Skip to main content

Advertisement

Log in

The Association of Tuberculosis Mono-infection and Tuberculosis-Human Immunodeficiency Virus (TB-HIV) Co-infection in the Pathogenesis of Hypertensive Disorders of Pregnancy

  • Preeclampsia (V Garovic, Section Editor)
  • Published:
Current Hypertension Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

This review highlights the impact of TB mono-infection and TB-HIV co-infection on the pathogenesis of adverse maternal outcomes such as hypertensive disorders of pregnancy (HDP) and adverse fetal outcomes such as recurrent spontaneous abortion (RSA), fetal growth restriction (FGR), and low birth weight.

Recent Findings

Research has shown that HDP, such as severe pre-eclampsia (PE) and eclampsia, as well as adverse fetal outcomes such as recurrent spontaneous abortion, fetal growth restriction, and low birth weight, are higher in women diagnosed with TB mono-infection and even higher in TB-HIV co-infection compared to those without TB. This is speculated to occur due to exaggerated activation of both angiogenic factors such as vascular endothelial growth factor (VEGF), nitric oxide (NO), angiotensin 2, (Ang 2), intracellular adhesion molecules (ICAMs), and inflammatory cytokines such as interleukin 2 (IL-2), (IL-17), and interferon-gamma (INF-γ).

Summary

There is a lack of information with regard to the pathogenesis of adverse maternal and fetal outcomes upon TB mono-infection and TB-HIV co-infection; therefore, further investigations on the impact of TB mono-infection and TB-HIV co-infection on adverse maternal and fetal outcomes are urgently needed. This will assist in improving diagnostic procedures in pregnant women affected with TB as wells as TB-HIV co-infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: •• Of major importance

  1. Organization WH. Global tuberculosis report 2018. 2018. Geneva: World Health Organization; 2019.

    Google Scholar 

  2. Mathad JS, Gupta A. Tuberculosis in pregnant and postpartum women: epidemiology, management, and research gaps. Clin Infect Dis. 2012;55(11):1532–49.

    PubMed  PubMed Central  Google Scholar 

  3. Gould JM, Aronoff SC. Tuberculosis and pregnancy-maternal, fetal, and neonatal considerations. Tuberculosis and Nontuberculous Mycobacterial Infections. 2017;4(6):571–6.

  4. Bates M, Ahmed Y, Kapata N, Maeurer M, Mwaba P, Zumla A. Perspectives on tuberculosis in pregnancy. Int J Infect Diseases: IJID: official publication of the International Society for Infectious Diseases. 2015;32:124–7.

    Google Scholar 

  5. •• Jonsson J, Kühlmann-Berenzon S, Berggren I, Bruchfeld J. Increased risk of active tuberculosis during pregnancy and postpartum: a register-based cohort study in Sweden. Eur Respir J. 2020;55(3):1901886. Symptoms of TB infection are masked by the symptoms of pregnancy and this leads to delay of TB diagnosis.

  6. Loto OM, Awowole I. Tuberculosis in pregnancy: a review. J Pregnancy. 2012;2012:379271.

    PubMed  Google Scholar 

  7. Ormerod P. Tuberculosis in pregnancy and the puerperium. Thorax. 2001;56(6):494–9.

  8. Dennis EM, Hao Y, Tamambang M, Roshan TN, Gatlin KJ, Bghigh H, et al. Tuberculosis during pregnancy in the United States: racial/ethnic disparities in pregnancy complications and in-hospital death. PLoS One. 2018;13(3):e0194836.

    PubMed  PubMed Central  Google Scholar 

  9. Bishara H, Goldstein N, Hakim M, Vinitsky O, Shechter-Amram D, Weiler-Ravell D. Tuberculosis during pregnancy in Northern Israel, 2002–2012: epidemiology and clinical practices. Israel Med Assoc J: IMAJ. 2015;17(6):346–50.

    Google Scholar 

  10. Mulondo SA, Khoza LB, Maputle SM. Risk factors and complications associated with tuberculosis in pregnancy and neonates in Limpopo Province. S Afr J Human Ecol. 2015;51(1–2):128–37.

    Google Scholar 

  11. MacNeil A, Report MW. Global epidemiology of tuberculosis and progress toward meeting global targets—Worldwide, 2018. MMWR. Morbidity and Mortality Weekly Report. 2020;69.

  12. UNAIDS. Tuberculosis and HIV. In: AIDS JUNPoHa, editor. Geneva: UNAIDS; 2019.

    Google Scholar 

  13. Gupta RK, Lucas SB, Fielding KL, Lawn SD. Prevalence of tuberculosis in post-mortem studies of HIV-infected adults and children in resource-limited settings: a systematic review and meta-analysis. AIDS. 2015;29(15):1987–2002.

    PubMed  Google Scholar 

  14. Toossi Z, Mayanja-Kizza H, Hirsch CS, Edmonds KL, Spahlinger T, Hom DL, et al. Impact of tuberculosis (TB) on HIV-1 activity in dually infected patients. Clin Exp Immunol. 2001;123(2):233–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. •• Verma S, Du P, Nakanjako D, Hermans S, Briggs J, Nakiyingi L, et al. Tuberculosis in advanced HIV infection is associated with increased expression of IFNγ and its downstream targets. BMC Infect Dis. 2018;18(1):1–13. The risk of TB infection is increases in HIV infected people. The risk of TB infection is increases in HIV infected people.

