Skip to main content

Advertisement

Log in

Update on Treatment of Hypertension After Renal Transplantation

  • Mechanisms of Hypertension and Target-Organ Damage (JE Hall and ME Hall, Section Editors)
  • Published:
Current Hypertension Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

To incorporate novel findings on pathophysiology and treatment of posttransplant hypertension.

Recent Findings

(1) The sodium retaining effects of CNIs are mediated by stimulation of the thiazide-sensitive sodium chloride co-transporter in the distal convoluted tubule and in this regard chlorthalidone was proven to be an effective antihypertensive drug in renal transplantation. (2) Local and not systemic activation of the renin-angiotensin-aldosterone system plays a crucial role in the pathogenesis of posttransplant hypertension. (3) Recent randomized controlled trials failed to prove the presumed superiority of renin-angiotensin blockers in kidney transplantation. (4) Steroid-free and mammalian target of rapamycin-based immunosuppressive drug combinations did not show favorable effects on blood pressure control. (5) In a recent report the risk of non-melanoma skin cancer was higher with thiazide diuretics. But the increased cancer risk in transplant recipients is mainly attributed to comorbidities, such as diabetes and hypertension and of course to the transplantation condition itself or the obligatory application of immunosuppression, and has little to do with the antihypertensive medication

Summary

Actual recommendations about BP targets in adult renal transplant recipients are coming from a post hoc analysis of a large randomized trial with another primary endpoint. Unless convincing studies on treatment of hypertension after renal transplantation are available, the ESC/ESH Guidelines 2018 should apply for these patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Hart A, Smith JM, Skeans MA, et al. OPTN/SRTR 2018 annual data report: kidney. Am J Transplant. 2020;20(Suppl s1):20–130.

    Article  PubMed  Google Scholar 

  2. Weiner DE, Park M, Tighiouart H, Joseph AA, Carpenter MA, Goyal N, et al. Albuminuria and allograft failure, cardiovascular disease events, and all-cause death in stable kidney transplant recipients: a cohort analysis of the FAVORIT trial. Am J Kidney Dis. 2019;73:51–61.

    Article  CAS  PubMed  Google Scholar 

  3. Faravardeh A, Eickhoff M, Jackson S, Spong R, Kukla A, Issa N, et al. Predictors of graft failure and death in elderly kidney transplant recipients. Transplantation. 2013;96:1089–96.

    Article  PubMed  Google Scholar 

  4. Opelz G, Döhler B. Cardiovascular death in kidney recipients treated with renin-angiotensin system blockers. Transplantation. 2014;97:310–5.

    Article  CAS  PubMed  Google Scholar 

  5. Weir MR, Burgess ED, Cooper JE, Fenves AZ, Goldsmith D, McKay D, et al. Assessment and management of hypertension in transplant patients. J Am Soc Nephrol. 2015;26:1248–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Halimi JM, Persu A, Sarafidis PA, Burnier M, Abramowicz D, Sautenet B, et al. Optimizing hypertension management in renal transplantation: a call to action. Nephrol Dial Transplant. 2017;32:1959–62.

    Article  PubMed  Google Scholar 

  7. Saran R, Li Y, Robinson B, et al. US Renal Data System 2015 annual data report: epidemiology of kidney disease in the United States. Am J Kidney Dis. 2016;67:Svii S1-305.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Carpenter MA, Weir MR, Adey DB, House AA, Bostom AG, Kusek JW. Inadequacy of cardiovascular risk factor management in chronic kidney transplantation - evidence from the FAVORIT study. Clin Transpl. 2012;26:E438–46.

    Article  Google Scholar 

  9. • Chatzikyrkou C, Menne J, Gwinner W, et al. Pathogenesis and management of hypertension after kidney transplantation. J Hypertens. 2011;29:2283–94 This was our first review on this topic published more than ten years ago.

    Article  CAS  PubMed  Google Scholar 

  10. • Hoorn EJ, Walsh SB, McCormick JA, et al. The calcineurin inhibitor tacrolimus activates the renal sodium chloride cotransporter to cause hypertension. Nat Med. 2011;17:1304–9 An important paper elucidating the mechanisms of calcineurin inhibitor induced hypertension.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. • Moes AD, Hesselink DA, van den Meiracker AH, et al. Chlorthalidone versus amlodipine for fypertension in kidney transplant recipients treated with tacrolimus: a randomized crossover trial. Am J Kidney Dis. 2017;69:796–804 The basic science results of the previous study were here corroborated in the clinical setting.

    Article  CAS  PubMed  Google Scholar 

  12. Issa N, Ortiz F, Reule SA, Kukla A, Kasiske BL, Mauer M, et al. The renin-aldosterone axis in kidney transplant recipients and its association with allograft function and structure. Kidney Int. 2014;85:404–15.

    Article  CAS  PubMed  Google Scholar 

  13. Mortensen LA, Bistrup C, Stubbe J, Carlström M, Checa A, Wheelock CE, et al. Effect of spironolactone for 1 yr on endothelial function and vascular inflammation biomarkers in renal transplant recipients. Am J Physiol Ren Physiol. 2019;317:F529–f539.

    Article  CAS  Google Scholar 

  14. Kovarik JJ, Kaltenecker CC, Kopecky C, Domenig O, Antlanger M, Werzowa J, et al. Intrarenal renin-angiotensin-system dysregulation after kidney transplantation. Sci Rep. 2019;9:9762.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Ehret GB, Ferreira T, Chasman DI, et al. The genetics of blood pressure regulation and its target organs from association studies in 342,415 individuals. Nat Genet. 2016;48:1171–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Coffman TM, Crowley SD. Kidney in hypertension: guyton redux. Hypertension. 2008;51:811–6.

