Skip to main content

Advertisement

Log in

Preeclampsia and Kidney Disease: Deciphering Cause and Effect

  • Preeclampsia (VD Garovic, Section Editor)
  • Published:
Current Hypertension Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Preeclampsia and chronic kidney disease have a complex, bidirectional relationship. Women with kidney disease, with even mild reductions in glomerular filtrate rate, have an increased risk of developing preeclampsia. Preeclampsia, in turn, has been implicated in the subsequent development of albuminuria, chronic kidney disease, and end-stage kidney disease. We will discuss observational evidence and mechanisms linking the two disease processes.

Recent Findings

Preeclampsia is characterized by an imbalance in angiogenic factors that causes systemic endothelial dysfunction. Chronic kidney disease may predispose to the development of preeclampsia due to comorbid conditions, such as hypertension, but is also associated with impaired glycocalyx integrity and alterations in the complement and renin-angiotensin-aldosterone systems. Preeclampsia may lead to kidney disease by causing acute kidney injury, endothelial damage, and podocyte loss.

Summary

Preeclampsia may be an important sex-specific risk factor for chronic kidney disease. Understanding how chronic kidney disease increases the risk of preeclampsia from a mechanistic standpoint may open the door to future biomarkers and therapeutics for all women.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Fisher KA, Luger A, Spargo BH, Lindheimer MD. Hypertension in pregnancy: clinical-pathological correlations and remote prognosis. Medicine (Baltimore). 1981;60(4):267–76.

    CAS  Google Scholar 

  2. Nochy D, Birembaut P, Hinglais N, Freund M, Idatte JM, Jacquot C, et al. Renal lesions in the hypertensive syndromes of pregnancy: immunomorphological and ultrastructural studies in 114 cases. Clin Nephrol. 1980;13(4):155–62.

    CAS  Google Scholar 

  3. McDonald SD, Han Z, Walsh MW, Gerstein HC, Devereaux PJ. Kidney disease after preeclampsia: a systematic review and meta-analysis. Am J Kidney Dis. 2010;55(6):1026–39.

    Google Scholar 

  4. Kattah AG, Asad R, Scantlebury DC, Bailey KR, Wiste HJ, Hunt SC, et al. Hypertension in pregnancy is a risk factor for microalbuminuria later in life. J Clin Hypertens (Greenwich). 2013;15(9):617–23.

    Google Scholar 

  5. Wang IK, Muo CH, Chang YC, Liang CC, Chang CT, Lin SY, et al. Association between hypertensive disorders during pregnancy and end-stage renal disease: a population-based study. Cmaj. 2013;185(3):207–13.

    Google Scholar 

  6. Vikse BE, Irgens LM, Leivestad T, Skjaerven R, Iversen BM. Preeclampsia and the risk of end stage renal disease. N Engl J Med. 2008;359(8):800–9.

    CAS  Google Scholar 

  7. Kattah AG, Scantlebury DC, Agarwal S, Mielke MM, Rocca WA, Weaver AL, et al. Preeclampsia and ESRD: the role of shared risk factors. Am J Kidney Dis. 2017;69(4):498–505.

    Google Scholar 

  8. •• Covella B, Vinturache AE, Cabiddu G, Attini R, Gesualdo L, Versino E, et al. A systematic review and meta-analysis indicates long-term risk of chronic and end-stage kidney disease after preeclampsia. Kidney Int. 2019;96(3):711–27 Recent meta-analysis of studies looking at the association between preeclampsia and kidney disease.

    Google Scholar 

  9. Saftlas A, Wang W, Risch H, Woolson R, Hsu C, Bracken M. Prepregnancy body mass index and gestational weight gain as risk factors for preeclampsia and transient hypertension. Ann Epidemiol. 2000;10(7):475.

    CAS  Google Scholar 

  10. Wallis AB, Saftlas AF, Hsia J, Atrash HK. Secular trends in the rates of preeclampsia, eclampsia, and gestational hypertension, United States, 1987-2004. Am J Hypertens. 2008;21(5):521–6.

    Google Scholar 

  11. • Garg AX, Nevis IF, McArthur E, Sontrop JM, Koval JJ, Lam NN, et al. Gestational hypertension and preeclampsia in living kidney donors. N Engl J Med. 2015;372(2):124–33 Study demonstrating that living kidney donors have an increased risk of preeclampsia after donation.