  16. Suarez GV, Vecchione MB, Angerami MT, Sued O, Bruttomesso AC, Bottasso OA, et al. Immunoendocrine interactions during HIV-TB coinfection: implications for the design of new adjuvant therapies. Biomed Res Int. 2015. https://doi.org/10.1155/2015/461093.

  17. da Silva Escada RO, Velasque L, Ribeiro SR, Cardoso SW, Marins LMS, Grinsztejn E, et al. Mortality in patients with HIV-1 and tuberculosis co-infection in Rio de Janeiro, Brazil-associated factors and causes of death. BMC Infect Dis. 2017;17(1):373.

    PubMed  PubMed Central  Google Scholar 

  18. UNAIDS. AIDSinfo. UNAIDS 2019 estimates; 2019.

  19. HIV/AIDS JUNPo. Geneva: UNAIDS; 2018 [cited 2018 Dec 19]. 2018.

  20. Organization WH. Systematic screening for active tuberculosis: principles and recommendations: World Health Organization; 2013.

  21. Sobhy S, Babiker ZO, Zamora J, Khan KS, Kunst H. Maternal and perinatal mortality and morbidity associated with tuberculosis during pregnancy and the postpartum period: a systematic review and meta-analysis. BJOG Int J Obstet Gynaecol. 2017;124(5):727–33.

    CAS  Google Scholar 

  22. Sugarman J, Colvin C, Moran AC, Oxlade O. Tuberculosis in pregnancy: an estimate of the global burden of disease. Lancet Glob Health. 2014;2(12):e710–e6.

    PubMed  Google Scholar 

  23. Sulis G, Pai M. Tuberculosis in pregnancy: a treacherous yet neglected issue. J Obstet Gynaecol Can : JOGC = Journal d’obstetrique et gynecologie du Canada: JOGC. 2018;40(8):1003–5.

    PubMed  Google Scholar 

  24. •• Knight GM, McQuaid CF, Dodd PJ, Houben RM. Global burden of latent multidrug-resistant tuberculosis: trends and estimates based on mathematical modelling. Lancet Infect Dis. 2019;19(8):903–12. Three in every 1000 persons globally are infected with latent MDR TB.

  25. Narasimhan P, Wood J, MacIntyre CR, Mathai D. Risk factors for tuberculosis. Pulm Med 2013;2013.

  26. Lawn SD, Bekker L-G. Co-pathogenesis of tuberculosis and HIV. Tuberculosis: Elsevier; 2009. p. 96–106.

  27. OPIE EL, Mcphedran FM. Spread of tuberculosis within families. J Am Med Assoc. 1926;87(19):1549–51.

    Google Scholar 

  28. Shaw JB, Wynn-Williams N. Infectivity of pulmonary tuberculosis in relation to sputum status. Am Rev Tuberc. 1954;69(5):724–32.

    CAS  PubMed  Google Scholar 

  29. Espinal MA, Peréz EN, Baéz J, Hénriquez L, Fernández K, Lopez M, et al. Infectiousness of Mycobacterium tuberculosis in HIV-1-infected patients with tuberculosis: a prospective study. Lancet. 2000;355(9200):275–80.

    CAS  PubMed  Google Scholar 

  30. Van Geuns H. Results of contact examination in Rotterdam, 1967–1969. Bull Int Union Tuberc. 1975;50:107–21.

    PubMed  Google Scholar 

  31. Joshi R, Reingold AL, Menzies D, Pai M. Tuberculosis among health-care workers in low-and middle-income countries: a systematic review. PLoS Med. 2006;3(12):e494.

    PubMed  PubMed Central  Google Scholar 

  32. Lönnroth K, Williams BG, Stadlin S, Jaramillo E, Dye C. Alcohol use as a risk factor for tuberculosis–a systematic review. BMC Public Health. 2008;8(1):289.

    PubMed  PubMed Central  Google Scholar 

  33. Fok A, Numata Y, Schulzer M, FitzGerald M. Risk factors for clustering of tuberculosis cases: a systematic review of population-based molecular epidemiology studies. Int J Tuberc Lung Disease. 2008;12(5):480–92.

    CAS  Google Scholar 

  34. Houtmeyers E, Gosselink R, Gayan-Ramirez G, Decramer M. Regulation of mucociliary clearance in health and disease. Eur Respir J. 1999;13(5):1177–88.

    CAS  PubMed  Google Scholar 

  35. Wang H, Yu M, Ochani M, Amella CA, Tanovic M, Susarla S, et al. Nicotinic acetylcholine receptor α7 subunit is an essential regulator of inflammation. Nature. 2003;421(6921):384–8.

    CAS  PubMed  Google Scholar 

  36. Shang S, Ordway D, Henao-Tamayo M, Bai X, Oberley-Deegan R, Shanley C, et al. Cigarette smoke increases susceptibility to tuberculosis—evidence from in vivo and in vitro models. J Infect Dis. 2011;203(9):1240–8.

    CAS  PubMed  Google Scholar 

  37. Chandra RK, Kumari S. Nutrition and immunity: an overview. J Nutr. 1994;124(suppl_8):1433S–5S.

    CAS  PubMed  Google Scholar 

  38. Marais BJ, Gie RP, Schaaf HS, Hesseling AC, Obihara CC, Nelson LJ, et al. The clinical epidemiology of childhood pulmonary tuberculosis: a critical review of literature from the pre-chemotherapy era [State of the Art]. Int J Tuberc Lung Disease. 2004;8(3):278–85.

