Skip to main content

Advertisement

Log in

What Is the Most Common Cause of Secondary Hypertension?: An Interdisciplinary Discussion

  • Resistant Hypertension (L Drager, Section Editor)
  • Published:
Current Hypertension Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Traditional statements in medical textbooks pointed that 90 to 95% of cases of hypertension is essential or primary. However, secondary hypertension seems to be common in those patients with resistant forms of hypertension. Appropriate investigation and treatment may have prognostic impact but frequently hypertension remission did not occur raising concerns about the real meaning of secondary hypertension. Here, we provided an interdisciplinary and critical discussion comprising an endocrinologist, a nephrologist, and a cardiologist with expertise in resistant hypertension. We reviewed the literature approaching each one of the recognizable cause of hypertension.

Recent Findings

Recent studies pointed that the most common causes of secondary hypertension are those who overall responses to their treatments do not promote hypertension remission including obstructive sleep apnea (OSA), chronic kidney disease, renovascular hypertension and primary aldosteronism. The authors raised concerns regarding the lack of inclusion of obesity by several societies as a formal cause of hypertension considering not only the biologic plausibility but also the huge impact of weight loss therapies such as bariatric surgery on hypertension remission. In contrast, there is no discussion that a very rare condition—namely pheochromocytoma—is the most “typical” cause of hypertension by promoting hypertension remission in the majority of patients after surgical procedure.

Summary

Hypertension is a complex condition with multiple environmental and genetics interactions. In clinical practice, it is challenging to prove causality in hypertension. Common conditions largely acceptable as causes of hypertension (OSA, chronic kidney disease, renovascular hypertension, and primary aldosteronism) frequently occur in a setting of an established hypertension background and therefore do not promote hypertension remission in a significant proportion of patients. If obesity becomes largely accepted by several societies as a secondary form of hypertension, this pandemic condition will be certainly the most common cause of hypertension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: •• Of major importance

  1. Malachias MVB, Bortolotto LA, Drager LF, Borelli FAO, Lotaif LAD, Martins LC. 7th Brazilian Guideline of arterial hypertension: chapter 12-secondary arterial hypertension. Arq Bras Cardiol. 2016;107(3 Suppl 3):67–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Whelton PK, Carey RM, Aronow WS, et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice guidelines. Hypertension. 2018 Jun;71(6):e13-e115. Erratum in: Hypertension. 2018;71(6):e140–4.

    CAS  Google Scholar 

  3. Williams B, Mancia G, Spiering W, Agabiti Rosei E, Azizi M, Burnier M, et al. ESC Scientific Document Group. 2018 ESC/ESH Guidelines for the management of arterial hypertension. Eur Heart J. 2018;39(33):3021–104.

    PubMed  Google Scholar 

  4. Pedrosa RP, Drager LF, Gonzaga CC, Sousa MG, de Paula LK, Amaro AC, et al. Obstructive sleep apnea: the most common secondary cause of hypertension associated with resistant hypertension. Hypertension. 2011;58(5):811–7.

    CAS  PubMed  Google Scholar 

  5. Florczak E, Prejbisz A, Szwench-Pietrasz E, Sliwiński P, Bieleń P, Klisiewicz A, et al. Clinical characteristics of patients with resistant hypertension: the RESIST-POL study. J Hum Hypertens. 2013;27(11):678–85.

    CAS  PubMed  Google Scholar 

  6. Hill AB. The environment and disease: association or causation? Proc R Soc Med. 1965;58:295–300.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Parascandola M, Weed DL. Causation in epidemiology. J Epidemiol Community Health. 2001;55(12):905–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Funder JW, Carey RM, Mantero F, Murad MH, Reincke M, Shibata H, et al. The management of primary aldosteronism: case detection, diagnosis, and treatment: an Endocrine Society Clinical Practice Guideline. J Clin Endocrinol Metab. 2016;101(5):1889–916.

    CAS  PubMed  Google Scholar 

  9. Milliez P, Girerd X, Plouin PF, Blacher J, Safar ME, Mourad JJ. Evidence for an increased rate of cardiovascular events in patients with primary aldosteronism. J Am Coll Cardiol. 2005;45(8):1243–8.

