1845–55.

    Article  CAS  PubMed  Google Scholar 

  47. Verma S, McMurray JJV. SGLT2 inhibitors and mechanisms of cardiovascular benefit: a state-of-the-art review. Diabetologia. 2018;61:2108–17.

    Article  CAS  PubMed  Google Scholar 

  48. Sarzani R, Giulietti F, Di Pentima C, Spannella F. Sodium-glucose co-transporter-2 inhibitors: peculiar “hybrid” diuretics that protect from target organ damage and cardiovascular events. Nutr Metab Cardiovasc Dis. 2020;24(30):1622–32.

    Article  Google Scholar 

  49. Reed JW. Impact of sodium-glucose cotransporter 2 inhibitors on blood pressure. Vasc Health Risk Manag. 2016;12:393–405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Tikkanen I, Narko K, Zeller C, Green A, Salsali A, Broedl UC, Woerle HJ; EMPA-REG BP Investigators. Empagliflozin reduces blood pressure in patients with type 2 diabetes and hypertension. Diabetes Care. 2015; 38:420–428.

  51. Kario K, Okada K, Kato M, Nishizawa M, Yoshida T, Asano T, et al. 24-hour blood pressure-lowering effect of an sglt-2 inhibitor in patients with diabetes and uncontrolled nocturnal hypertension: results from the randomized, placebo-controlled SACRA study. Circulation. 2018;139:2089–97.

    Article  PubMed Central  Google Scholar 

  52. Ferdinand KC, Izzo JL, Lee J, Meng L, George J, Salsali A, Seman L. Antihyperglycemic and blood pressure effects of empagliflozin in black patients with type 2 diabetes mellitus and hypertension. Circulation. 2019;139:2098–109.

    Article  CAS  PubMed  Google Scholar 

  53. Townsend RR, Machin I, Ren J, Trujillo A, Kawaguchi M, Vijapurkar U, et al. Reductions in mean 24-hour ambulatory blood pressure after 6-week treatment with canagliflozin in patients with type 2 diabetes mellitus and hypertension. J Clin Hypertens (Greenwich). 2016;18:43–52.

    Article  CAS  Google Scholar 

  54. Kario K, Hoshide S, Okawara Y, Tomitani N, Yamauchi K, Ohbayashi H, et al. effect of canagliflozin on nocturnal home blood pressure in Japanese patients with type 2 diabetes mellitus: the SHIFT-J study. J Clin Hypertens (Greenwich). 2018;20:1527–35.

    Article  CAS  Google Scholar 

  55. Weber MA, Mansfield TA, Cain VA, Iqbal N, Parikh S, Ptaszynska A. Blood pressure and glycaemic effects of dapagliflozin versus placebo in patients with type 2 diabetes on combination antihypertensive therapy: a randomised, double-blind, placebo-controlled, phase 3 study. Lancet Diabetes Endocrinol. 2016;4:211–20.

    Article  CAS  PubMed  Google Scholar 

  56. Papadopoulou E, Loutradis C, Tzatzagou G, Kotsa K, Zografou I, et al. dapagliflozin decreases ambulatory central blood pressure and pulse wave velocity in patients with type 2 diabetes: a randomized, double-blind, placebo-controlled clinical trial. J Hypertens. 2021;39:749–58.

    Article  CAS  PubMed  Google Scholar 

  57. Kawasoe S, Maruguchi Y, Kajiya S, Uenomachi H, Miyata M, Kawasoe M, et al. Mechanism of the blood pressure-lowering effect of sodium-glucose cotransporter 2 inhibitors in obese patients with type 2 diabetes. BMC Pharmacol Toxicol. 2017;18:23.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Wan N, Rahman A, Hitomi H, Nishiyama A. The effects of sodium glucose cotransporter 2 inhibitors on sympathetic nervous activity. Front Endocrinol (Lausanne). 2018;9:421.

    Article  Google Scholar 

  59. •• Zinman B, Wanner C, Lachin JM, Fitchett D, Bluhmki E, et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med 2015; 373:2117–2128. The trial went beyond the requisite safety parameters to show ~35% reductions in the incidence of heart failure and discovered salutary renal effects, including 40–50% reductions in the hazard ratios for albuminuria or decline in eGFR.

  60. •• Neal B, Perkovic V, Mahaffey KW, de Zeeuw D, Fulcher G, Erondu N, et al. CANVAS Program Collaborative Group. Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med 2017; 377:644–657. The trial went beyond the requisite safety parameters to show ~35% reductions in the incidence of heart failure and discovered salutary renal effects, including 40–50% reductions in the hazard ratios for albuminuria or decline in eGFR.

  61. Wiviott SD, Raz I, Bonaca MP, Mosenzon O, Kato ET, Cahn A, et al. Dapagliflozin and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2019;380:347–57.

    Article  CAS  PubMed  Google Scholar 

  62. Perkovic V, Jardine MJ, Neal B, Bompoint S, Heerspink HJL, Charytan DM. Canagliflozin and renal outcomes in type 2 diabetes and nephropathy. N Engl J Med. 2019;380:2295–306.