    CAS  Google Scholar 

  39. Bentley FJ, Grzy-bowski S, Benjamin B, Young RA, Sheldon W. Tuberculosis in childhood and adolescence. London: National Association for the Prevention of Tuberculosis; 1954. p. 259.

  40. Marais BJ, Donald PR. 14 The natural history of tuberculosis infection and disease in children. Tuberc E-book: a comprehensive clinical reference 2009:133.

  41. Jeon CY, Murray MB. Diabetes mellitus increases the risk of active tuberculosis: a systematic review of 13 observational studies. PLoS Med. 2008;5(7):e152.

    PubMed  PubMed Central  Google Scholar 

  42. Alisjahbana B, Sahiratmadja E, Nelwan EJ, Purwa AM, Ahmad Y, Ottenhoff TH, et al. The effect of type 2 diabetes mellitus on the presentation and treatment response of pulmonary tuberculosis. Clin Infect Dis. 2007;45(4):428–35.

    PubMed  Google Scholar 

  43. Baker MA, Harries AD, Jeon CY, Hart JE, Kapur A, Lönnroth K, et al. The impact of diabetes on tuberculosis treatment outcomes: a systematic review. BMC Med. 2011;9(1):81.

    PubMed  PubMed Central  Google Scholar 

  44. Bucher HC, Griffith LE, Guyatt GH, Sudre P, Naef M, Sendi P, et al. Isoniazid prophylaxis for tuberculosis in HIV infection: a meta-analysis of randomized controlled trials. AIDS (London, England). 1999;13(4):501–7.

    CAS  Google Scholar 

  45. Braun MM, Badi N, Ryder RW, Baende E, Mukadi Y, Nsuami M, et al. A retrospective cohort study of the risk of tuberculosis among women of childbearing age with HIV infection in laire1, 2. City. 1991;143:501–4.

    CAS  Google Scholar 

  46. Daley CL, Small PM, Schecter GF, Schoolnik GK, McAdam RA, Jacobs WR Jr, et al. An outbreak of tuberculosis with accelerated progression among persons infected with the human immunodeficiency virus: an analysis using restriction-fragment—length polymorphisms. N Engl J Med. 1992;326(4):231–5.

    CAS  PubMed  Google Scholar 

  47. Shafer R, Singh S, Larkin C, Small P. Exogenous reinfection with multidrug-resistant Mycobacterium tuberculosis in an immunocompetent patient. Tuber Lung Dis. 1995;76(6):575–7.

    CAS  PubMed  Google Scholar 

  48. Collins KR, Quiñones-Mateu ME, Toossi Z, Arts EJ. Impact of tuberculosis on HIV-1 replication, diversity, and disease progression. AIDS Rev. 2002;4(3):165–76.

    PubMed  Google Scholar 

  49. DeRiemer K, Kawamura LM, Hopewell PC, Daley CL. Quantitative impact of human immunodeficiency virus infection on tuberculosis dynamics. Am J Respir Crit Care Med. 2007;176(9):936–44.

    PubMed  PubMed Central  Google Scholar 

  50. Sharma S, Mohan A, Kadhiravan T. HIV-TB co-infection: epidemiology, diagnosis & management. Indian J Med Res. 2005;121(4):550–67.

    CAS  PubMed  Google Scholar 

  51. Winthrop KL. Risk and prevention of tuberculosis and other serious opportunistic infections associated with the inhibition of tumor necrosis factor. Nat Clin Pract Rheumatol. 2006;2(11):602–10.

    CAS  PubMed  Google Scholar 

  52. Winthrop KL, Chiller T. Preventing and treating biologic-associated opportunistic infections. Nat Rev Rheumatol. 2009;5(7):405.

    CAS  PubMed  Google Scholar 

  53. Denney L, Ho L-P. The role of respiratory epithelium in host defence against influenza virus infection. Biom J. 2018;41(4):218–33.

    Google Scholar 

  54. Scordo JM, Knoell DL, Torrelles JB. Alveolar epithelial cells in Mycobacterium tuberculosis infection: active players or innocent bystanders? J Innate Immunity. 2016;8(1):3–14.

    CAS  Google Scholar 

  55. Pagán AJ, Ramakrishnan L. Immunity and immunopathology in the tuberculous granuloma. Cold Spring Harbor Perspect Med. 2015;5(9):a018499.

    Google Scholar 

  56. Ganchua SKC, Cadena AM, Maiello P, Gideon HP, Myers AJ, Junecko BF, et al. Lymph nodes are sites of prolonged bacterial persistence during Mycobacterium tuberculosis infection in macaques. PLoS Pathog. 2018;14(11):e1007337.

    PubMed  PubMed Central  Google Scholar 

  57. Rodriguez-Takeuchi SY, Renjifo ME, Medina FJ. Extrapulmonary tuberculosis: pathophysiology and imaging findings. RadioGraphics. 2019;39(7):2023–37. TB infected macrophages may be carried by the lymphatic system to kidneys, epiphyses of the long bones, and other areas of the body.