    CAS  PubMed  Google Scholar 

  10. Savard S, Amar L, Plouin PF, Steichen O. Cardiovascular complications associated with primary aldosteronism: a controlled cross-sectional study. Hypertension. 2013;62(2):331–6.

    CAS  PubMed  Google Scholar 

  11. Monticone S, D’Ascenzo F, Moretti C, Williams TA, Veglio F, Gaita F, et al. Cardiovascular events and target organ damage in primary aldosteronism compared with essential hypertension: a systematic review and meta-analysis. Lancet Diabetes Endocrinol. 2018;6(1):41–50.

    CAS  PubMed  Google Scholar 

  12. Rossi GP, Bernini G, Caliumi C, Desideri G, Fabris B, Ferri C, et al. A prospective study of the prevalence of primary aldosteronism in 1,125 hypertensive patients. J Am Coll Cardiol. 2006;48(11):2293–300.

    CAS  PubMed  Google Scholar 

  13. Vilela LAP, Almeida MQ. Diagnosis and management of primary aldosteronism. Arch Endocrinol Metab. 2017;61(3):305–12.

    PubMed  Google Scholar 

  14. Lim V, Guo Q, Grant CS, Thompson GB, Richards ML, Farley DR, et al. Accuracy of adrenal imaging and adrenal venous sampling in predicting surgical cure of primary aldosteronism. J Clin Endocrinol Metab. 2014;99(8):2712–9.

    CAS  PubMed  Google Scholar 

  15. Dekkers T, Prejbisz A, Kool LJ, Groenewoud HJ, Velema M, Spiering W, et al. Adrenal vein sampling versus CT scan to determine treatment in primary aldosteronism: an outcome-based randomised diagnostic trial. Lancet Diabetes Endocrinol. 2016;4(9):739–46.

    PubMed  Google Scholar 

  16. Rossi GP, Bolognesi M, Rizzoni D, Seccia TM, Piva A, Porteri E, et al. Vascular remodeling and duration of hypertension predict outcome of adrenalectomy in primary aldosteronism patients. Hypertension. 2008;51(5):1366–71.

    CAS  PubMed  Google Scholar 

  17. Catena C, Colussi G, Lapenna R, Nadalini E, Chiuch A, Gianfagna P, et al. Long-term cardiac effects of adrenalectomy or mineralocorticoid antagonists in patients with primary aldosteronism. Hypertension. 2007;50(5):911–8.

    CAS  PubMed  Google Scholar 

  18. Rossi GP, Cesari M, Cuspidi C, Maiolino G, Cicala MV, Bisogni V, et al. Long-term control of arterial hypertension and regression of left ventricular hypertrophy with treatment of primary aldosteronism. Hypertension. 2013;62(1):62–9.

    CAS  PubMed  Google Scholar 

  19. Sukor N, Kogovsek C, Gordon RD, Robson D, Stowasser M. Improved quality of life, blood pressure, and biochemical status following laparoscopic adrenalectomy for unilateral primary aldosteronism. J Clin Endocrinol Metab. 2010;95(3):1360–4.

    CAS  PubMed  Google Scholar 

  20. Meyer A, Brabant G, Behrend M. Long-term follow-up after adrenalectomy for primary aldosteronism. World J Surg. 2005;29(2):155–9.

    PubMed  Google Scholar 

  21. Sawka AM, Young WF, Thompson GB, Grant CS, Farley DR, Leibson C, et al. Primary aldosteronism: factors associated with normalization of blood pressure after surgery. Ann Intern Med. 2001;135(4):258–61.

    CAS  PubMed  Google Scholar 

  22. •• Vilela LAP, Rassi-Cruz M, Guimaraes AG, CCS M, Freitas TC, Alencar NP, et al. KCNJ5 somatic mutation is a predictor of hypertension remission after adrenalectomy for unilateral primary aldosteronism. The Journal of clinical endocrinology and metabolism. J Clin Endocrinol Metab. 2019;104(10):4695–702 A KCNJ5 somatic mutation was an independent predictor of hypertension remission after unilateral adrenalectomy in patients with unilateral PA.

  23. •• Hundemer GL, Curhan GC, Yozamp N, Wang M, Vaidya A. Cardiometabolic outcomes and mortality in medically treated primary aldosteronism: a retrospective cohort study. Lancet Diabetes Endocrinol. 2018;6(1):51–9 Besides normalizing blood pressure and hypokalemia, the main goal of medical treatment should be increase renin levels.

