Skip to main content

Advertisement

Log in

Mechanisms of Synergistic Interactions of Diabetes and Hypertension in Chronic Kidney Disease: Role of Mitochondrial Dysfunction and ER Stress

  • Mechanisms of Hypertension and Target-Organ Damage (JE Hall and ME Hall, Section Editors)
  • Published:
Current Hypertension Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

To discuss the importance of synergistic interactions of diabetes mellitus (DM) and hypertension (HT) in causing chronic kidney disease and the potential molecular mechanisms involved.

Recent Findings

DM and HT are the two most important risk factors for chronic kidney disease (CKD) and development of end-stage renal disease (ESRD). The combination of HT and DM may synergistically promote the progression of renal injury through mechanisms that have not been fully elucidated. Hyperglycemia and other metabolic changes in DM initiate endoplasmic reticulum (ER) stress and mitochondrial (MT) adaptation in different types of glomerular cells. These adaptations appear to make the cells more vulnerable to HT-induced mechanical stress. Excessive activation of mechanosensors, possibly via transient receptor potential cation channel subfamily C member 6 (TRPC6), may lead to impaired calcium (Ca2+) homeostasis and further exacerbate ER stress and MT dysfunction promoting cellular apoptosis and glomerular injury.

Summary

The synergistic effects of HT and DM to promote kidney injury may be mediated by increased intraglomerular pressure. Chronic activation of mechanotransduction signaling may amplify metabolic effects of DM causing cellular injury through a vicious cycle of impaired Ca2+ homeostasis, mitochondrial dysfunction, and ER stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Centers for Disease Control and Prevention. Chronic Kidney Disease Surveillance System website. https://nccd.cdc.gov/CKD. Accessed January 7, 2019.

  2. Alicic RZ, Rooney MT, Tuttle KR. Diabetic kidney disease: challenges, progress, and possibilities. Clin J Am Soc Nephrol. 2017;12(12):2032–45. https://doi.org/10.2215/CJN.11491116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Albertus P, Morgenstern H, Robinson B, Saran R. Risk of ESRD in the United States. Am J Kidney Dis. 2016;68(6):862–72. https://doi.org/10.1053/j.ajkd.2016.05.030.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Saran R, Robinson B, Abbott KC, Bragg-Gresham J, Chen X, Gipson D, et al. US Renal Data System 2019 Annual Data Report: epidemiology of kidney disease in the United States. Am J Kidney Dis. 2019. https://doi.org/10.1053/j.ajkd.2019.09.003.

  5. Roberts SS. Hypertension management in adults with diabetes. Diabetes Forecast. 2004;57(10):41–2.

    PubMed  Google Scholar 

  6. Arauz-Pacheco C, Parrott MA, Raskin P, American Diabetes A. Hypertension management in adults with diabetes. Diabetes Care. 2004;27(Suppl 1):S65–7.

    PubMed  Google Scholar 

  7. Shahi N, Tobe SW. Thresholds and targets for hypertension management in adults with type 2 diabetes should remain at 130/80 mmHg: what’s the evidence? Can J Diabetes. 2018;42(2):166–72. https://doi.org/10.1016/j.jcjd.2017.10.052.

    Article  PubMed  Google Scholar 

  8. Hall JE, do Carmo JM, da Silva AA, Wang Z, Hall ME. Obesity, kidney dysfunction and hypertension: mechanistic links. Nat Rev Nephrol. 2019;15(6):367–85. https://doi.org/10.1038/s41581-019-0145-4.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Thomas G. Hypertension management in chronic kidney disease and diabetes: lessons from the systolic blood pressure intervention trial. Cardiol Clin. 2019;37(3):307–17. https://doi.org/10.1016/j.ccl.2019.04.006.

    Article  PubMed  Google Scholar 

  10. Eijkelkamp WB, Zhang Z, Remuzzi G, Parving HH, Cooper ME, Keane WF, et al. Albuminuria is a target for renoprotective therapy independent from blood pressure in patients with type 2 diabetic nephropathy: post hoc analysis from the reduction of endpoints in NIDDM with the angiotensin II antagonist losartan (RENAAL) trial. J Am Soc Nephrol. 2007;18(5):1540–6. https://doi.org/10.1681/ASN.2006050445.