  58. Bhat KH, Yaseen I. Mycobacterium tuberculosis: macrophage takeover and modulation of innate effector responses. Mycobacterium-Res Dev 2018. https://doi.org/10.5772/intechopen.75003.

  59. Getahun H, Gunneberg C, Granich R, Nunn P. HIV infection—associated tuberculosis: the epidemiology and the response. Clin Infect Dis. 2010;50(Supplement_3):S201–S7.

    PubMed  Google Scholar 

  60. Vidya Vijayan K, Karthigeyan KP, Tripathi SP, Hanna LE. Pathophysiology of CD4+ T cell depletion in HIV-1 and HIV-2 infections. Front Immunol. 2017;8:580.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Lin PL, Rutledge T, Green AM, Bigbee M, Fuhrman C, Klein E, et al. CD4 T cell depletion exacerbates acute Mycobacterium tuberculosis while reactivation of latent infection is dependent on severity of tissue depletion in cynomolgus macaques. AIDS Res Hum Retrovir. 2012;28(12):1693–702.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Diedrich CR, Flynn JL. HIV-1/mycobacterium tuberculosis coinfection immunology: how does HIV-1 exacerbate tuberculosis? Infect Immun. 2011;79(4):1407–17.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Kruize Z, Kootstra NA. The role of macrophages in HIV-1 persistence and pathogenesis. Front Microbiol. 2019;10.

  64. Clayton KL, Garcia JV, Clements JE, Walker BD. HIV infection of macrophages: implications for pathogenesis and cure. Pathogens & immunity. 2017;2(2):179.

    Google Scholar 

  65. Mohri H, Perelson AS, Tung K, Ribeiro RM, Ramratnam B, Markowitz M, et al. Increased turnover of T lymphocytes in HIV-1 infection and its reduction by antiretroviral therapy. J Exp Med. 2001;194(9):1277–88.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Sharan R, Bucşan AN, Ganatra S, Paiardini M, Mohan M, Mehra S, et al. Chronic immune activation in TB/HIV co-infection. Trends Microbiol. 2020;28(8):619–32.

  67. Catalfamo M, Le Saout C, Lane HC. The role of cytokines in the pathogenesis and treatment of HIV infection. Cytokine Growth Factor Rev. 2012;23(4–5):207–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Keating SM, Jacobs ES, Norris PJ. Soluble mediators of inflammation in HIV and their implications for therapeutics and vaccine development. Cytokine Growth Factor Rev. 2012;23(4–5):193–206.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Biselli R, Mariotti S, Sargentini V, Sauzullo I, Lastilla M, Mengoni F, et al. Detection of interleukin-2 in addition to interferon-γ discriminates active tuberculosis patients, latently infected individuals, and controls. Clin Microbiol Infect. 2010;16(8):1282–4.

    CAS  PubMed  Google Scholar 

  70. Vallejo J, Starke J. Tuberculosis and pregnancy. Clin Chest Med. 1992;13(4):693.

    CAS  PubMed  Google Scholar 

  71. Snider DE Jr, Layde PM, Johnson MW, Lyle MA. Treatment of tuberculosis during pregnancy. Am Rev Respir Dis. 1980;122(1):65–79.

    PubMed  Google Scholar 

  72. Zenner D, Kruijshaar ME, Andrews N, Abubakar I. Risk of tuberculosis in pregnancy: a national, primary care–based cohort and self-controlled case series study. Am J Respir Crit Care Med. 2012;185(7):779–84.

    PubMed  Google Scholar 

  73. Bothamley GH, Ehlers C, Salonka I, Skrahina A, Orcau A, Codecasa LR, et al. Pregnancy in patients with tuberculosis: a TBNET cross-sectional survey. BMC Pregnancy Childbirth. 2016;16(1):1–5.

    Google Scholar 

  74. Bulmer JN, Morrison L, Longfellow M, Ritson A, Pace D. Granulated lymphocytes in human endometrium: histochemical and immunohistochemical studies. Hum Reprod. 1991;6(6):791–8.

    CAS  PubMed  Google Scholar 

  75. Bonecini-Almeida MG, Ho JL, Boéchat N, Huard RC, Chitale S, Doo H, et al. Down-modulation of lung immune responses by interleukin-10 and transforming growth factor β (TGF-β) and analysis of TGF-β receptors I and II in active tuberculosis. Infect Immun. 2004;72(5):2628–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Jasenosky LD, Scriba TJ, Hanekom WA, Goldfeld AE. T cells and adaptive immunity to Mycobacterium tuberculosis in humans. Immunol Rev. 2015;264(1):74–87.

    CAS  PubMed  Google Scholar 

  77. Wegmann TG, Lin H, Guilbert L, Mosmann TR. Bidirectional cytokine interactions in the maternal-fetal relationship: is successful pregnancy a TH2 phenomenon? Immunol Today. 1993;14(7):353–6.

    CAS  PubMed  Google Scholar 

  78. Halonen M, Lohman IC, Stern DA, Spangenberg A, Anderson D, Mobley S, et al. Th1/Th2 patterns and balance in cytokine production in the parents and infants of a large birth cohort. J Immunol. 2009;182(5):3285–93.

    CAS  PubMed  Google Scholar 

  79. Saito S, Nakashima A, Shima T, Ito M. Th1/Th2/Th17 and regulatory T cell paradigm in pregnancy. Am J Reprod Immunol. 2010;63(6):601–10.