    PubMed  Google Scholar 

  24. Lenders JW, Duh QY, Eisenhofer G, Gimenez-Roqueplo AP, Grebe SK, Murad MH, et al. Pheochromocytoma and paraganglioma: an endocrine society clinical practice guideline. J Clin Endocrinol Metab. 2014;99(6):1915–42.

    CAS  PubMed  Google Scholar 

  25. Curras-Freixes M, Pineiro-Yanez E, Montero-Conde C, Apellaniz-Ruiz M, Calsina B, Mancikova V, et al. PheoSeq: a targeted next-generation sequencing assay for pheochromocytoma and paraganglioma diagnostics. J Mol Diagn. 2017;19(4):575–88.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Fishbein L, Leshchiner I, Walter V, Danilova L, Robertson AG, Johnson AR, et al. Comprehensive molecular characterization of pheochromocytoma and paraganglioma. Cancer Cell. 2017;31(2):181–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Pamporaki C, Hamplova B, Peitzsch M, Prejbisz A, Beuschlein F, Timmers H, et al. Characteristics of pediatric vs adult pheochromocytomas and paragangliomas. J Clin Endocrinol Metab. 2017;102(4):1122–32.

    PubMed  PubMed Central  Google Scholar 

  28. Pacak K. Preoperative management of the pheochromocytoma patient. J Clin Endocrinol Metab. 2007;92(11):4069–79.

    CAS  PubMed  Google Scholar 

  29. Klein I, Ojamaa K. Thyroid hormone and the cardiovascular system: from theory to practice. J Clin Endocrinol Metab. 1994;78(5):1026–7.

    CAS  PubMed  Google Scholar 

  30. Frost L, Vestergaard P, Mosekilde L. Hyperthyroidism and risk of atrial fibrillation or flutter: a population-based study. Arch Intern Med. 2004;164(15):1675–8.

    PubMed  Google Scholar 

  31. Jian WX, Jin J, Qin L, Fang WJ, Chen XR, Chen HB, et al. Relationship between thyroid-stimulating hormone and blood pressure in the middle-aged and elderly population. Singap Med J. 2013;54(7):401–5.

    Google Scholar 

  32. •• Charles L, Triscott J, Dobbs B. Secondary hypertension: discovering the underlying cause. Am Fam Physician. 2017;96(7):453–61 Nice review of prevalence of secondary hypertension, highlighting the different prevalence of diseases according to age group.

    PubMed  Google Scholar 

  33. Preston RA, Epstein M. Renal parenchymal disease and hypertension. Semin. Nephrol. 1995 Mar;15(2):138–51.

  34. Ritz E. Hypertension: the kidney is the culprit even in the absence of kidney disease. Kidney Int. 2007;71(5):371–2.

  35. Carey RM, Calhoun DA, Bakris GL, Brook RD, Daugherty SL, Dennison-Himmelfarb CR, et al. Resistant hypertension: detection, evaluation, and management: a scientific statement from the American Heart Association. Hypertension. 2018;72(5):e53–90.

    CAS  PubMed  Google Scholar 

  36. Pao AC. Update on the Guytonian view of hypertension. Curr Opin Nephrol Hypertens. 2014 Jul;23(4):391–8.

    CAS  PubMed  Google Scholar 

  37. Ridao N, Luño J, García de Vinuesa S, Gómez F, Tejedor A, Valderrábano F. Prevalence of hypertension in renal disease. Nephrol Dial 604 Transplant. 2001;16(Suppl 1):70–3.

  38. Bergmann C, Guay-Woodford LM, Harris PC, Horie S, Peters DJM, Torres VE. Polycystic kidney disease. Nat Rev Dis Primers. 2018;4(1):50.

  39. Ihm CG. Hypertension in chronic glomerulonephritis. Electrolyte Blood Press. 2015;13(2):41–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Anderson AH, Yang W, Townsend RR, Pan Q, Chertow GM, Kusek JW, et al. Time-updated systolic blood pressure and the progression of chronic kidney disease: a cohort study. Ann Intern Med. 2015;162(4):258–65.

    PubMed  PubMed Central  Google Scholar 

  41. •• Textor SC. Renal arterial disease and hypertension. Med Clin North Am. 2017;101(1):65–79 Rational approach to managing renovascular hypertension in the current era.