    Article  CAS  PubMed  Google Scholar 

  17. Beckett NS, Peters R, Fletcher AE, Staessen JA, Liu L, Dumitrascu D, et al. Treatment of hypertension in patients 80 years of age or older. N Engl J Med. 2008;358:1887–98.

    Article  CAS  PubMed  Google Scholar 

  18. James PA, Oparil S, Carter BL, Cushman WC, Dennison-Himmelfarb C, Handler J, et al. 2014 evidence-based guideline for the management of high blood pressure in adults: report from the panel members appointed to the Eighth Joint National Committee (JNC 8). Jama. 2014;311:507–20.

    Article  CAS  PubMed  Google Scholar 

  19. Weber MA, Jamerson K, Bakris GL, Weir MR, Zappe D, Zhang Y, et al. Effects of body size and hypertension treatments on cardiovascular event rates: subanalysis of the ACCOMPLISH randomised controlled trial. Lancet. 2013;381:537–45.

    Article  PubMed  Google Scholar 

  20. •• Williams B, Mancia G, Spiering W, et al. 2018 ESC/ESH guidelines for the management of arterial hypertension: The Task Force for the management of arterial hypertension of the European Society of Cardiology and the European Society of Hypertension: The Task Force for the management of arterial hypertension of the European Society of Cardiology and the European Society of Hypertension. J Hypertens. 2018;36:1953–2041 The actual guidelines on hypertension treatment in the general and high risk populations. Due to the lack of evidence in transplantation, hypertension treatment goals proposed by these guidelines have also been adopted for renal transplant recipients.

    Article  CAS  PubMed  Google Scholar 

  21. Williamson JD, Supiano MA, Applegate WB, Berlowitz DR, Campbell RC, Chertow GM, et al. Intensive vs standard blood pressure control and cardiovascular disease outcomes in adults aged ≥75 years: A Randomized Clinical Trial. Jama. 2016;315:2673–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Whelton PK, Carey RM, Aronow WS, Casey de Jr, Collins KJ, Dennison Himmelfarb C, et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation. 2018;138:e426–83.

    PubMed  Google Scholar 

  23. Taler SJ, Agarwal R, Bakris GL, Flynn JT, Nilsson PM, Rahman M, et al. KDOQI US commentary on the 2012 KDIGO clinical practice guideline for management of blood pressure in CKD. Am J Kidney Dis. 2013;62:201–13.

    Article  PubMed  PubMed Central  Google Scholar 

  24. KDOQI Clinical Practice Guideline for Diabetes and CKD. 2012 update. Am J Kidney Dis. 2012;60:850–86.

    Article  Google Scholar 

  25. Passarella P, Kiseleva TA, Valeeva FV, Gosmanov AR. Hypertension management in diabetes: 2018 update. Diabetes Spectr. 2018;31:218–24.

    Article  PubMed  PubMed Central  Google Scholar 

  26. 10. Cardiovascular disease and risk management: standards of medical care in diabetes-2021. Diabetes Care 2021;44:S125-s150.

  27. Unger T, Borghi C, Charchar F, Khan NA, Poulter NR, Prabhakaran D, et al. 2020 International Society of Hypertension Global Hypertension Practice Guidelines. Hypertension. 2020;75:1334–57.

    Article  CAS  PubMed  Google Scholar 

  28. KDIGO. clinical practice guideline for the care of kidney transplant recipients. Am J Transplant. 2009;9(Suppl 3):S1–155.

    Google Scholar 

  29. •• KDIGO 2021. clinical practice guideline for the management of blood pressure in chronic kidney disease. Kidney Int. 2021;99:S1–s87 The latest guideleines on management of BP in patients with chronic kidney disease. Again, due to the scarcity of data and the inconclusive evidence in transplantation, BP goals proposed by these guidelines are also adopted for the treatment of posttransplant hypertension.

    Article  Google Scholar 

  30. Bostom AG, Carpenter MA, Kusek JW, et al. Rationale and design of the Folic Acid for Vascular Outcome Reduction In Transplantation (FAVORIT) trial. Am Heart J. 2006;152:448.e1–7.

    Article  Google Scholar 

  31. Weiner DE, Carpenter MA, Levey AS, Ivanova A, Cole EH, Hunsicker L, et al. Kidney function and risk of cardiovascular disease and mortality in kidney transplant recipients: the FAVORIT trial. Am J Transplant. 2012;12:2437–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. •• Carpenter MA, John A, Weir MR, et al. BP, cardiovascular disease, and death in the Folic Acid for Vascular Outcome Reduction in Transplantation trial. J Am Soc Nephrol. 2014;25:1554–62 The only study, which was a post hoc analysis, associating systolic and diastolic BP levels with cardiovascular outcome in kidney transplant recipients.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Dad T, Tighiouart H, Joseph A, Bostom A, Carpenter M, Hunsicker L, et al. Aspirin use and incident cardiovascular disease, kidney failure, and death in stable kidney transplant recipients: a post hoc analysis of the Folic Acid for Vascular Outcome Reduction in Transplantation (FAVORIT) trial. Am J Kidney Dis. 2016;68:277–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Foster MC, Weiner DE, Bostom AG, Carpenter MA, Inker LA, Jarolim P, et al. Filtration markers, cardiovascular disease, mortality, and kidney outcomes in stable kidney transplant recipients: The FAVORIT Trial. Am J Transplant. 2017;17:2390–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Park M, Katz R, Shlipak MG, Weiner D, Tracy R, Jotwani V, et al. Urinary markers of fibrosis and risk of cardiovascular events and death in kidney transplant recipients: the FAVORIT trial. Am J Transplant. 2017;17:2640–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Weinrauch LA, D'Elia JA, Weir MR, Bunnapradist S, Finn PV, Liu J, et al. Infection and malignancy outweigh cardiovascular mortality in kidney transplant recipients: post hoc analysis of the FAVORIT trial. Am J Med. 2018;131:165–72.