    CAS  PubMed  Google Scholar 

  80. Kwak-Kim J, Bao S, Lee SK, Kim JW, Gilman-Sachs A. Immunological modes of pregnancy loss: inflammation, immune effectors, and stress. Am J Reprod Immunol. 2014;72(2):129–40.

    CAS  PubMed  Google Scholar 

  81. Thum M, Bhaskaran S, Abdalla H, Ford B, Sumar N, Shehata H, et al. An increase in the absolute count of CD56dimCD16+ CD69+ NK cells in the peripheral blood is associated with a poorer IVF treatment and pregnancy outcome. Hum Reprod. 2004;19(10):2395–400.

    CAS  PubMed  Google Scholar 

  82. Beer AE, Kwak J, Ruiz JE. Immunophenotypic profiles of peripheral blood lymphocytes in women with recurrent pregnancy losses and in infertile women with multiple failed in vitro fertilization cycles. Am J Reprod Immunol (New York, NY: 1989). 1996;35(4):376–82.

    CAS  Google Scholar 

  83. Thum M, Bhaskaran S, Bansal A, Shehata H, Ford B, Sumar N, et al. Simple enumerations of peripheral blood natural killer (CD56+ NK) cells, B cells and T cells have no predictive value in IVF treatment outcome. Hum Reprod. 2005;20(5):1272–6.

    CAS  PubMed  Google Scholar 

  84. Mosimann B, Wagner M, Shehata H, Poon LC, Ford B, Nicolaides KH, et al. Natural killer cells and their activation status in normal pregnancy. Int J Reprod Med. 2013. https://doi.org/10.1155/2013/906813.

  85. Kühnert M, Strohmeier R, Stegmüller M, Halberstadt E. Changes in lymphocyte subsets during normal pregnancy. Eur J Obstet Gynecol Reprod Biol. 1998;76(2):147–51.

    PubMed  Google Scholar 

  86. Organization WH. Maternal mortality. 2016.

  87. Bridwell M, Handzel E, Hynes M, Jean-Louis R, Fitter D, Hogue C, et al. Hypertensive disorders in pregnancy and maternal and neonatal outcomes in Haiti: the importance of surveillance and data collection. BMC Pregnancy Childbirth. 2019;19(1):1–11.

    Google Scholar 

  88. Rana S, Lemoine E, Granger J, Karumanchi SA. Preeclampsia: pathophysiology, challenges, and perspectives. Circ Res. 2019;124(7):1094–112.

    CAS  PubMed  Google Scholar 

  89. Serrano NC. Immunology and genetic of preeclampsia. Clin Dev Immunol. 2006;13(2–4):197–201.

  90. Roberts JM, Escudero C. The placenta in preeclampsia. Pregnancy Hypertens: An International Journal of Women’s Cardiovascular Health. 2012;2(2):72–83.

    CAS  Google Scholar 

  91. Aouache R, Biquard L, Vaiman D, Miralles F. Oxidative stress in preeclampsia and placental diseases. Int J Mol Sci. 2018;19(5):1496.

    PubMed Central  Google Scholar 

  92. Raghupathy R. Cytokines as key players in the pathophysiology of preeclampsia. Med Princ Pract. 2013;22(Suppl. 1):8–19.

    PubMed  PubMed Central  Google Scholar 

  93. Vaka VR, McMaster KM, Cunningham MW Jr, Ibrahim T, Hazlewood R, Usry N, et al. Role of mitochondrial dysfunction and reactive oxygen species in mediating hypertension in the reduced uterine perfusion pressure rat model of preeclampsia. Hypertension. 2018;72(3):703–11.

    CAS  PubMed  Google Scholar 

  94. Wang A, Rana S, Karumanchi SA. Preeclampsia: the role of angiogenic factors in its pathogenesis. Physiology. 2009;24(3):147–58.

    PubMed  Google Scholar 

  95. Zoccali C. Endothelial dysfunction and the kidney: emerging risk factors for renal insufficiency and cardiovascular outcomes in essential hypertension. J Am Soc Nephrol. 2006;17(4 suppl 2):S61–S3.

    PubMed  Google Scholar 

  96. Vairappan B. Endothelial dysfunction in cirrhosis: role of inflammation and oxidative stress. World J Hepatol. 2015;7(3):443.

    PubMed  PubMed Central  Google Scholar 

  97. Rockey DC. Endothelial dysfunction in advanced liver disease. Am J Med Sci. 2015;349(1):6–16.

    PubMed  Google Scholar 

  98. Stokum JA, Gerzanich V, Simard JM. Molecular pathophysiology of cerebral edema. J Cereb Blood Flow Metab. 2016;36(3):513–38.

    CAS  PubMed  Google Scholar 

  99. Kınay T, Küçük C, Kayıkçıoğlu F, Karakaya J. Severe preeclampsia versus HELLP syndrome: maternal and perinatal outcomes at< 34 and≥ 34 weeks’ gestation. Balkan Med J. 2015;32(4):359.

    PubMed  PubMed Central  Google Scholar 

  100. Bjerkedal T, Bahna S, Lehmann E. Course and outcome of pregnancy in women with pulmonary tuberculosis. Scand J Respir Dis. 1975;56(5):245–50.

    CAS  PubMed  Google Scholar 

  101. Organization WH. World health statistics 2016: monitoring health for the SDGs sustainable development goals: World Health Organization; 2016.