    PubMed  PubMed Central  Google Scholar 

  42. Schoepe R, McQuillan S, Valsan D, Teehan G. Atherosclerotic renal artery stenosis. Adv Exp Med Biol. 2017;956:209–13.

    PubMed  Google Scholar 

  43. Herrmann SM, Textor SC. Current concepts in the treatment of renovascular hypertension. Am J Hypertens. 2018 Jan 12;31(2):139–49.

    CAS  PubMed  Google Scholar 

  44. Investigators ASTRAL, Wheatley K, Ives N, Gray R, Kalra PA, Moss JG, et al. Revascularization versus medical therapy for renal-artery stenosis. N Engl J Med. 2009 Nov 12;361(20):1953–62.

    Google Scholar 

  45. Cooper CJ, Murphy TP, Cutlip DE, Jamerson K, Henrich W, Reid DM, et al. Stenting and medical therapy for atherosclerotic renal-artery stenosis. N Engl J Med. 2014;370(1):13–22.

    CAS  PubMed  Google Scholar 

  46. Prince M, Tafur JD, White CJ. When and how should we revascularize patients with atherosclerotic renal artery stenosis? JACC Cardiovasc Interv. 2019;12(6):505–17.

    PubMed  Google Scholar 

  47. Brinza EK, Gornik HL. Fibromuscular dysplasia: advances in understanding and management. Cleve Clin J Med. 2016;83(11 Suppl 2):S45–51.

    PubMed  Google Scholar 

  48. Drager LF, Togeiro SM, Polotsky VY, Lorenzi-Filho G. Obstructive sleep apnea: a cardiometabolic risk in obesity and the metabolic syndrome. J Am Coll Cardiol. 2013;62(7):569–76.

    PubMed  PubMed Central  Google Scholar 

  49. Drager LF, Polotsky VY, O’Donnell CP, Cravo SL, Lorenzi-Filho G, Machado BH. Translational approaches to understanding metabolic dysfunction and cardiovascular consequences of obstructive sleep apnea. Am J Physiol Heart Circ Physiol. 2015;309(7):H1101–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Tufik S, Santos-Silva R, Taddei JA, Bittencourt LR. Obstructive sleep apnea syndrome in the Sao Paulo Epidemiologic Sleep Study. Sleep Med. 2010;11(5):441–6.

    PubMed  Google Scholar 

  51. Drager LF, Santos RB, Silva WA, Parise BK, Giatti S, Aielo AN, et al. OSA, short sleep duration, and their interactions with sleepiness and cardiometabolic risk factors in adults: the ELSA-Brasil study. Chest. 2019;155(6):1190–8.

    PubMed  Google Scholar 

  52. Costa LE, Uchôa CH, Harmon RR, Bortolotto LA, Lorenzi-Filho G, Drager LF. Potential underdiagnosis of obstructive sleep apnoea in the cardiology outpatient setting. Heart. 2015;101(16):1288–92.

    CAS  PubMed  Google Scholar 

  53. Drager LF, Genta PR, Pedrosa RP, Nerbass FB, Gonzaga CC, Krieger EM, et al. Characteristics and predictors of obstructive sleep apnea in patients with systemic hypertension. Am J Cardiol. 2010;105(8):1135–9.

    PubMed  Google Scholar 

  54. Logan AG, Perlikowski SM, Mente A, Tisler A, Tkacova R, Niroumand M, et al. High prevalence of unrecognized sleep apnoea in drug-resistant hypertension. J Hypertens. 2001;19(12):2271–7.

    CAS  PubMed  Google Scholar 

  55. Drager LF, Bortolotto LA, Figueiredo AC, Silva BC, Krieger EM, Lorenzi-Filho G. Obstructive sleep apnea, hypertension, and their interaction on arterial stiffness and heart remodeling. Chest. 2007;131(5):1379–86.

    PubMed  Google Scholar 

  56. Fatureto-Borges F, Jenner R, Costa-Hong V, Lopes HF, Teixeira SH, Marum E, et al. Does obstructive sleep apnea influence blood pressure and arterial stiffness in response to antihypertensive treatment? Hypertension. 2018;72(2):399–407.