    Article  PubMed  Google Scholar 

  37. Bostom A, Pasch A, Madsen T, Roberts MB, Franceschini N, Steubl D, et al. Serum calcification propensity and fetuin-A: biomarkers of cardiovascular disease in kidney transplant recipients. Am J Nephrol. 2018;48:21–31.

    Article  CAS  PubMed  Google Scholar 

  38. Bostom A, Steubl D, Garimella PS, Franceschini N, Roberts MB, Pasch A, et al. Serum uromodulin: a biomarker of long-term kidney allograft failure. Am J Nephrol. 2018;47:275–82.

    Article  CAS  PubMed  Google Scholar 

  39. Merhi B, Shireman T, Carpenter MA, Kusek JW, Jacques P, Pfeffer M, et al. Serum phosphorus and risk of cardiovascular disease, all-cause mortality, or graft failure in kidney transplant recipients: an ancillary study of the FAVORIT trial cohort. Am J Kidney Dis. 2017;70:377–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Bansal N, Carpenter MA, Weiner DE, Levey AS, Pfeffer M, Kusek JW, et al. Urine injury biomarkers and risk of adverse outcomes in recipients of prevalent kidney transplants: the Folic Acid for Vascular Outcome Reduction in Transplantation trial. J Am Soc Nephrol. 2016;27:2109–21.

    Article  CAS  PubMed  Google Scholar 

  41. Böhm M, Schumacher H, Teo KK, Lonn EM, Mahfoud F, Mann JFE, et al. Achieved blood pressure and cardiovascular outcomes in high-risk patients: results from ONTARGET and TRANSCEND trials. Lancet. 2017;389:2226–37.

    Article  PubMed  Google Scholar 

  42. Böhm M, Schumacher H, Teo KK, Lonn E, Mahfoud F, Mann JFE, et al. Achieved diastolic blood pressure and pulse pressure at target systolic blood pressure (120-140 mmHg) and cardiovascular outcomes in high-risk patients: results from ONTARGET and TRANSCEND trials. Eur Heart J. 2018;39:3105–14.

    Article  PubMed  Google Scholar 

  43. Seeman T, Vondrák K, Dušek J. Effects of the strict control of blood pressure in pediatric renal transplant recipients-ESCORT trial. Pediatr Transplant. 2019;23:e13329.

    PubMed  Google Scholar 

  44. Ramzy D, Rao V, Tumiati LC, Xu N, Sheshgiri R, Miriuka S, et al. Elevated endothelin-1 levels impair nitric oxide homeostasis through a PKC-dependent pathway. Circulation. 2006;114:I319–26.

    Article  PubMed  Google Scholar 

  45. Silverborn M, Ambring A, Nilsson F, Friberg P, Jeppsson A. Vascular resistance and endothelial function in cyclosporine-treated lung transplant recipients. Transpl Int. 2006;19:974–81.

    Article  CAS  PubMed  Google Scholar 

  46. Madsen K, Friis UG, Gooch JL, Hansen PB, Holmgaard L, Skøtt O, et al. Inhibition of calcineurin phosphatase promotes exocytosis of renin from juxtaglomerular cells. Kidney Int. 2010;77:110–7.

    Article  CAS  PubMed  Google Scholar 

  47. Klein IH, Abrahams AC, van Ede T, et al. Differential effects of acute and sustained cyclosporine and tacrolimus on sympathetic nerve activity. J Hypertens. 2010;28:1928–34.

    Article  CAS  PubMed  Google Scholar 

  48. Chiasson VL, Talreja D, Young KJ, Chatterjee P, Banes-Berceli AK, Mitchell BM. FK506 binding protein 12 deficiency in endothelial and hematopoietic cells decreases regulatory T cells and causes hypertension. Hypertension. 2011;57:1167–75.

    Article  CAS  PubMed  Google Scholar 

  49. • Robert N, Wong GW, Wright JM. Effect of cyclosporine on blood pressure. Cochrane Database Syst Rev 2010:Cd007893. An important metaanalysis showing the association between dosage and BP increase. In this paper the effect of various daily dosages of cyclosporin on BP were quantified.

  50. • Goodwin JE, Zhang J, Geller DS. A critical role for vascular smooth muscle in acute glucocorticoid-induced hypertension. J Am Soc Nephrol. 2008;19:1291–9 An important paper showing an interesting alternative but also equally detrimental mechanism of glucocorticoid-induced hypertension.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Veenstra DL, Best JH, Hornberger J, Sullivan SD, Hricik DE. Incidence and long-term cost of steroid-related side effects after renal transplantation. Am J Kidney Dis. 1999;33:829–39.

    Article  CAS  PubMed  Google Scholar 

  52. Masson P, Henderson L, Chapman JR, et al. Belatacept for kidney transplant recipients. Cochrane Database Syst Rev. 2014;2014:Cd010699.