    Google Scholar 

  102. Khan M, Pillay T, Moodley JM, Connolly CA, Group DPTH-S. Maternal mortality associated with tuberculosis–HIV-1 co-infection in Durban. South Africa Aids. 2001;15(14):1857–63.

    CAS  PubMed  Google Scholar 

  103. Malhotra B. Guidelines for intensified tuberculosis case-finding and isoniazid preventative therapy for people living with HIV in resource-constrained settings. 2011.

  104. Elliott A, Halwiindi B, Hayes R, Luo N, Mwinga A, Tembo G, et al. The impact of human immunodeficiency virus on response to treatment and recurrence rate in patients treated for tuberculosis: two-year follow-up of a cohort in Lusaka, Zambia. J Trop Med Hyg. 1995;98(1):9.

    CAS  PubMed  Google Scholar 

  105. Alpert PL, Munsiff SS, Gourevitch MN, Greenberg B, Klein RS. A prospective study of tuberculosis and human immunodeficiency virus infection: clinical manifestations and factors associated with survival. Clin Infect Dis. 1997;24(4):661–8.

    CAS  PubMed  Google Scholar 

  106. Whalen CC, Nsubuga P, Okwera A, Johnson JL, Hom DL, Michael NL, et al. Impact of pulmonary tuberculosis on survival of HIV-infected adults: a prospective epidemiologic study in Uganda. AIDS (London, England). 2000;14(9):1219.

    CAS  Google Scholar 

  107. Whalen CC, Johnson JL, Okwera A, Hom DL, Huebner R, Mugyenyi P, et al. A trial of three regimens to prevent tuberculosis in Ugandan adults infected with the human immunodeficiency virus. N Engl J Med. 1997;337(12):801–8.

    CAS  PubMed  Google Scholar 

  108. Asimos AW, Ehrhardt J. Radiographic presentation of pulmonary tuberculosis in severely immunosuppressed HIV-seropositive patients. Am J Emerg Med. 1996;14(4):359–63.

    CAS  PubMed  Google Scholar 

  109. Munsiff SS, Alpert PL, Gourevitch MN, Chang C, Klein RS. A prospective study of tuberculosis and HIV disease progression. J Acquir Immune Defic Syndr Human Retrovirol: official publication of the International Retrovirology Association. 1998;19(4):361–6.

    CAS  Google Scholar 

  110. Long R, Maycher B, Scalcini M, Manfreda J. The chest roentgenogram in pulmonary tuberculosis patients seropositive for human immunodeficiency virus type 1. Chest. 1991;99(1):123–7.

    CAS  PubMed  Google Scholar 

  111. Perriëns JH, St. Louis ME, Mukadi YB, Brown C, Prignot J, Pouthier F, et al. Pulmonary tuberculosis in HIV-infected patients in Zaire—a controlled trial of treatment for either 6 or 12 months. N Engl J Med. 1995;332(12):779–85.

    PubMed  Google Scholar 

  112. Schluger NW, Perez D, Liu YM. Reconstitution of immune responses to tuberculosis in patients with HIV infection who receive antiretroviral therapy. Chest. 2002;122(2):597–602.

    PubMed  Google Scholar 

  113. Dvorak HF, Brown LF, Detmar M, Dvorak AM. Vascular permeability factor/vascular endothelial growth factor, microvascular hyperpermeability, and angiogenesis. Am J Pathol. 1995;146(5):1029.

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Verma RK, Singh AK, Mohan M, Agrawal AK, Verma PR, Gupta A, et al. Inhalable microparticles containing nitric oxide donors: saying NO to intracellular Mycobacterium tuberculosis. Mol Pharm. 2012;9(11):3183–9.

    CAS  PubMed  Google Scholar 

  115. Bhalla K, Chugh M, Mehrotra S, Rathore S, Tousif S, Dwivedi VP, et al. Host ICAMs play a role in cell invasion by Mycobacterium tuberculosis and Plasmodium falciparum. Nat Commun. 2015;6(1):1–13.

    Google Scholar 

  116. Ridley MJ, Heather C, Brown I, Willoughby D. Experimental epithelioid cell granulomas tubercle formation and immunological competence: an ultrastructural analysis. J Pathol. 1983;141(2):97–112.

    CAS  PubMed  Google Scholar 

  117. Duffy AM, Bouchier-Hayes DJ, Harmey JH. Vascular endothelial growth factor (VEGF) and its role in non-endothelial cells: autocrine signalling by VEGF. Madame Curie Bioscience Database [Internet]: Landes Bioscience; 2013.

  118. Kumar NP, Banurekha VV, Nair D, Babu S. Circulating angiogenic factors as biomarkers of disease severity and bacterial burden in pulmonary tuberculosis. PLoS One. 2016;11(1):e0146318.

    PubMed  PubMed Central  Google Scholar 

  119. Matsuyama W, Hashiguchi T, Matsumuro K, Iwami F, Hirotsu Y, Kawabata M, et al. Increased serum level of vascular endothelial growth factor in pulmonary tuberculosis. Am J Respir Crit Care Med. 2000;162(3 Pt 1):1120–2.

    CAS  PubMed  Google Scholar 

  120. Bhat H, Ambekar JG, Harwalkar AK, Dongre N, Das KK. Serum VEGF and TNF-α correlate bacterial burden in pulmonary tuberculosis. Indian J Public Health Res Dev. 2019;10(1):189–94.