    Article  CAS  PubMed  Google Scholar 

  11. Maric C, Hall JE. Obesity, metabolic syndrome and diabetic nephropathy. Contrib Nephrol. 2011;170:28–35. https://doi.org/10.1159/000324941.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Woods LL, Mizelle HL, Hall JE. Control of renal hemodynamics in hyperglycemia: possible role of tubuloglomerular feedback. Am J Phys. 1987;252(1 Pt 2):F65–73. https://doi.org/10.1152/ajprenal.1987.252.1.F65.

    Article  CAS  Google Scholar 

  13. Conti S, Perico N, Novelli R, Carrara C, Benigni A, Remuzzi G. Early and late scanning electron microscopy findings in diabetic kidney disease. Sci Rep. 2018;8(1):4909. https://doi.org/10.1038/s41598-018-23244-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kriz W, Lemley KV. A potential role for mechanical forces in the detachment of podocytes and the progression of CKD. J Am Soc Nephrol. 2015;26(2):258–69. https://doi.org/10.1681/ASN.2014030278.

    Article  CAS  PubMed  Google Scholar 

  15. Vallon V, Thomson SC. Renal function in diabetic disease models: the tubular system in the pathophysiology of the diabetic kidney. Annu Rev Physiol. 2012;74:351–75. https://doi.org/10.1146/annurev-physiol-020911-153333.

    Article  CAS  PubMed  Google Scholar 

  16. D’Agati VD, Chagnac A, de Vries AP, Levi M, Porrini E, Herman-Edelstein M, et al. Obesity-related glomerulopathy: clinical and pathologic characteristics and pathogenesis. Nat Rev Nephrol. 2016;12(8):453–71. https://doi.org/10.1038/nrneph.2016.75.

    Article  CAS  PubMed  Google Scholar 

  17. •• Wang Z, do Carmo JM, Aberdein N, Zhou X, Williams JM, da Silva AA, et al. Synergistic interaction of hypertension and diabetes in promoting kidney injury and the role of endoplasmic reticulum stress. Hypertension. 2017;69(5):879–91. https://doi.org/10.1161/HYPERTENSIONAHA.116.08560 This study showed superimposition of HT on T2D produces much more severe kidney injury than DM or HT alone in rat model.

  18. Retnakaran R, Cull CA, Thorne KI, Adler AI, Holman RR, Group US. Risk factors for renal dysfunction in type 2 diabetes: UK Prospective Diabetes Study 74. Diabetes. 2006;55(6):1832–9. https://doi.org/10.2337/db05-1620.

    Article  CAS  PubMed  Google Scholar 

  19. Hoshi S, Shu Y, Yoshida F, Inagaki T, Sonoda J, Watanabe T, et al. Podocyte injury promotes progressive nephropathy in Zucker diabetic fatty rats. Lab Investig. 2002;82(1):25–35.

    Article  CAS  PubMed  Google Scholar 

  20. Coimbra TM, Janssen U, Grone HJ, Ostendorf T, Kunter U, Schmidt H, et al. Early events leading to renal injury in obese Zucker (fatty) rats with type II diabetes. Kidney Int. 2000;57(1):167–82. https://doi.org/10.1046/j.1523-1755.2000.00836.x.

    Article  CAS  PubMed  Google Scholar 

  21. Tesch GH, Lim AK. Recent insights into diabetic renal injury from the db/db mouse model of type 2 diabetic nephropathy. Am J Physiol Renal Physiol. 2011;300(2):F301–10. https://doi.org/10.1152/ajprenal.00607.2010.

    Article  CAS  PubMed  Google Scholar 

  22. Pourghasem M, Nasiri E, Shafi H. Early renal histological changes in alloxan-induced diabetic rats. Int J Mol Cell Med. 2014;3(1):11–5.