    Article  CAS  PubMed  Google Scholar 

  63. •• McMurray JJV, Solomon SD, Inzucchi SE, Køber L, Kosiborod MN, Martinez FA, et al. Dapagliflozin in patients with heart failure and reduced ejection fraction. N Engl J Med. 2019; 381:1995-2008. DAPA-HF was the first outcomes trial of an SGLT2 inhibitor to investigate the treatment of HF in patients with HFrEF with and without T2D.

  64. •• Packer M, Anker SD, Butler J, Filippatos G, Pocock SJ, Carson P, et al. Cardiovascular and Renal Outcomes with Empagliflozin in Heart Failure. N Engl J Med. 2020; 383:1413-1424. The results from the DAPA-HF and EMPEROR trials represent a completely new approach to HF management, strengthening the rationale for the use of SGLT2 inhibitors in patients with HFrEF, which will impact future clinical practice. These results establish a new standard of care in HFrEF consisting of four branches: ACE inhibitors/ARBs/ARNIs, beta-blockers, MRAs, and SGLT2 inhibitors, to reduce mortality and morbidity slow the progression of the disease.

  65. Verma S, Garg A, Yan AT, Gupta AK, Al-Omran M, Sabongui A, Teoh H, Mazer CD, Connelly KA. Effect of empagliflozin on left ventricular mass and diastolic function in individuals with diabetes: an important clue to the EMPA-REG OUTCOME Trial? Diabetes Care. 2016;39:e212–3.

    Article  PubMed  Google Scholar 

  66. Soga F, Tanaka H, Tatsumi K, Mochizuki Y, Sano H, Toki H, Matsumoto K, Shite J, Takaoka H, Doi T, et al. impact of dapagliflozin on left ventricular diastolic function of patients with type 2 diabetic mellitus with chronic heart failure. Cardiovasc Diabetol. 2018;17:132.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Tanaka H, Soga F, Tatsumi K, Mochizuki Y, Sano H, Toki H, ET AL. Positive effect of dapagliflozin on left ventricular longitudinal function for type 2 diabetic mellitus patients with chronic heart failure.Cardiovasc Diabetol. 2020; 19:6.

  68. Shigiyama F, Kumashiro N, Miyagi M, Ikehara K, Kanda E, Uchino H, Hirose T. Effectiveness of dapagliflozin on vascular endothelial function and glycemic control in patients with early-stage type 2 diabetes mellitus: DEFENCE study. Cardiovasc Diabetol. 2017;16:84.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Fitchett D, Zinman B, Wanner C, Lachin JM, Hantel S, Salsali A, et al. Heart failure outcomes with empagliflozin in patients with type 2 diabetes at high cardiovascular risk: results of the EMPA-REG OUTCOME® trial. Eur Heart J. 2016;37:1526–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Mahaffey KW, Jardine MJ, Bompoint S, Cannon CP, Neal B, Heerspink HJL. Canagliflozin and Cardiovascular and Renal Outcomes in Type 2 Diabetes Mellitus and Chronic Kidney Disease in Primary and Secondary Cardiovascular Prevention Groups. Circulation. 2019;140:739–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Furtado RHM, Bonaca MP, Raz I, Zelniker TA, Mosenzon O, Cahn A, et al. Dapagliflozin and cardiovascular outcomes in patients with type 2 diabetes mellitus and previous myocardial infarction. Circulation. 2019;139:2516–27.

    Article  CAS  PubMed  Google Scholar 

  72. Heerspink HJL, Stefánsson BV, Correa-Rotter R, Chertow GM, Greene T, Hou FF, et al. Dapagliflozin in patients with chronic kidney disease. N Engl J Med. 2020;383:1436–46.

    Article  CAS  PubMed  Google Scholar 

  73. Kosiborod M, Cavender MA, Fu AZ, Wilding JP, Khunti K, Holl RW, et al. Lower risk of heart failure and death in patients initiated on sodium-glucose cotransporter-2 inhibitors versus other glucose-lowering drugs. Circulation. 2017;136:249–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Bhatt DL. Virtual American Heart Association Presentation, November 16, 2020

  75. Scheen AJ. An update on the safety of SGLT2 inhibitors. Expert Opin Drug Saf. 2019;18:295–311.

    Article  CAS  PubMed  Google Scholar 

  76. McGill JB, Subramanian S. Safety of sodium-glucose co-transporter 2 inhibitors. Am J Cardiol. 2019;124(Suppl 1):S45–52.

    Article  CAS  PubMed  Google Scholar 

  77. Murad F. Shattuck Lecture: nitric oxide and cyclic GMP in cell signaling and drug development. N Engl J Med. 2006;355:2003–11.