    CAS  PubMed  Google Scholar 

  57. Jenner R, Fatureto-Borges F, Costa-Hong V, Lopes HF, Teixeira SH, Marum E, et al. Association of obstructive sleep apnea with arterial stiffness and nondipping blood pressure in patients with hypertension. J Clin Hypertens (Greenwich). 2017;19(9):910–8.

    CAS  Google Scholar 

  58. Genta-Pereira DC, Furlan SF, Omote DQ, Giorgi DMA, Bortolotto LA, Lorenzi-Filho G, et al. Nondipping blood pressure patterns predict obstructive sleep apnea in patients undergoing ambulatory blood pressure monitoring. Hypertension. 2018;72(4):979–85.

    CAS  PubMed  Google Scholar 

  59. Bazzano LA, Khan Z, Reynolds K, He J. Effect of nocturnal nasal continuous positive airway pressure on blood pressure in obstructive sleep apnea. Hypertension. 2007;50(2):417–23.

    CAS  PubMed  Google Scholar 

  60. Haentjens P, Van Meerhaeghe A, Moscariello A, De Weerdt S, Poppe K, Dupont A, et al. The impact of continuous positive airway pressure on blood pressure in patients with obstructive sleep apnea syndrome: evidence from a meta-analysis of placebo-controlled randomized trials. Arch Intern Med. 2007;167(8):757–64.

    PubMed  Google Scholar 

  61. Fava C, Dorigoni S, Dalle Vedove F, Danese E, Montagnana M, Guidi GC, et al. Effect of CPAP on blood pressure in patients with OSA/hypopnea a systematic review and meta-analysis. Chest. 2014;145(4):762–71.

    PubMed  Google Scholar 

  62. Fatureto-Borges F, Lorenzi-Filho G, Drager LF. Effectiveness of continuous positive airway pressure in lowering blood pressure in patients with obstructive sleep apnea: a critical review of the literature. Integr Blood Press Control. 2016;9:43–7.

    PubMed  PubMed Central  Google Scholar 

  63. Pedrosa RP, Drager LF, de Paula LKG, Amaro ACS, Bortolotto LA, Lorenzi-Filho G. Effects of OSA treatment on BP in patients with resistant hypertension: a randomized trial. Chest. 2013;144(5):1487–94.

    CAS  PubMed  Google Scholar 

  64. Martínez-García MA, Capote F, Campos-Rodríguez F, Lloberes P, Díaz de Atauri MJ, Somoza M, et al. Spanish Sleep Network. Effect of CPAP on blood pressure in patients with obstructive sleep apnea and resistant hypertension: the HIPARCO randomized clinical trial. JAMA. 2013;310(22):2407–15.

    PubMed  Google Scholar 

  65. de Oliveira AC, Martinez D, Massierer D, Gus M, Gonçalves SC, Ghizzoni F, et al. The antihypertensive effect of positive airway pressure on resistant hypertension of patients with obstructive sleep apnea: a randomized, double-blind, clinical trial. Am J Respir Crit Care Med. 2014;190(3):345–7.

    PubMed  Google Scholar 

  66. Sanches-De-La-Torre M, Khalyfa A, Sanches-De-La-Torre A, Martinez-Alonso M, Martinez-Garcia MA, Barcel A, et al. Precision medicine in patients with resistant hypertension and obstructive sleep apnea blood pressure response to continuous positive airway pressure treatment. J Am Coll Cardiol. 2015;66(9):1023–32.

    Google Scholar 

  67. Alkashkari W, Albugami S, Hijazi ZM. Management of coarctation of the aorta in adult patients: state of the art. Korean Circ J. 2019;49(4):298–313.

    PubMed  PubMed Central  Google Scholar 

  68. Reller MD, Strickland MJ, Riehle-Colarusso T, Mahle WT, Correa A. Prevalence of congenital heart defects in metropolitan Atlanta, 1998–2005. J Pediatr. 2008;153:807–13.

    PubMed  PubMed Central  Google Scholar 

  69. Rao PS. Coarctation of the aorta. Curr Cardiol Rep. 2005;7(6):425–34.

    PubMed  Google Scholar 

  70. Canniffe C, Ou P, Walsh K, Bonnet D, Celermajer D. Hypertension after repair of aortic coarctation--a systematic review. Int J Cardiol. 2013 Sep 10;167(6):2456–61.