    CAS  Google Scholar 

  12. Piccoli GB, Attini R, Vasario E, Conijn A, Biolcati M, D'Amico F, et al. Pregnancy and chronic kidney disease: a challenge in all CKD stages. Clin J Am Soc Nephrol. 2010;5(5):844–55.

    Google Scholar 

  13. Tangren JS, Powe CE, Ankers E, Ecker J, Bramham K, Hladunewich MA, et al. Pregnancy outcomes after clinical recovery from AKI. J Am Soc Nephrol 2016.

  14. Sibai BM, Lindheimer M, Hauth J, Caritis S, VanDorsten P, Klebanoff M, et al. Risk factors for preeclampsia, abruptio placentae, and adverse neonatal outcomes among women with chronic hypertension. National Institute of Child Health and Human Development Network of Maternal-Fetal Medicine Units. N Engl J Med. 1998;339(10):667–71.

    CAS  Google Scholar 

  15. Kattah AG, Garovic VD. From delivery to Dialysis: does preeclampsia count? Am J Kidney Dis. 2018;71(5):601–4.

    Google Scholar 

  16. Hypertension in pregnancy. Report of the American College of Obstetricians and Gynecologists' Task Force on Hypertension in Pregnancy. Obstet Gynecol. 2013;122(5):1122–31.

  17. Brown MA, Magee LA, Kenny LC, Karumanchi SA, McCarthy FP, Saito S, et al. Hypertensive disorders of pregnancy: ISSHP classification, diagnosis, and management recommendations for international practice. Hypertension. 2018;72(1):24–43.

    CAS  Google Scholar 

  18. Sibai BM, Stella CL. Diagnosis and management of atypical preeclampsia-eclampsia. Am J Obstet Gynecol. 2009;200(5):481 e1–7.

    Google Scholar 

  19. Stella CL, Malik KM, Sibai BM. HELLP syndrome: an atypical presentation. Am J Obstet Gynecol. 2008;198(5):e6–8.

    Google Scholar 

  20. Schroeder BM. ACOG practice bulletin on diagnosing and managing preeclampsia and eclampsia. American College of Obstetricians and Gynecologists. Am Fam Physician. 2002;66(2):330–1.

    Google Scholar 

  21. Almeida ST, Katz L, Coutinho I, Amorim MMR. Validation of fullPIERS model for prediction of adverse outcomes among women with severe pre-eclampsia. Int J Gynaecol Obstet. 2017;138(2):142–7.

    CAS  Google Scholar 

  22. Cote AM, Brown MA, Lam E, von Dadelszen P, Firoz T, Liston RM, et al. Diagnostic accuracy of urinary spot protein:creatinine ratio for proteinuria in hypertensive pregnant women: systematic review. BMJ. 2008;336(7651):1003–6.

    CAS  Google Scholar 

  23. Zhao M, Yin Y, Wei J, Wu M, Yang C, Chen Q. Trophoblastic debris extruded from hydatidiform molar placentae activates endothelial cells: possible relevance to the pathogenesis of preeclampsia. Placenta. 2016;45:42–9.

    CAS  Google Scholar 

  24. Granger JP, Alexander BT, Llinas MT, Bennett WA, Khalil RA. Pathophysiology of hypertension during preeclampsia linking placental ischemia with endothelial dysfunction. Hypertension. 2001;38(3 Pt 2):718–22.

    CAS  Google Scholar 

  25. Robertson WB, Brosens I, Dixon HG. The pathological response of the vessels of the placental bed to hypertensive pregnancy. J Pathol Bacteriol. 1967;93(2):581–92.

    CAS  Google Scholar 

  26. Redman CW, Sargent IL. Latest advances in understanding preeclampsia. Science. 2005;308(5728):1592–4.

    CAS  Google Scholar 

  27. Matthys LA, Coppage KH, Lambers DS, Barton JR, Sibai BM. Delayed postpartum preeclampsia: an experience of 151 cases. Am J Obstet Gynecol. 2004;190(5):1464–6.

    Google Scholar 

  28. Duckitt K, Harrington D. Risk factors for pre-eclampsia at antenatal booking: systematic review of controlled studies. BMJ. 2005;330(7491):565.

    Google Scholar 

  29. Karumanchi SA, Maynard SE, Stillman IE, Epstein FH, Sukhatme VP. Preeclampsia: a renal perspective. Kidney Int. 2005;67(6):2101–13.