    Google Scholar 

  121. Karakousis PC, Albini TA, Thayil SM, Khanamiri HN, Moshfeghi AA, Parel J-MA, et al. Hypoxia and increased VEGF expression in experimental ocular tuberculosis. Invest Ophthalmol Vis Sci. 2012;53(14):3650.

    Google Scholar 

  122. Datta M, Via LE, Kamoun WS, Liu C, Chen W, Seano G, et al. Anti-vascular endothelial growth factor treatment normalizes tuberculosis granuloma vasculature and improves small molecule delivery. Proc Natl Acad Sci. 2015;112(6):1827–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Harding JS, Herbath M, Chen Y, Rayasam A, Ritter A, Csoka B, et al. VEGF-A from granuloma macrophages regulates granulomatous inflammation by a non-angiogenic pathway during mycobacterial infection. Cell Rep. 2019;27(7):2119–31 e6.

    CAS  PubMed  Google Scholar 

  124. Braverman J, Stanley SA. Nitric oxide modulates macrophage responses to Mycobacterium tuberculosis infection through activation of HIF-1α and repression of NF-κB. J Immunol. 2017;199(5):1805–16.

    CAS  PubMed  Google Scholar 

  125. Jamaati H, Mortaz E, Pajouhi Z, Folkerts G, Movassaghi M, Moloudizargari M, et al. Nitric oxide in the pathogenesis and treatment of tuberculosis. Front Microbiol. 2017;8:2008.

  126. Mishra BB, Lovewell RR, Olive AJ, Zhang G, Wang W, Eugenin E, et al. Nitric oxide prevents a pathogen-permissive granulocytic inflammation during tuberculosis. Nat Microbiol. 2(7):1–11.

  127. Idh J, Mekonnen M, Abate E, Wedajo W, Werngren J, Ängeby K, et al. Resistance to first-line anti-TB drugs is associated with reduced nitric oxide susceptibility in Mycobacterium tuberculosis. PLoS One. 2012;7(6):e39891.

    CAS  PubMed  PubMed Central  Google Scholar 

  128. •• Bolajoko EB, Arinola OG, Odaibo GN, Maiga M. Plasma levels of tumor necrosis factor-alpha, interferon-gamma, inducible nitric oxide synthase, and 3-nitrotyrosine in drug-resistant and drug-sensitive pulmonary tuberculosis patients, Ibadan, Nigeria. Int J Mycobacteriol. 2020;9(2):185. TNF-α, IFN-γ, iNOS, and 3-nitrotyrosine (3-NT) are involved in the pathophysiology of drug-resistant TB and drug- sensitive TB when compared to controls.

  129. MacMicking JD, North RJ, LaCourse R, Mudgett JS, Shah SK, Nathan CF. Identification of nitric oxide synthase as a protective locus against tuberculosis. Proc Natl Acad Sci. 1997;94(10):5243–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Chan J, Tanaka K, Carroll D, Flynn J, Bloom B. Effects of nitric oxide synthase inhibitors on murine infection with Mycobacterium tuberculosis. Infect Immun. 1995;63(2):736–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Scanga CA, Mohan VP, Tanaka K, Alland D, Flynn JL, Chan J. The inducible nitric oxide synthase locus confers protection against aerogenic challenge of both clinical and laboratory strains of Mycobacterium tuberculosis in mice. Infect Immun. 2001;69(12):7711–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Hamzaoui A, Hamzaoui K, Kahan A, Chabbou A. Levels of soluble VCAM-1, soluble ICAM-1, and soluble E-selectin in patients with tuberculous pleuritis. Mediat Inflamm. 1996;5:716314.

    Google Scholar 

  133. Aslam Z, Mumtaz M, Malkani N. Evaluation of serum circulating levels of ICAM-1 as tuberculosis risk-assessment factor in type 2 diabetes patients. P R Health Sci J. 2019;38(1):22–6.

    PubMed  Google Scholar 

  134. Suresh S, Sharath BN, Anita S, Lalitha R, Prasad TJ, Rewari BB. TB-HIV co-infection among pregnant women in Karnataka, South India: a case series. J Infect Public Health. 2016;9(4):465–70.

    PubMed  Google Scholar 

  135. Fernandez D, Salami I, Davis J, Mbah F, Kazeem A, Ash A, et al. HIV-TB coinfection among 57 million pregnant women, obstetric complications, alcohol use, drug abuse, and depression. J Pregnancy. 2018. https://doi.org/10.1155/2018/5896901.

  136. Torre D. Nitric oxide and endothelial dysfunction in HIV type 1 infection. Clin Infect Dis. 2006;43(8):1086–7.

    PubMed  Google Scholar 

  137. Forstermann U, Munzel T. Endothelial nitric oxide synthase in vascular disease: from marvel to menace. Circulation. 2006;113(13):1708–14.

    PubMed  Google Scholar 

  138. Kamtchum-Tatuene J, Mwandumba H, Al-Bayati Z, Flatley J, Griffiths M, Solomon T, et al. HIV is associated with endothelial activation despite ART, in a sub-Saharan African setting. Neurol-Neuroimmunol Neuroinflammation. 2019;6(2).