    PubMed  PubMed Central  Google Scholar 

  23. • Tonneijck L, Muskiet MH, Smits MM, van Bommel EJ, Heerspink HJ, van Raalte DH, et al. Glomerular hyperfiltration in diabetes: mechanisms, clinical significance, and treatment. J Am Soc Nephrol. 2017;28(4):1023–39. https://doi.org/10.1681/ASN.2016060666 This is an excellent review summarizing the glomerular hyperfiltration in diabetes.

  24. Brands MW, Labazi H. Role of glomerular filtration rate in controlling blood pressure early in diabetes. Hypertension. 2008;52(2):188–94. https://doi.org/10.1161/HYPERTENSIONAHA.107.090647.

    Article  CAS  PubMed  Google Scholar 

  25. Persson P, Hansell P, Palm F. Tubular reabsorption and diabetes-induced glomerular hyperfiltration. Acta Physiol (Oxf). 2010;200(1):3–10. https://doi.org/10.1111/j.1748-1716.2010.02147.x.

    Article  CAS  Google Scholar 

  26. Arima S, Ito S. The mechanisms underlying altered vascular resistance of glomerular afferent and efferent arterioles in diabetic nephropathy. Nephrology Dialysis Transplantation. 2003;18(10):1966–9. https://doi.org/10.1093/ndt/gfg263.

    Article  CAS  Google Scholar 

  27. Tuttle KR. Back to the future: glomerular hyperfiltration and the diabetic kidney. Diabetes. 2017;66(1):14–6. https://doi.org/10.2337/dbi16-0056.

    Article  CAS  PubMed  Google Scholar 

  28. Zhang J, Wei J, Jiang S, Xu L, Wang L, Cheng F, et al. Macula densa SGLT1-NOS1-tubuloglomerular feedback pathway, a new mechanism for glomerular hyperfiltration during hyperglycemia. J Am Soc Nephrol. 2019;30(4):578–93. https://doi.org/10.1681/ASN.2018080844.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Griffin KA. Hypertensive kidney injury and the progression of chronic kidney disease. Hypertension. 2017;70(4):687–94. https://doi.org/10.1161/HYPERTENSIONAHA.117.08314.

    Article  CAS  PubMed  Google Scholar 

  30. Bidani AK, Polichnowski AJ, Loutzenhiser R, Griffin KA. Renal microvascular dysfunction, hypertension and CKD progression. Curr Opin Nephrol Hypertens. 2013;22(1):1–9. https://doi.org/10.1097/MNH.0b013e32835b36c1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bidani AK, Griffin KA, Epstein M. Hypertension and chronic kidney disease progression: why the suboptimal outcomes? Am J Med. 2012;125(11):1057–62. https://doi.org/10.1016/j.amjmed.2012.04.008.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Bidani AK, Griffin KA, Plott W, Schwartz MM. Renal ablation acutely transforms ‘benign’ hypertension to ‘malignant’ nephrosclerosis in hypertensive rats. Hypertension. 1994;24(3):309–16. https://doi.org/10.1161/01.hyp.24.3.309.

    Article  CAS  PubMed  Google Scholar 

  33. Mueller TF, Luyckx VA. The natural history of residual renal function in transplant donors. J Am Soc Nephrol. 2012;23(9):1462–6. https://doi.org/10.1681/ASN.2011111080.

    Article  PubMed  Google Scholar 

  34. Steiner RW. The risks of living kidney donation. N Engl J Med. 2016;374(5):479–80. https://doi.org/10.1056/NEJMe1513891.

    Article  CAS  PubMed  Google Scholar 

  35. Srivastava T, Dai H, Heruth DP, Alon US, Garola RE, Zhou J, et al. Mechanotransduction signaling in podocytes from fluid flow shear stress. Am J Physiol Renal Physiol. 2018;314(1):F22–34. https://doi.org/10.1152/ajprenal.00325.2017.

    Article  CAS  PubMed  Google Scholar 

  36. Friedrich C, Endlich N, Kriz W, Endlich K. Podocytes are sensitive to fluid shear stress in vitro. Am J Physiol Renal Physiol. 2006;291(4):F856–65. https://doi.org/10.1152/ajprenal.00196.2005.