    PubMed  Google Scholar 

  71. Grossman A, Messerli FH, Grossman E. Drug induced hypertension--an unappreciated cause of secondary hypertension. Eur J Pharmacol. 2015;763(Pt A):15–22.

    CAS  PubMed  Google Scholar 

  72. Caletti S, Paini A, Coschignano MA, De Ciuceis C, Nardin M, Zulli R, et al. Management of VEGF-targeted therapy-induced hypertension. Curr Hypertens Rep. 2018 Jun 29;20(8):68.

    PubMed  Google Scholar 

  73. GBD 2015 Obesity Collaborators, Afshin A, Forouzanfar MH, Reitsma MB, Sur P, Estep K, et al. Health effects of overweight and obesity in 195 countries over 25 years. N Engl J Med. 2017;377(1):13–27.

    Google Scholar 

  74. Wang Z, do Carmo JM, da Silva AA, Fu Y, Hall JE. Mechanisms of synergistic interactions of diabetes and hypertension in chronic kidney disease: role of mitochondrial dysfunction and ER stress. Curr Hypertens Rep. 2020;22(2):15.

    PubMed  PubMed Central  Google Scholar 

  75. da Silva AA, do Carmo JM, Wang Z, Hall JE. Melanocortin-4 receptors and sympathetic nervous system activation in hypertension. Curr Hypertens Rep. 2019;21(6):46.

    PubMed  PubMed Central  Google Scholar 

  76. Das E, Moon JH, Lee JH, Thakkar N, Pausova Z, Sung HK. Adipose tissue and modulation of hypertension. Curr Hypertens Rep. 2018 Sep 18;20(11):96.

    PubMed  Google Scholar 

  77. do Carmo JM, da Silva AA, Wang Z, Fang T, Aberdein N, de Lara Rodriguez CE, et al. Obesity-induced hypertension: brain signaling pathways. Curr Hypertens Rep. 2016;18(7):58.

    PubMed  PubMed Central  Google Scholar 

  78. Grassi G, Facchini A, Trevano FQ, Dell’Oro R, Arenare F, Tana F, et al. Obstructive sleep apnea-dependent and -independent adrenergic activation in obesity. Hypertension. 2005;46(2):321–5.

    CAS  PubMed  Google Scholar 

  79. DeMarco VG, Aroor AR, Sowers JR. The pathophysiology of hypertension in patients with obesity. Nat Rev Endocrinol. 2014;10(6):364–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Jakobsen GS, Småstuen MC, Sandbu R, Nordstrand N, Hofsø D, Lindberg M, et al. Association of bariatric surgery vs medical obesity treatment with long-term medical complications and obesity-related comorbidities. JAMA. 2018;319(3):291–301.

    PubMed  PubMed Central  Google Scholar 

  81. Adams TD, Davidson LE, Litwin SE, Kim J, Kolotkin RL, Nanjee MN, et al. Weight and metabolic outcomes 12 years after gastric bypass. Weight and metabolic outcomes 12 years after gastric bypass. N Engl J Med. 2017;377(12):1143–55.

    PubMed  PubMed Central  Google Scholar 

  82. Schiavon CA, Bersch-Ferreira AC, Santucci EV, et al. Effects of bariatric surgery in obese patients with hypertension: The GATEWAY Randomized Trial (Gastric Bypass to Treat Obese Patients With Steady Hypertension). Circulation. 2018;137(11):1132–42 Erratum in: Circulation. 2019;140(14):e718.

    PubMed  Google Scholar 

  83. Schiavon CA, Ikeoka D, Santucci EV, Santos RN, Damiani LP, Bueno PT, et al. Effects of bariatric surgery versus medical therapy on the 24-hour ambulatory blood pressure and the prevalence of resistant hypertension: the GATEWAY randomised clinical trial. Hypertension. 2019;73(3):571–7.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luciano F. Drager.

Ethics declarations

Conflict of Interest

The authors declare no conflicts of interest relevant to this manuscript.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Resistant Hypertension

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Almeida, M.Q., Silva, G.V. & Drager, L.F. What Is the Most Common Cause of Secondary Hypertension?: An Interdisciplinary Discussion. Curr Hypertens Rep 22, 101 (2020). https://doi.org/10.1007/s11906-020-01106-5

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11906-020-01106-5

Keywords

Navigation