    Google Scholar 

  30. Xiong X, Demianczuk NN, Saunders LD, Wang FL, Fraser WD. Impact of preeclampsia and gestational hypertension on birth weight by gestational age. Am J Epidemiol. 2002;155(3):203–9.

    Google Scholar 

  31. Craici IM, Wagner SJ, Weissgerber TL, Grande JP, Garovic VD. Advances in the pathophysiology of pre-eclampsia and related podocyte injury. Kidney Int. 2014;86:275–85.

    CAS  Google Scholar 

  32. Maynard SE, Min JY, Merchan J, Lim KH, Li J, Mondal S, et al. Excess placental soluble fms-like tyrosine kinase 1 (sFlt1) may contribute to endothelial dysfunction, hypertension, and proteinuria in preeclampsia. J Clin Invest. 2003;111(5):649–58.

    CAS  Google Scholar 

  33. Zeisler H, Llurba E, Chantraine F, Vatish M, Staff AC, Sennstrom M, et al. Predictive value of the sFlt-1:PlGF ratio in women with suspected preeclampsia. N Engl J Med. 2016;374(1):13–22.

    CAS  Google Scholar 

  34. Rana S, Powe CE, Salahuddin S, Verlohren S, Perschel FH, Levine RJ, et al. Angiogenic factors and the risk of adverse outcomes in women with suspected preeclampsia. Circulation. 2012;125(7):911–9.

    CAS  Google Scholar 

  35. LaMarca BD, Ryan MJ, Gilbert JS, Murphy SR, Granger JP. Inflammatory cytokines in the pathophysiology of hypertension during preeclampsia. Curr Hypertens Rep. 2007;9(6):480–5.

    CAS  Google Scholar 

  36. Cubro H, Kashyap S, Nath MC, Ackerman AW, Garovic VD. The role of interleukin-10 in the pathophysiology of preeclampsia. Curr Hypertens Rep. 2018;20(4):36.

    Google Scholar 

  37. Piccoli GB, Cabiddu G, Attini R, Vigotti FN, Maxia S, Lepori N, et al. Risk of adverse pregnancy outcomes in women with CKD. J Am Soc Nephrol. 2015;26(8):2011–22.

    Google Scholar 

  38. Bartsch E, Medcalf KE, Park AL, Ray JG, High Risk of Pre-eclampsia Identification G. Clinical risk factors for pre-eclampsia determined in early pregnancy: systematic review and meta-analysis of large cohort studies. BMJ. 2016;353:i1753.

    Google Scholar 

  39. Ibrahim HN, Akkina SK, Leister E, Gillingham K, Cordner G, Guo H, et al. Pregnancy outcomes after kidney donation. Am J Transplant. 2009;9(4):825–34.

    CAS  Google Scholar 

  40. Reisaeter AV, Roislien J, Henriksen T, Irgens LM, Hartmann A. Pregnancy and birth after kidney donation: the Norwegian experience. Am J Transplant. 2009;9(4):820–4.

    CAS  Google Scholar 

  41. Kendrick J, Holmen J, You Z, Smits G, Chonchol M. Association of unilateral renal agenesis with adverse outcomes in pregnancy: a matched cohort study. Am J Kidney Dis. 2017;70(4):506–11.

    Google Scholar 

  42. Kattah A, Milic N, White W, Garovic V. Spot urine protein measurements in normotensive pregnancies, pregnancies with isolated proteinuria and preeclampsia. Am J Phys Regul Integr Comp Phys. 2017;313(4):R418–R24.

    CAS  Google Scholar 

  43. Higby K, Suiter CR, Phelps JY, Siler-Khodr T, Langer O. Normal values of urinary albumin and total protein excretion during pregnancy. Am J Obstet Gynecol. 1994;171(4):984–9.

    CAS  Google Scholar 

  44. Lindheimer MD, Kanter D. Interpreting abnormal proteinuria in pregnancy: the need for a more pathophysiological approach. Obstet Gynecol. 2010;115(2 Pt 1):365–75.

    CAS  Google Scholar 

  45. Jones DC, Hayslett JP. Outcome of pregnancy in women with moderate or severe renal insufficiency. N Engl J Med. 1996;335(4):226–32.

    CAS  Google Scholar 

  46. Zhang JJ, Ma XX, Hao L, Liu LJ, Lv JC, Zhang H. A systematic review and meta-analysis of outcomes of pregnancy in CKD and CKD outcomes in pregnancy. Clin J Am Soc Nephrol. 2015;10(11):1964–78.