    Article  CAS  PubMed  Google Scholar 

  37. Huang C, Bruggeman LA, Hydo LM, Miller RT. Shear stress induces cell apoptosis via a c-Src-phospholipase D-mTOR signaling pathway in cultured podocytes. Exp Cell Res. 2012;318(10):1075–85. https://doi.org/10.1016/j.yexcr.2012.03.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Endlich N, Kress KR, Reiser J, Uttenweiler D, Kriz W, Mundel P, et al. Podocytes respond to mechanical stress in vitro. J Am Soc Nephrol. 2001;12(3):413–22.

    CAS  PubMed  Google Scholar 

  39. Chagnac A, Zingerman B, Rozen-Zvi B, Herman-Edelstein M. Consequences of glomerular hyperfiltration: the role of physical forces in the pathogenesis of chronic kidney disease in diabetes and obesity. Nephron. 2019;143(1):38–42. https://doi.org/10.1159/000499486.

    Article  CAS  PubMed  Google Scholar 

  40. Endlich N, Endlich K. The challenge and response of podocytes to glomerular hypertension. Semin Nephrol. 2012;32(4):327–41. https://doi.org/10.1016/j.semnephrol.2012.06.004.

    Article  CAS  PubMed  Google Scholar 

  41. Kliewe F, Scharf C, Rogge H, Darm K, Lindenmeyer MT, Amann K, et al. Studying the role of fascin-1 in mechanically stressed podocytes. Sci Rep. 2017;7(1):9916. https://doi.org/10.1038/s41598-017-10116-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. • Endlich K, Kliewe F, Endlich N. Stressed podocytes-mechanical forces, sensors, signaling and response. Pflugers Arch. 2017;469(7-8):937–49. https://doi.org/10.1007/s00424-017-2025-8 This is an excellent review to describe the mechanotransduction and mechano-signaling in podocytes.

    Article  CAS  PubMed  Google Scholar 

  43. Tomilin V, Mamenko M, Zaika O, Pochynyuk O. Role of renal TRP channels in physiology and pathology. Semin Immunopathol. 2016;38(3):371–83. https://doi.org/10.1007/s00281-015-0527-z.

    Article  CAS  PubMed  Google Scholar 

  44. Dryer SE, Reiser J. TRPC6 channels and their binding partners in podocytes: role in glomerular filtration and pathophysiology. Am J Physiol Renal Physiol. 2010;299(4):F689–701. https://doi.org/10.1152/ajprenal.00298.2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Forst AL, Olteanu VS, Mollet G, Wlodkowski T, Schaefer F, Dietrich A, et al. Podocyte purinergic P2X4 channels are mechanotransducers that mediate cytoskeletal disorganization. J Am Soc Nephrol. 2016;27(3):848–62. https://doi.org/10.1681/ASN.2014111144.

    Article  CAS  PubMed  Google Scholar 

  46. Anderson M, Kim EY, Hagmann H, Benzing T, Dryer SE. Opposing effects of podocin on the gating of podocyte TRPC6 channels evoked by membrane stretch or diacylglycerol. Am J Physiol Cell Physiol. 2013;305(3):C276–89. https://doi.org/10.1152/ajpcell.00095.2013.

    Article  CAS  PubMed  Google Scholar 

  47. Itsuki K, Imai Y, Hase H, Okamura Y, Inoue R, Mori MX. PLC-mediated PI(4,5)P2 hydrolysis regulates activation and inactivation of TRPC6/7 channels. J Gen Physiol. 2014;143(2):183–201. https://doi.org/10.1085/jgp.201311033.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Inoue R, Mori M, Kawarabayashi Y, Jian Z. Chemical-mechanical synergism for cardiovascular TRPC6 channel activation via PLC/diacylglycerol and PLA2/omega-hydroxylase/20-HETE pathways. Nihon Yakurigaku Zasshi. 2009;134(3):116–21. https://doi.org/10.1254/fpj.134.116.

    Article  CAS  PubMed  Google Scholar 

  49. Inoue R, Jensen LJ, Jian Z, Shi J, Hai L, Lurie AI, et al. Synergistic activation of vascular TRPC6 channel by receptor and mechanical stimulation via phospholipase C/diacylglycerol and phospholipase A2/omega-hydroxylase/20-HETE pathways. Circ Res. 2009;104(12):1399–409. https://doi.org/10.1161/CIRCRESAHA.108.193227.