  139. Nordoøy I, Aukrust P, Müller F, Froøland SS. Abnormal levels of circulating adhesion molecules in HIV-1 infection with characteristic alterations in opportunistic infections. Clin Immunol Immunopathol. 1996;81(1):16–21.

    Google Scholar 

  140. Das JR, Gutkind JS, Ray PE. Circulating fibroblast growth factor-2, HIV-Tat, and vascular endothelial cell growth factor-A in HIV-infected children with renal disease activate Rho-A and Src in cultured renal endothelial cells. PLoS One. 2016;11(4):e0153837.

    PubMed  PubMed Central  Google Scholar 

  141. Korgaonkar SN, Feng X, Ross MD, Lu T-C, D’Agati V, Iyengar R, et al. HIV-1 upregulates VEGF in podocytes. J Am Soc Nephrol. 2008;19(5):877–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Salazar-Austin N, Hoffmann J, Cohn S, Mashabela F, Waja Z, Lala S, et al. Poor obstetric and infant outcomes in human immunodeficiency virus-infected pregnant women with tuberculosis in South Africa: The Tshepiso Study. Clin Infect Dis. 2018;66(6):921–9.

    CAS  PubMed  Google Scholar 

  143. Kishan S, Kaur S, editors. Tuberculosis and pregnancy. Proc Natl Conf Pulm Diseases (NAPCON’01); 2001.

  144. Pillay T, Khan M, Moodley J, Adhikari M, Coovadia H. Perinatal tuberculosis and HIV-1: considerations for resource-limited settings. Lancet Infect Dis. 2004;4(3):155–65.

    CAS  PubMed  Google Scholar 

  145. Jana N, Vasishta K, Jindal S, Khunnu B, Ghosh K. Perinatal outcome in pregnancies complicated by pulmonary tuberculosis. Int J Gynecol Obstet. 1994;44(2):119–24.

    CAS  Google Scholar 

  146. Gupta A, Nayak U, Ram M, Bhosale R, Patil S, Basavraj A, et al. Postpartum tuberculosis incidence and mortality among HIV-infected women and their infants in Pune, India, 2002–2005. Clin Infect Dis. 2007;45(2):241–9.

    PubMed  Google Scholar 

  147. Chopra S, Siwatch S, Aggarwal N, Sikka P, Suri V. Pregnancy outcomes in women with tuberculosis: a 10-year experience from an Indian tertiary care hospital. Trop Dr. 2017;47(2):104–9.

    Google Scholar 

  148. Dooley KE, Denti P, Martinson N, Cohn S, Mashabela F, Hoffmann J, et al. Pharmacokinetics of efavirenz and treatment of HIV-1 among pregnant women with and without tuberculosis coinfection. J Infect Dis. 2015;211(2):197–205.

    CAS  PubMed  Google Scholar 

  149. Doveren R, Block R. Tuberculosis and pregnancy–a provincial study (1990–1996). Neth J Med. 1998;52(3):100–6.

    CAS  PubMed  Google Scholar 

  150. Finn R, Hill CS, Govan AJ, Ralfs I, Gurney FJ, Denye V. Immunological responses in pregnancy and survival of fetal homograft. Br Med J. 1972;3(5819):150–2.

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Nolan TE, Espinosa TL, Pastorek J 2nd. Tuberculosis skin testing in pregnancy: trends in a population. J Perinatol. 1997;17(3):199–201.

    CAS  PubMed  Google Scholar 

  152. Bass JB Jr, Farer LS, Hopewell PC, O’Brien R, Jacobs R, Ruben F, et al. Treatment of tuberculosis and tuberculosis infection in adults and children. American Thoracic Society and The Centers for Disease Control and Prevention. Am J Respir Crit Care Med. 1994;149(5):1359–74.

    PubMed  Google Scholar 

  153. World Health Organization. The global plan to stop TB 2011–2015: transforming the fight towards elimination of tuberculosis. Geneve: World Health Organization; 2010.

  154. CDC. TB Treatment & Pregnancy. In: Prevention CfDCa, editor. 2016. p. 96.

  155. AlMossawi H, Kak N, Studenic A, Moran A, Longacre C, Kheang T, et al. A situational analysis of screening and treatment of TB in pregnant women across 5 countries. J Trop Diseases. 2019;7(6):1–7.

    Google Scholar 

  156. Bothamley G. Drug treatment for tuberculosis during pregnancy: safety considerations. Drug Saf. 2001;24(7):553–65.

    CAS  PubMed  Google Scholar 

  157. Esmail A, Sabur NF, Okpechi I, Dheda K. Management of drug-resistant tuberculosis in special sub-populations including those with HIV co-infection, pregnancy, diabetes, organ-specific dysfunction, and in the critically ill. J Thor Disease. 2018;10(5):3102.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wendy N Phoswa.

Ethics declarations

Conflict of Interest

The authors declare no conflicts of interest relevant to this manuscript.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Preeclampsia

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Phoswa, W.N., Eche, S. & Khaliq, O.P. The Association of Tuberculosis Mono-infection and Tuberculosis-Human Immunodeficiency Virus (TB-HIV) Co-infection in the Pathogenesis of Hypertensive Disorders of Pregnancy. Curr Hypertens Rep 22, 104 (2020). https://doi.org/10.1007/s11906-020-01114-5

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11906-020-01114-5

Keywords

Navigation