    PubMed Central  Google Scholar 

  53. • Vinh A, Chen W, Blinder Y, et al. Inhibition and genetic ablation of the B7/CD28 T-cell costimulation axis prevents experimental hypertension. Circulation. 2010;122:2529–37 An interesting paper implicating immunologic mechanisms in the pathogenesis of hypertension that could be modulated by belatacept.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Saengram W, Vadcharavivad S, Poolsup N, Chancharoenthana W. Extended release versus immediate release tacrolimus in kidney transplant recipients: a systematic review and meta-analysis. Eur J Clin Pharmacol. 2018;74:1249–60.

    Article  CAS  PubMed  Google Scholar 

  55. Mourer JS, de Koning EJ, van Zwet EW, et al. Impact of late calcineurin inhibitor withdrawal on ambulatory blood pressure and carotid intima media thickness in renal transplant recipients. Transplantation. 2013;96:49–57.

    Article  CAS  PubMed  Google Scholar 

  56. Lopez-Soler RI, Chan R, Martinolich J, Park L, Ata A, Chandolias N, et al. Early steroid withdrawal results in improved patient and graft survival and lower risk of post-transplant cardiovascular risk profiles: a single-center 10-year experience. Clin Transpl. 2017;31.

  57. Sommerer C, Duerr M, Witzke O, Lehner F, Arns W, Kliem V, et al. Five-year outcomes in kidney transplant patients randomized to everolimus with cyclosporine withdrawal or low-exposure cyclosporine versus standard therapy. Am J Transplant. 2018;18:2965–76.

    Article  CAS  PubMed  Google Scholar 

  58. Budde K, Lehner F, Sommerer C, Reinke P, Arns W, Eisenberger U, et al. Five-year outcomes in kidney transplant patients converted from cyclosporine to everolimus: the randomized ZEUS study. Am J Transplant. 2015;15:119–28.

    Article  CAS  PubMed  Google Scholar 

  59. Sommerer C, Witzke O, Lehner F, et al. Onset and progression of diabetes in kidney transplant patients receiving everolimus or cyclosporine therapy: an analysis of two randomized, multicenter trials. BMC Nephrol. 2018;19:237.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Azarfar A, Ravanshad Y, Mehrad-Majd H, Esmaeeli M, Aval SB, Emadzadeh M, et al. Comparison of tacrolimus and cyclosporine for immunosuppression after renal transplantation: an updated systematic review and meta-analysis. Saudi J Kidney Dis Transpl. 2018;29:1376–85.

    Article  PubMed  Google Scholar 

  61. • Thomusch O, Wiesener M, Opgenoorth M, et al. Rabbit-ATG or basiliximab induction for rapid steroid withdrawal after renal transplantation (Harmony): an open-label, multicentre, randomised controlled trial. Lancet. 2016;388:3006–16 A recent randomised controlled study of early steroid withdrawal after renal transplantaion.

    Article  CAS  PubMed  Google Scholar 

  62. Pascual J, Berger SP, Witzke O, Tedesco H, Mulgaonkar S, Qazi Y, et al. Everolimus with reduced calcineurin inhibitor exposure in renal transplantation. J Am Soc Nephrol. 2018;29:1979–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Berger SP, Sommerer C, Witzke O, Tedesco H, Chadban S, Mulgaonkar S, et al. Two-year outcomes in de novo renal transplant recipients receiving everolimus-facilitated calcineurin inhibitor reduction regimen from the TRANSFORM study. Am J Transplant. 2019;19:3018–34.

    Article  CAS  PubMed  Google Scholar 

  64. Tedesco-Silva H, Pascual J, Viklicky O, Basic-Jukic N, Cassuto E, Kim DY, et al. Safety of everolimus with reduced calcineurin inhibitor exposure in de novo kidney transplants: an analysis from the randomized TRANSFORM study. Transplantation. 2019;103:1953–63.

    Article  CAS  PubMed  Google Scholar 

  65. • Hundemer GL, Knoll GA, Petrcich W, et al. Kidney, cardiac, and safety outcomes associated with α-blockers in patients with CKD: a population-based cohort study. Am J Kidney Dis. 2021;77:178–189.e1 An interesting registry analysis showing positive effects of an neglected antihypertensive drug class in patients with chronic kidney disease.

    Article  CAS  PubMed  Google Scholar 

  66. Wagner S, Greco F, Doehn C, Hoda MR, Girndt M, Jocham D, et al. Laparoscopic versus open bilateral nephrectomy in transplant recipients with medication-resistant hypertension: final results of a multicenter study with 15 years of follow-up. Transplant Proc. 2011;43:2557–61.

    Article  CAS  PubMed  Google Scholar 

  67. Noubiap JJ, Nansseu JR, Nyaga UF, Sime PS, Francis I, Bigna JJ. Global prevalence of resistant hypertension: a meta-analysis of data from 3.2 million patients. Heart. 2019;105:98–105.

    Article  PubMed  Google Scholar 

  68. Koraishy FM, Yamout H, Naik AS, et al. Impacts of center and clinical factors in antihypertensive medication use after kidney transplantation. Clin Transpl. 2020;34:e13803.

    Article  Google Scholar 

  69. Yusuf S, Sleight P, Pogue J, et al. Effects of an angiotensin-converting-enzyme inhibitor, ramipril, on cardiovascular events in high-risk patients. N Engl J Med. 2000;342:145–53.