    Article  CAS  PubMed  Google Scholar 

  50. Spires D, Ilatovskaya DV, Levchenko V, North PE, Geurts AM, Palygin O, et al. Protective role of Trpc6 knockout in the progression of diabetic kidney disease. Am J Physiol Renal Physiol. 2018;315(4):F1091–F7. https://doi.org/10.1152/ajprenal.00155.2018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ilatovskaya DV, Blass G, Palygin O, Levchenko V, Pavlov TS, Grzybowski MN, et al. A NOX4/TRPC6 pathway in podocyte calcium regulation and renal damage in diabetic kidney disease. J Am Soc Nephrol. 2018;29(7):1917–27. https://doi.org/10.1681/ASN.2018030280.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Staruschenko A, Spires D, Palygin O. Role of TRPC6 in progression of diabetic kidney disease. Curr Hypertens Rep. 2019;21(7):48. https://doi.org/10.1007/s11906-019-0960-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Coste B, Mathur J, Schmidt M, Earley TJ, Ranade S, Petrus MJ, et al. Piezo1 and Piezo2 are essential components of distinct mechanically activated cation channels. Science. 2010;330(6000):55–60. https://doi.org/10.1126/science.1193270.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Coste B, Xiao B, Santos JS, Syeda R, Grandl J, Spencer KS, et al. Piezo proteins are pore-forming subunits of mechanically activated channels. Nature. 2012;483(7388):176–81. https://doi.org/10.1038/nature10812.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Retailleau K, Duprat F, Arhatte M, Ranade SS, Peyronnet R, Martins JR, et al. Piezo1 in smooth muscle cells is involved in hypertension-dependent arterial remodeling. Cell Rep. 2015;13(6):1161–71. https://doi.org/10.1016/j.celrep.2015.09.072.

    Article  CAS  PubMed  Google Scholar 

  56. Cahalan SM, Lukacs V, Ranade SS, Chien S, Bandell M, Patapoutian A. Piezo1 links mechanical forces to red blood cell volume. Elife. 2015;4. https://doi.org/10.7554/eLife.07370.

  57. Ranade SS, Qiu Z, Woo SH, Hur SS, Murthy SE, Cahalan SM, et al. Piezo1, a mechanically activated ion channel, is required for vascular development in mice. Proc Natl Acad Sci U S A. 2014;111(28):10347–52. https://doi.org/10.1073/pnas.1409233111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Arishe OO, Ebeigbe AB, Webb RC. Mechanotransduction and uterine blood flow in preeclampsia- the role of mechanosensing Piezo 1 ion channels. Am J Hypertens. 2019. https://doi.org/10.1093/ajh/hpz158.

  59. Zhong M, Komarova Y, Rehman J, Malik AB. Mechanosensing Piezo channels in tissue homeostasis including their role in lungs. Pulm Circ. 2018;8(2):2045894018767393. https://doi.org/10.1177/2045894018767393.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Quade A, Weis J, Kurth I, Rolke R, Bienert M, Schrading S, et al. Microangiopathy and mild mixed neuromyopathic alterations in a patient with homozygous PIEZO-2 mutation. Neuromuscul Disord. 2018;28(12):1006–11. https://doi.org/10.1016/j.nmd.2018.08.009.

    Article  PubMed  Google Scholar 

  61. Dalghi MG, Clayton DR, Ruiz WG, Al-Bataineh MM, Satlin LM, Kleyman TR, et al. Expression and distribution of PIEZO1 in the mouse urinary tract. Am J Physiol Renal Physiol. 2019;317(2):F303–F21. https://doi.org/10.1152/ajprenal.00214.2019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Vonend O, Oberhauser V, von Kugelgen I, Apel TW, Amann K, Ritz E, et al. ATP release in human kidney cortex and its mitogenic effects in visceral glomerular epithelial cells. Kidney Int. 2002;61(5):1617–26. https://doi.org/10.1046/j.1523-1755.2002.00315.x.