    Article  CAS  PubMed  Google Scholar 

  78. Abad-Pérez D, Novella-Arribas B, Rodríguez-Salvanés FJ, Sánchez-Gómez LM, García-Polo I, Verge-González C, et al. Effect of oral nitrates on pulse pressure and arterial elasticity in patients aged over 65 years with refractory isolated systolic hypertension: study protocol for a randomized controlled trial. Trials. 2013;14:388.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Münzel T, Daiber A, Mülsch A. Explaining the phenomenon of nitrate tolerance. Circ Res. 2005;97:618–28.

    Article  PubMed  Google Scholar 

  80. Rothermund L, Friebe A, Paul M, Koesling D, Kreutz R. Acute blood pressure effects of YC-1-induced activation of soluble guanylyl cyclase in normotensive and hypertensive rats. Br J Pharmacol. 2000;130:205–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Sharkovska Y, Kalk P, Lawrenz B, Godes M, Hoffmann LS, Wellkisch K, et al. Nitric oxide-independent stimulation of soluble guanylate cyclase reduces organ damage in experimental low-renin and high-renin models. J Hypertens. 2010;28:1666–75.

    Article  CAS  PubMed  Google Scholar 

  82. Stasch JP, Becker EM, Alonso-Alija C, Apeler H, Dembowsky K, Feurer A, et al. NO-independent regulatory site on soluble guanylate cyclase. Nature. 2001;410:212–5.

    Article  CAS  PubMed  Google Scholar 

  83. Geschka S, Kretschmer A, Sharkovska Y, Evgenov OV, Lawrenz B, Hucke A et al. (2011) Soluble guanylate cyclase stimulation prevents fibrotic tissue remodeling and improves survival in salt-sensitive Dahl rats. PLoS One. 6(7):e21853.

  84. Frey R, Mück W, Unger S, Artmeier-Brandt U, Weimann G, Wensing G. Single-dose pharmacokinetics, pharmacodynamics, tolerability, and safety of the soluble guanylate cyclase stimulator BAY 63–2521: an ascending-dose study in healthy male volunteers. J Clin Pharmacol. 2008;48:926–34.

    Article  CAS  PubMed  Google Scholar 

  85. Hanrahan JP, Wakefield JD, Wilson PJ, Miller P, Chickering J, Morrow L, et al. (2018) Fourteen-day study of praliciguat, a soluble guanylate cyclase stimulator, in patients with diabetes and hypertension. Diabetes. 67(Supplement 1):74-OR.

  86. Pieske B, Maggioni AP, Lam CSP, Pieske-Kraigher E, Filippatos G, Butler J, et al. Vericiguat in patients with worsening chronic heart failure and preserved ejection fraction: results of the SOluble guanylate Cyclase stimulatoR in heArT failurE patientS with PRESERVED EF (SOCRATES-PRESERVED) study. Eur Heart J. 2017;38:1119–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Zanfolin M, Faro R, Araujo EG, Guaraldo AM, Antunes E, De Nucci G. Protective effects of BAY 41–2272 (sGC stimulator) on hypertension, heart, and cardiomyocyte hypertrophy induced by chronic L-NAME treatment in rats. J Cardiovasc Pharmacol. 2006;47:391–5.

    Article  CAS  PubMed  Google Scholar 

  88. Masuyama H, Tsuruda T, Sekita Y, Hatakeyama K, Imamura T, Kato J, Asada Y, Stasch JP, Kitamura K. Pressure-independent effects of pharmacological stimulation of soluble guanylate cyclase on fibrosis in pressure-overloaded rat heart. Hypertens Res. 2009;32:597–603.

    Article  CAS  PubMed  Google Scholar 

  89. Masuyama H, Tsuruda T, Kato J, Imamura T, Asada Y, Stasch JP, Kitamura K, Eto T. Soluble guanylate cyclase stimulation on cardiovascular remodeling in angiotensin II-induced hypertensive rats. Hypertension. 2006;48:972–8.

    Article  CAS  PubMed  Google Scholar 

  90. Stasch JP, Schlossmann J, Hocher B. Renal effects of soluble guanylate cyclase stimulators and activators: a review of the preclinical evidence. Curr Opin Pharmacol. 2015;21:95–104.

    Article  CAS  PubMed  Google Scholar 

  91. Bonderman D, Pretsch I, Steringer-Mascherbauer R, Jansa P, Rosenkranz S, Tufaro C, et al. Acute hemodynamic effects of riociguat in patients with pulmonary hypertension associated with diastolic heart failure (dilate-1): A randomized, double-blind, placebo-controlled, single-dose study. Chest J. 2014;146:1274–85.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bharathi Upadhya.

Ethics declarations

Conflict of Interest

Bharathi Upadhya, Patrick M. Kozak, Richard Brandon Stacey, and Ramachandran S. Vasan declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Mechanisms of Hypertension and Target-Organ Damage

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Upadhya, B., Kozak, P.M., Stacey, R.B. et al. Newer Drugs to Reduce High Blood Pressure and Mitigate Hypertensive Target Organ Damage. Curr Hypertens Rep 24, 1–20 (2022). https://doi.org/10.1007/s11906-022-01166-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11906-022-01166-9

Keywords

Navigation