    Article  CAS  PubMed  Google Scholar 

  70. Fox KM. Efficacy of perindopril in reduction of cardiovascular events among patients with stable coronary artery disease: randomised, double-blind, placebo-controlled, multicentre trial (the EUROPA study). Lancet. 2003;362:782–8.

    Article  CAS  PubMed  Google Scholar 

  71. Saglimbene V, Palmer SC, Ruospo M, Natale P, Maione A, Nicolucci A, et al. The Long-Term Impact of Renin-Angiotensin System (RAS) Inhibition on Cardiorenal Outcomes (LIRICO): a randomized, controlled trial. J Am Soc Nephrol. 2018;29:2890–9.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Ruggenenti P, Perna A, Negri M, Matalone M. Randomised placebo-controlled trial of effect of ramipril on decline in glomerular filtration rate and risk of terminal renal failure in proteinuric, non-diabetic nephropathy. The GISEN Group (Gruppo Italiano di Studi Epidemiologici in Nefrologia). Lancet. 1997;349:1857–63.

    Article  Google Scholar 

  73. Brenner BM, Cooper ME, de Zeeuw D, Keane WF, Mitch WE, Parving HH, et al. Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N Engl J Med. 2001;345:861–9.

    Article  CAS  PubMed  Google Scholar 

  74. Hsu TW, Liu JS, Hung SC, Kuo KL, Chang YK, Chen YC, et al. Renoprotective effect of renin-angiotensin-aldosterone system blockade in patients with predialysis advanced chronic kidney disease, hypertension, and anemia. JAMA Intern Med. 2014;174:347–54.

    Article  PubMed  Google Scholar 

  75. Bolignano D, Palmer SC, Navaneethan SD, et al. Aldosterone antagonists for preventing the progression of chronic kidney disease. Cochrane Database Syst Rev 2014:Cd007004.

  76. Huang Z, Wu B, Tao J, Han Z, Yang X, Zhang L, et al. Association between angiotensin I-Converting enzyme insertion/deletion polymorphism and prognosis of kidney transplantation: a meta-analysis. PLoS One. 2015;10:e0127320.

    Article  PubMed  PubMed Central  Google Scholar 

  77. • Ibrahim HN, Jackson S, Connaire J, et al. Angiotensin II blockade in kidney transplant recipients. J Am Soc Nephrol. 2013;24:320–7 An interesting study testing the effects of RAS blockers on allograft histology and function.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Paoletti E, Bellino D, Marsano L, Cassottana P, Rolla D, Ratto E. Effects of ACE inhibitors on long-term outcome of renal transplant recipients: a randomized controlled trial. Transplantation. 2013;95:889–95.

    Article  CAS  PubMed  Google Scholar 

  79. Paoletti E, Cassottana P, Amidone M, Gherzi M, Rolla D, Cannella G. ACE inhibitors and persistent left ventricular hypertrophy after renal transplantation: a randomized clinical trial. Am J Kidney Dis. 2007;50:133–42.

    Article  CAS  PubMed  Google Scholar 

  80. Tsuchimoto A, Masutani K, Ueki K, et al. Effect of renin-angiotensin system blockade on graft survival and cardiovascular disease in kidney transplant recipients: retrospective multicenter study in Japan. Clin Exp Nephrol. 2020;24:369–78.

    Article  CAS  PubMed  Google Scholar 

  81. Chatzikyrkou C, Eichler J, Karch A, Clajus C, Scurt FG, Ramackers W, et al. Short- and long-term effects of the use of RAAS blockers immediately after renal transplantation. Blood Press. 2017;26:30–8.

    Article  CAS  PubMed  Google Scholar 

  82. Aftab W, Varadarajan P, Rasool S, et al. Beta and angiotensin blockades are associated with improved 10-year survival in renal transplant recipients. J Am Heart Assoc. 2013;2:e000091.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Heleniak Z, Illersperger S, Brakemeier S, Bach P, Dębska-Ślizień A, Budde K, et al. The renin-angiotensin-aldosterone system blockade and arterial stiffness in renal transplant recipients - a cross-sectional prospective observational clinical study. Acta Biochim Pol. 2020;67:613–22.

    CAS  PubMed  Google Scholar 

  84. Heleniak Z, Kuźmiuk-Glembin I, Adrych D, Garnier H, Wiśniewski J, Rutkowski P, et al. Management of renin-angiotensin-aldosterone system blockade in kidney transplant recipients. Transplant Proc. 2018;50:1842–6.

    Article  CAS  PubMed  Google Scholar 

  85. Hernández D, Muriel A, Abraira V, Pérez G, Porrini E, Marrero D, et al. Renin-angiotensin system blockade and kidney transplantation: a longitudinal cohort study. Nephrol Dial Transplant. 2012;27:417–22.

    Article  PubMed  Google Scholar 

  86. •• Knoll GA, Fergusson D, Chassé M, et al. Ramipril versus placebo in kidney transplant patients with proteinuria: a multicentre, double-blind, randomised controlled trial. Lancet Diabetes Endocrinol. 2016;4:318–26 The only non-industry sponsored randomized controlled study that failed to prove the presumed superiority of RAS blockers in renal transplantation.

    Article  CAS  PubMed  Google Scholar 

  87. • Philipp T, Martinez F, Geiger H, et al. Candesartan improves blood pressure control and reduces proteinuria in renal transplant recipients: results from SECRET. Nephrol Dial Transplant. 2010;25:967–76 Another improtant randomized controlled study dealing with RAS blockers in kidney transplantation. This study had to be terminated prematurely due to futility.