    Article  CAS  PubMed  Google Scholar 

  63. Turner CM, Vonend O, Chan C, Burnstock G, Unwin RJ. The pattern of distribution of selected ATP-sensitive P2 receptor subtypes in normal rat kidney: an immunohistological study. Cells Tissues Organs. 2003;175(2):105–17. https://doi.org/10.1159/000073754.

    Article  CAS  PubMed  Google Scholar 

  64. de Rivero Vaccari JP, Bastien D, Yurcisin G, Pineau I, Dietrich WD, De Koninck Y, et al. P2X4 receptors influence inflammasome activation after spinal cord injury. J Neurosci. 2012;32(9):3058–66. https://doi.org/10.1523/JNEUROSCI.4930-11.2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Solini A, Santini E, Chimenti D, Chiozzi P, Pratesi F, Cuccato S, et al. Multiple P2X receptors are involved in the modulation of apoptosis in human mesangial cells: evidence for a role of P2X4. Am J Physiol Renal Physiol. 2007;292(5):F1537–47. https://doi.org/10.1152/ajprenal.00440.2006.

    Article  CAS  PubMed  Google Scholar 

  66. Kim MJ, Turner CM, Hewitt R, Smith J, Bhangal G, Pusey CD, et al. Exaggerated renal fibrosis in P2X4 receptor-deficient mice following unilateral ureteric obstruction. Nephrol Dial Transplant. 2014;29(7):1350–61. https://doi.org/10.1093/ndt/gfu019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Yamamoto K, Sokabe T, Matsumoto T, Yoshimura K, Shibata M, Ohura N, et al. Impaired flow-dependent control of vascular tone and remodeling in P2X4-deficient mice. Nat Med. 2006;12(1):133–7. https://doi.org/10.1038/nm1338.

    Article  CAS  PubMed  Google Scholar 

  68. Faul C, Asanuma K, Yanagida-Asanuma E, Kim K, Mundel P. Actin up: regulation of podocyte structure and function by components of the actin cytoskeleton. Trends Cell Biol. 2007;17(9):428–37. https://doi.org/10.1016/j.tcb.2007.06.006.

    Article  CAS  PubMed  Google Scholar 

  69. Flemming NB, Gallo LA, Forbes JM. Mitochondrial dysfunction and signaling in diabetic kidney disease: oxidative stress and beyond. Semin Nephrol. 2018;38(2):101–10. https://doi.org/10.1016/j.semnephrol.2018.01.001.

    Article  CAS  PubMed  Google Scholar 

  70. Galvan DL, Green NH, Danesh FR. The hallmarks of mitochondrial dysfunction in chronic kidney disease. Kidney Int. 2017;92(5):1051–7. https://doi.org/10.1016/j.kint.2017.05.034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Forbes JM, Thorburn DR. Mitochondrial dysfunction in diabetic kidney disease. Nat Rev Nephrol. 2018;14(5):291–312. https://doi.org/10.1038/nrneph.2018.9.

    Article  CAS  PubMed  Google Scholar 

  72. Thomas MC, Cherney DZI. The actions of SGLT2 inhibitors on metabolism, renal function and blood pressure. Diabetologia. 2018;61(10):2098–107. https://doi.org/10.1007/s00125-018-4669-0.

    Article  CAS  PubMed  Google Scholar 

  73. Coward RJ, Welsh GI, Yang J, Tasman C, Lennon R, Koziell A, et al. The human glomerular podocyte is a novel target for insulin action. Diabetes. 2005;54(11):3095–102. https://doi.org/10.2337/diabetes.54.11.3095.

    Article  CAS  PubMed  Google Scholar 

  74. Yan M, Mehta JL, Zhang W, Hu C. LOX-1, oxidative stress and inflammation: a novel mechanism for diabetic cardiovascular complications. Cardiovasc Drugs Ther. 2011;25(5):451–9. https://doi.org/10.1007/s10557-011-6342-4.