    Article  CAS  PubMed  Google Scholar 

  88. Salzberg DJ, Karadsheh FF, Haririan A, Reddivari V, Weir MR. Specific management of anemia and hypertension in renal transplant recipients: influence of renin-angiotensin system blockade. Am J Nephrol. 2014;39:1–7.

    Article  CAS  PubMed  Google Scholar 

  89. Shin JI, Palta M, Djamali A, Kaufman DB, Astor BC. The association between renin-angiotensin system blockade and long-term outcomes in renal transplant recipients: the Wisconsin Allograft Recipient Database (WisARD). Transplantation. 2016;100:1541–9.

    Article  CAS  PubMed  Google Scholar 

  90. • Hiremath S, Fergusson DA, Fergusson N, et al. Renin-angiotensin system blockade and long-term clinical outcomes in kidney transplant recipients: a meta-analysis of randomized controlled trials. Am J Kidney Dis. 2017;69:78–86 The newest and largest meta-analysis on the effects of RAS blockers in kidney transplant recipients.

    Article  CAS  PubMed  Google Scholar 

  91. Jiang YM, Song TR, Qiu Y, Liu JP, Wang XD, Huang ZL, et al. Effect of renin-angiotensin system inhibitors on survival in kidney transplant recipients: a systematic review and meta-analysis. Kaohsiung J Med Sci. 2018;34:1–13.

    Article  PubMed  Google Scholar 

  92. •• Williams B, MacDonald TM, Morant S, et al. Spironolactone versus placebo, bisoprolol, and doxazosin to determine the optimal treatment for drug-resistant hypertension (PATHWAY-2): a randomised, double-blind, crossover trial. Lancet. 2015;386:2059–68 A very important study showing the efficacy of mineralcorticoid receptor antagonists in the treatment of resistant hypertension. The results of this study were impressive and the subsequent guidelines adopted this drug class and integrated it in the treatment algorithm of hypertnesion.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Williams B, Mancia G, Spiering W, Agabiti Rosei E, Azizi M, Burnier M, et al. 2018 ESC/ESH Guidelines for the management of arterial hypertension. Eur Heart J. 2018;39:3021–104.

    Article  PubMed  Google Scholar 

  94. • Papadimitriou M, Vyzantiadis A, Milionis A, et al. The effect of spironolactone in hypertensive patients on regular haemodialysis and after renal allotransplantation. Life Support Syst. 1983;1:197–205 The first study using an aldosterone antagonist in chronic kidney disease and transplantation.

    CAS  PubMed  Google Scholar 

  95. Girerd S, Jaisser F. Mineralocorticoid receptor antagonists in kidney transplantation: time to consider? Nephrol Dial Transplant. 2018;33:2080–91.

    Article  CAS  PubMed  Google Scholar 

  96. Al Dhaybi O, Bakris GL. Non-steroidal mineralocorticoid antagonists: prospects for renoprotection in diabetic kidney disease. Diabetes Obes Metab. 2020;22(Suppl 1):69–76.

    Article  PubMed  Google Scholar 

  97. Ruilope LM, Agarwal R, Anker SD, Bakris GL, Filippatos G, Nowack C, et al. Design and baseline characteristics of the Finerenone in Reducing Cardiovascular Mortality and Morbidity in Diabetic Kidney Disease trial. Am J Nephrol. 2019;50:345–56.

    Article  CAS  PubMed  Google Scholar 

  98. Dragun D, Müller DN, Bräsen JH, Fritsche L, Nieminen-Kelhä M, Dechend R, et al. Angiotensin II type 1-receptor activating antibodies in renal-allograft rejection. N Engl J Med. 2005;352:558–69.

    Article  CAS  PubMed  Google Scholar 

  99. Fuchs U, Zittermann A, Berthold HK, Tenderich G, Deyerling KW, Minami K, et al. Immunosuppressive therapy with everolimus can be associated with potentially life-threatening lingual angioedema. Transplantation. 2005;79:981–3.

    Article  CAS  PubMed  Google Scholar 

  100. Gharbi C, Gueutin V, Izzedine H. Oedema, solid organ transplantation and mammalian target of rapamycin inhibitor/proliferation signal inhibitors (mTOR-I/PSIs). Clin Kidney J. 2014;7:115–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Cross NB, Webster AC, Masson P, O'Connell PJ, Craig JC. Antihypertensives for kidney transplant recipients: systematic review and meta-analysis of randomized controlled trials. Transplantation. 2009;88:7–18.

    Article  CAS  PubMed  Google Scholar 

  102. Weir MR. Therapeutic benefits of calcium channel blockers in cyclosporine-treated organ transplant recipients: blood pressure control and immunosuppression. Am J Med. 1991;90:32s–6s.

    Article  CAS  PubMed  Google Scholar 

  103. Bernard E, Goutelle S, Bertrand Y, Bleyzac N. Pharmacokinetic drug-drug interaction of calcium channel blockers with cyclosporine in hematopoietic stem cell transplant children. Ann Pharmacother. 2014;48:1580–4.

    Article  PubMed  Google Scholar 

  104. Jensen RR, Healy RM, Ford CD, et al. Amlodipine and calcineurin inhibitor-induced nephrotoxicity following allogeneic hematopoietic stem cell transplant. Clin Transpl. 2019;33:e13633.

    Article  Google Scholar 

  105. Hornum M, Iversen M, Oturai P, Andersen MJ, Zemtsovski M, Bredahl P, et al. Felodipine and renal function in lung transplantation: a randomized placebo-controlled trial. J Heart Lung Transplant. 2020;39:541–50.

    Article  PubMed  Google Scholar 

  106. Cai J, Huang Z, Yang G, Cheng K, Ye Q, Ming Y, et al. Comparing antihypertensive effect and plasma ciclosporin concentration between amlodipine and valsartan regimens in hypertensive renal transplant patients receiving ciclosporin therapy. Am J Cardiovasc Drugs. 2011;11:401–9.

    Article  CAS  PubMed  Google Scholar 

  107. •• Pisano A, Bolignano D, Mallamaci F, et al. Comparative effectiveness of different antihypertensive agents in kidney transplantation: a systematic review and meta-analysis. Nephrol Dial Transplant. 2020;35:878–87 An important recent review comparing different antihypertensive drug classes in kidney transplantation.

    Article  CAS  PubMed  Google Scholar 

  108. Pedersen SA, Gaist D, Schmidt SAJ, et al. Hydrochlorothiazide use and risk of nonmelanoma skin cancer: a nationwide case-control study from Denmark. J Am Acad Dermatol. 2018;78:673–681.e9.

    Article  CAS  PubMed  Google Scholar 

  109. Gandini S, Palli D, Spadola G, Bendinelli B, Cocorocchio E, Stanganelli I, et al. Anti-hypertensive drugs and skin cancer risk: a review of the literature and meta-analysis. Crit Rev Oncol Hematol. 2018;122:1–9.

    Article  PubMed  Google Scholar 

  110. • Emma Coplant (Oxford G). Antihypertensive drugs and cancer risk: an IPD meta-analysis in the BPLTTC. ESH Congress 2020, 2020;Late-Breaking Science in Hypertension. An important analysis showing that the use of any antihypertensive drug class did not have any significant effect on the risk of cancer.

  111. •• Mittal A, Colegio OR. Skin cancers in organ transplant recipients. Am J Transplant. 2017;17:2509–30 An important review on skin cancers in Transplantation.

    Article  CAS  PubMed  Google Scholar 

  112. Letellier T, Leborgne F, Kerleau C, Gaultier A, Dantal J, Ville S, et al. Association between use of hydrochlorothiazide and risk of keratinocyte cancers in kidney transplant recipients. Clin J Am Soc Nephrol. 2020;15:1804–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. In Brief: Hydrochlorothiazide and skin cancer. Med Lett Drugs Ther 2020;62:177.

  114. Hofmann GA, Weber B. Drug-induced photosensitivity: culprit drugs, potential mechanisms and clinical consequences. J Dtsch Dermatol Ges. 2021;19:19–29.

    PubMed  PubMed Central  Google Scholar 

  115. Asai K, Kobayashi T, Miyata H, Tanaka Y, Okada Y, Sakai K, et al. The short-term impact of dietary counseling on sodium intake and blood pressure in renal allograft recipients. Prog Transplant. 2016;26:365–71.

    Article  PubMed  Google Scholar 

  116. de Vries LV, Dobrowolski LC, van den Bosch JJ, et al. Effects of dietary sodium restriction in kidney transplant recipients treated with renin-angiotensin-aldosterone system blockade: a randomized clinical trial. Am J Kidney Dis. 2016;67:936–44.

    Article  PubMed  Google Scholar 

  117. Lafranca JA, JN IJ, Betjes MG, et al. Body mass index and outcome in renal transplant recipients: a systematic review and meta-analysis. BMC Med. 2015;13:111.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Yazbek DC, Carvalho AB, Barros CS, Medina Pestana JO, Rochitte CE, dos Santos Filho RD, et al. Is there relationship between epicardial fat and cardiovascular parameters in incident kidney transplant patients? A post-hoc analysis PLoS One. 2018;13:e0191009.

    Article  PubMed  Google Scholar 

  119. Chan G, Garneau P, Hajjar R. The impact and treatment of obesity in kidney transplant candidates and recipients. Can J Kidney Health Dis. 2015;2:26.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Totti V, Fernhall B, Di Michele R, et al. Longitudinal analysis of cardiovascular risk factors in active and sedentary kidney transplant recipients. Medicina (Kaunas). 2020;56.

  121. Ponticelli C, Arnaboldi L, Moroni G, Corsini A. Treatment of dyslipidemia in kidney transplantation. Expert Opin Drug Saf. 2020;19:257–67.

    Article  CAS  PubMed  Google Scholar 

  122. Qu LH, Jiang H, Chen JH. Effect of uric acid-lowering therapy on blood pressure: systematic review and meta-analysis. Ann Med. 2017;49:142–56.

    Article  CAS  PubMed  Google Scholar 

  123. Gritter M, Vogt L, Yeung SMH, Wouda RD, Ramakers CRB, de Borst MH, et al. Rationale and design of a randomized placebo-controlled clinical trial assessing the renoprotective effects of potassium supplementation in chronic kidney disease. Nephron. 2018;140:48–57.

    Article  CAS  PubMed  Google Scholar 

  124. Mannon EC, O'Connor PM. Alkali supplementation as a therapeutic in chronic kidney disease: what mediates protection? Am J Physiol Ren Physiol. 2020;319:F1090–f1104.

    Article  CAS  Google Scholar 

  125. Boucquemont J, Pai ALH, Dharnidharka VR, Hebert D, Zelikovsky N, Amaral S, et al. Association between day of the week and medication adherence among adolescent and young adult kidney transplant recipients. Am J Transplant. 2020;20:274–81.