    Article  CAS  PubMed  Google Scholar 

  75. Li SY, Susztak K. The role of peroxisome proliferator-activated receptor gamma coactivator 1alpha (PGC-1alpha) in kidney disease. Semin Nephrol. 2018;38(2):121–6. https://doi.org/10.1016/j.semnephrol.2018.01.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Bhargava P, Schnellmann RG. Mitochondrial energetics in the kidney. Nat Rev Nephrol. 2017;13(10):629–46. https://doi.org/10.1038/nrneph.2017.107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Zhuang A, Forbes JM. Stress in the kidney is the road to pERdition: is endoplasmic reticulum stress a pathogenic mediator of diabetic nephropathy? J Endocrinol. 2014;222(3):R97–111. https://doi.org/10.1530/JOE-13-0517.

    Article  CAS  PubMed  Google Scholar 

  78. Cybulsky AV. Endoplasmic reticulum stress, the unfolded protein response and autophagy in kidney diseases. Nat Rev Nephrol. 2017;13(11):681–96. https://doi.org/10.1038/nrneph.2017.129.

    Article  CAS  PubMed  Google Scholar 

  79. Basha B, Samuel SM, Triggle CR, Ding H. Endothelial dysfunction in diabetes mellitus: possible involvement of endoplasmic reticulum stress? Exp Diabetes Res. 2012;2012:481840. https://doi.org/10.1155/2012/481840.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Cimellaro A, Perticone M, Fiorentino TV, Sciacqua A, Hribal ML. Role of endoplasmic reticulum stress in endothelial dysfunction. Nutr Metab Cardiovasc Dis. 2016;26(10):863–71. https://doi.org/10.1016/j.numecd.2016.05.008.

    Article  CAS  PubMed  Google Scholar 

  81. Lenna S, Han R, Trojanowska M. Endoplasmic reticulum stress and endothelial dysfunction. IUBMB Life. 2014;66(8):530–7. https://doi.org/10.1002/iub.1292.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Chen Y, Wang JJ, Li J, Hosoya KI, Ratan R, Townes T, et al. Activating transcription factor 4 mediates hyperglycaemia-induced endothelial inflammation and retinal vascular leakage through activation of STAT3 in a mouse model of type 1 diabetes. Diabetologia. 2012;55(9):2533–45. https://doi.org/10.1007/s00125-012-2594-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Mundel P, Shankland SJ. Podocyte biology and response to injury. J Am Soc Nephrol. 2002;13(12):3005–15. https://doi.org/10.1097/01.asn.0000039661.06947.fd.

    Article  PubMed  Google Scholar 

  84. Nagata M. Podocyte injury and its consequences. Kidney Int. 2016;89(6):1221–30. https://doi.org/10.1016/j.kint.2016.01.012.

    Article  CAS  PubMed  Google Scholar 

  85. Fan Y, Lee K, Wang N, He JC. The role of endoplasmic reticulum stress in diabetic nephropathy. Curr Diab Rep. 2017;17(3):17. https://doi.org/10.1007/s11892-017-0842-y.

    Article  PubMed  Google Scholar 

  86. Cao Y, Hao Y, Li H, Liu Q, Gao F, Liu W, et al. Role of endoplasmic reticulum stress in apoptosis of differentiated mouse podocytes induced by high glucose. Int J Mol Med. 2014;33(4):809–16. https://doi.org/10.3892/ijmm.2014.1642.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Sieber J, Lindenmeyer MT, Kampe K, Campbell KN, Cohen CD, Hopfer H, et al. Regulation of podocyte survival and endoplasmic reticulum stress by fatty acids. Am J Physiol Renal Physiol. 2010;299(4):F821–9. https://doi.org/10.1152/ajprenal.00196.2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Piperi C, Adamopoulos C, Dalagiorgou G, Diamanti-Kandarakis E, Papavassiliou AG. Crosstalk between advanced glycation and endoplasmic reticulum stress: emerging therapeutic targeting for metabolic diseases. J Clin Endocrinol Metab. 2012;97(7):2231–42. https://doi.org/10.1210/jc.2011-3408.