    Article  PubMed  Google Scholar 

  126. Gomis-Pastor M, Roig Mingell E, Mirabet Perez S, et al. Multimorbidity and medication complexity: New challenges in heart transplantation. Clin Transpl. 2019;33:e13682.

    Article  Google Scholar 

  127. Han A, Min SI, Ahn S, Min SK, Hong HJ, Han N, et al. Mobile medication manager application to improve adherence with immunosuppressive therapy in renal transplant recipients: a randomized controlled trial. PLoS One. 2019;14:e0224595.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Taber DJ, Pilch NA, McGillicuddy JW, et al. Using informatics and mobile health to improve medication safety monitoring in kidney transplant recipients. Am J Health Syst Pharm. 2019;76:1143–9.

    Article  PubMed  Google Scholar 

  129. Curtis JJ, Luke RG, Diethelm AG, Whelchel JD, Jones P. Benefits of removal of native kidneys in hypertension after renal transplantation. Lancet. 1985;2:739–42.

    Article  CAS  PubMed  Google Scholar 

  130. Krum H, Schlaich MP, Sobotka PA, Böhm M, Mahfoud F, Rocha-Singh K, et al. Percutaneous renal denervation in patients with treatment-resistant hypertension: final 3-year report of the Symplicity HTN-1 study. Lancet. 2014;383:622–9.

    Article  PubMed  Google Scholar 

  131. Bhatt DL, Kandzari DE, O'Neill WW, D'Agostino R, Flack JM, Katzen BT, et al. A controlled trial of renal denervation for resistant hypertension. N Engl J Med. 2014;370:1393–401.

    Article  CAS  PubMed  Google Scholar 

  132. Schneider S, Promny D, Sinnecker D, Byrne RA, Müller A, Dommasch M, et al. Impact of sympathetic renal denervation: a randomized study in patients after renal transplantation (ISAR-denerve). Nephrol Dial Transplant. 2015;30:1928–36.

    Article  PubMed  Google Scholar 

  133. Seratnahaei A, Shah A, Bodiwala K, Mukherjee D. Management of transplant renal artery stenosis. Angiology. 2011;62:219–24.

    Article  PubMed  Google Scholar 

  134. Chen LX, De Mattos A, Bang H, et al. Angioplasty vs stent in the treatment of transplant renal artery stenosis. Clin Transpl. 2018;32:e13217.

    Article  Google Scholar 

  135. Maideen NMP. Drug interactions of dihydropyridine calcium channel blockers (CCBs) involving CYP3A4 enzymes. Eur J Med. 2019;7:106–13.

    CAS  Google Scholar 

  136. FitzGerald GA. Testing cardiovascular drug safety and efficacy in randomized trials. Circ Res. 2014;114:1156–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Ibrahim A, Garg AX, Knoll GA, Akbari A, White CA. Kidney function endpoints in kidney transplant trials: a struggle for power. Am J Transplant. 2013;13:707–13.

    Article  CAS  PubMed  Google Scholar 

  138. Brown MJ, Williams B, Morant SV, Webb DJ, Caulfield MJ, Cruickshank JK, et al. Effect of amiloride, or amiloride plus hydrochlorothiazide, versus hydrochlorothiazide on glucose tolerance and blood pressure (PATHWAY-3): a parallel-group, double-blind randomised phase 4 trial. Lancet Diabetes Endocrinol. 2016;4:136–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Mancia G, Facchetti R, Cuspidi C, Bombelli M, Corrao G, Grassi G. Limited reproducibility of MUCH and WUCH: evidence from the ELSA study. Eur Heart J. 2020;41:1565–71.

    Article  CAS  PubMed  Google Scholar 

  140. Lee MH, Ko KM, Ahn SW, Bae MN, Choi BS, Park CW, et al. The impact of kidney transplantation on 24-hour ambulatory blood pressure in end-stage renal disease patients. J Am Soc Hypertens. 2015;9:427–34.

    Article  PubMed  Google Scholar 

  141. Pisano A, Mallamaci F, D'Arrigo G, et al. Blood pressure monitoring in kidney transplantation: a systematic review on hypertension and target organ damage. Nephrol Dial Transplant 2021.

  142. Hermida RC, Crespo JJ, Domínguez-Sardiña M, Otero A, Moyá A, Ríos MT, et al. Bedtime hypertension treatment improves cardiovascular risk reduction: the Hygia Chronotherapy Trial. Eur Heart J. 2020;41:4565–76.

    Article  CAS  PubMed  Google Scholar 

  143. Kreutz R, Kjeldsen SE, Burnier M, Narkiewicz K, Oparil S, Mancia G. Disregard the reported data from the HYGIA project: blood pressure medication not to be routinely dosed at bedtime. J Hypertens. 2020;38:2144–5.

    Article  CAS  PubMed  Google Scholar 

  144. Stevens SL, Wood S, Koshiaris C, et al. Blood pressure variability and cardiovascular disease: systematic review and meta-analysis. Bmj. 2016;354:i4098.

    Article  PubMed  PubMed Central  Google Scholar 

  145. Parati G, Stergiou GS, Dolan E, Bilo G. Blood pressure variability: clinical relevance and application. J Clin Hypertens (Greenwich). 2018;20:1133–7.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christos Chatzikyrkou.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Mechanisms of Hypertension and Target-Organ Damage

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chatzikyrkou, C., Schmieder, R.E. & Schiffer, M. Update on Treatment of Hypertension After Renal Transplantation. Curr Hypertens Rep 23, 25 (2021). https://doi.org/10.1007/s11906-021-01151-8

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11906-021-01151-8

Keywords

Navigation