    Article  CAS  PubMed  Google Scholar 

  89. Senft D, Ronai ZA. UPR, autophagy, and mitochondria crosstalk underlies the ER stress response. Trends Biochem Sci. 2015;40(3):141–8. https://doi.org/10.1016/j.tibs.2015.01.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Cali T, Ottolini D, Negro A, Brini M. Enhanced parkin levels favor ER-mitochondria crosstalk and guarantee Ca(2+) transfer to sustain cell bioenergetics. Biochim Biophys Acta. 2013;1832(4):495–508. https://doi.org/10.1016/j.bbadis.2013.01.004.

    Article  CAS  PubMed  Google Scholar 

  91. Xia MF, Zhang YZ, Jin K, Lu ZT, Zeng ZY, Xiong W. Communication between mitochondria and other organelles: a brand-new perspective on mitochondria in cancer. Cell and Bioscience. 2019;9. doi:ARTN 27 https://doi.org/10.1186/s13578-019-0289-8.

  92. Raffaello A, Mammucari C, Gherardi G, Rizzuto R. Calcium at the center of cell signaling: interplay between endoplasmic reticulum, mitochondria, and lysosomes. Trends Biochem Sci. 2016;41(12):1035–49. https://doi.org/10.1016/j.tibs.2016.09.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Moltedo O, Remondelli P, Amodio G. The mitochondria-endoplasmic reticulum contacts and their critical role in aging and age-associated diseases. Frontiers in Cell and Developmental Biology. 2019;7. doi:Unsp 172 https://doi.org/10.3389/Fcell.2019.00172.

  94. Gees M, Colsoul B, Nilius B. The role of transient receptor potential cation channels in Ca2+ signaling. Cold Spring Harb Perspect Biol. 2010;2(10):a003962. https://doi.org/10.1101/cshperspect.a003962.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Peana D, Domeier TL. Cardiomyocyte Ca(2+) homeostasis as a therapeutic target in heart failure with reduced and preserved ejection fraction. Curr Opin Pharmacol. 2017;33:17–26. https://doi.org/10.1016/j.coph.2017.03.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Santulli G, Xie W, Reiken SR, Marks AR. Mitochondrial calcium overload is a key determinant in heart failure. Proc Natl Acad Sci U S A. 2015;112(36):11389–94. https://doi.org/10.1073/pnas.1513047112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. • Giorgi C, Marchi S, Pinton P. The machineries, regulation and cellular functions of mitochondrial calcium. Nat Rev Mol Cell Biol. 2018;19(11):713–30. https://doi.org/10.1038/s41580-018-0052-8 This is an excellent review to discuss the mechanisms of mitochondrial calcium regulation and function in different cell types.

    Article  CAS  PubMed  Google Scholar 

  98. Baumgartner HK, Gerasimenko JV, Thorne C, Ferdek P, Pozzan T, Tepikin AV, et al. Calcium elevation in mitochondria is the main Ca2+ requirement for mitochondrial permeability transition pore (mPTP) opening. J Biol Chem. 2009;284(31):20796–803. https://doi.org/10.1074/jbc.M109.025353.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Hu C, Huang Y, Li L. Drp1-dependent mitochondrial fission plays critical roles in physiological and pathological progresses in mammals. Int J Mol Sci. 2017;18(1). https://doi.org/10.3390/ijms18010144.

  100. Chiu WT, Chang HA, Lin YH, Lin YS, Chang HT, Lin HH, et al. Bcl(-)2 regulates store-operated Ca(2+) entry to modulate ER stress-induced apoptosis. Cell Death Discov. 2018;4:37. https://doi.org/10.1038/s41420-018-0039-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The authors’ research was supported by the National Heart, Lung, and Blood Institute (P01 HL51971); National Institute of Diabetes and Digestive and Kidney Diseases (R00DK113280 and R01DK121411); and the National Institute of General Medical Sciences (P20 GM104357 and U54 GM115428) of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen Wang.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Mechanisms of Hypertension and Target-Organ Damage

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., do Carmo, J.M., da Silva, A.A. et al. Mechanisms of Synergistic Interactions of Diabetes and Hypertension in Chronic Kidney Disease: Role of Mitochondrial Dysfunction and ER Stress. Curr Hypertens Rep 22, 15 (2020). https://doi.org/10.1007/s11906-020-1016-x

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11906-020-1016-x

Keywords

Navigation