    CAS  Google Scholar 

  47. Rolfo A, Attini R, Nuzzo AM, Piazzese A, Parisi S, Ferraresi M, et al. Chronic kidney disease may be differentially diagnosed from preeclampsia by serum biomarkers. Kidney Int. 2013;83(1):177–81.

    CAS  Google Scholar 

  48. Masuyama H, Nobumoto E, Okimoto N, Inoue S, Segawa T, Hiramatsu Y. Superimposed preeclampsia in women with chronic kidney disease. Gynecol Obstet Investig. 2012;74(4):274–81.

    Google Scholar 

  49. •• Bramham K, Seed PT, Lightstone L, Nelson-Piercy C, Gill C, Webster P, et al. Diagnostic and predictive biomarkers for pre-eclampsia in patients with established hypertension and chronic kidney disease. Kidney Int. 2016;89(4):874–85 This study addresses the use of angiogenic markers in differentiating preeclampsia superimposed on CKD from other changes in blood pressure and proteinuria that may occur normally in pregnancy. They found that a low PlGF predicted delivery within the next 2 weeks.

    CAS  Google Scholar 

  50. • Kurlak LO, Broughton Pipkin F, Mohaupt MG, Mistry HD. Responses of the renin-angiotensin aldosterone system in pregnant chronic kidney disease patients with and without superimposed pre eclampsia. Clin Kidney J. 2019;12(6):847–54 This study looks at markers of the RAAS system and how they may differentiate superimposed preeclampsia from preeclampsia and CKD.

    Google Scholar 

  51. • Wiles K, Bramham K, Seed PT, Kurlak LO, Mistry HD, Nelson-Piercy C, et al. Diagnostic indicators of superimposed preeclampsia in women with CKD. Kidney Int Rep. 2019;4(6):842–53 This study looks at the use of other biomarkers to diagnose superimposed preeclampsia and found that hyaluronan and V-CAM-1 did differentiate superimposed preeclampsia from preeclampsia and CKD alone.

    Google Scholar 

  52. Leanos-Miranda A, Campos-Galicia I, Ramirez-Valenzuela KL, Berumen-Lechuga MG, Isordia Salas I, Molina-Perez CJ. Urinary IgM excretion: a reliable marker for adverse pregnancy outcomes in women with chronic kidney disease. J Nephrol. 2019;32(2):241–51.

    CAS  Google Scholar 

  53. Malyszko J. Mechanism of endothelial dysfunction in chronic kidney disease. Clin Chim Acta. 2010;411(19–20):1412–20.

    CAS  Google Scholar 

  54. Padberg JS, Wiesinger A, di Marco GS, Reuter S, Grabner A, Kentrup D, et al. Damage of the endothelial glycocalyx in chronic kidney disease. Atherosclerosis. 2014;234(2):335–43.

    CAS  Google Scholar 

  55. • Dane MJ, Khairoun M, Lee DH, van den Berg BM, Eskens BJ, Boels MG, et al. Association of kidney function with changes in the endothelial surface layer. Clin J Am Soc Nephrol. 2014;9(4):698–704 This study demonstrates that chronic kidney disease is associated with poor integrity of the glycocalyx.

    CAS  Google Scholar 

  56. • Weissgerber TL, Garcia-Valencia O, Milic NM, Codsi E, Cubro H, Nath MC, et al. Early onset preeclampsia is associated with glycocalyx degradation and reduced microvascular perfusion. J Am Heart Assoc. 2019;8(4):e010647 This study demonstrates that early onset preeclampsia is characterized by poor glycocalyx integrity.

    Google Scholar 

  57. Thurman JM. Complement in kidney disease: core curriculum 2015. Am J Kidney Dis. 2015;65(1):156–68.

    Google Scholar 

  58. • Burwick RM, Velasquez JA, Valencia CM, Gutierrez-Marin J, Edna-Estrada F, Silva JL, et al. Terminal complement activation in preeclampsia. Obstet Gynecol. 2018;132(6):1477–85 Women with severe preeclampsia had elevated levels of terminal complement pathway in urine samples.

    CAS  Google Scholar 

  59. Ma Y, Kong LR, Ge Q, Lu YY, Hong MN, Zhang Y, et al. Complement 5a-mediated trophoblasts dysfunction is involved in the development of pre-eclampsia. J Cell Mol Med. 2018;22(2):1034–46.

    CAS  Google Scholar 

  60. Burwick RM, Feinberg BB. Eculizumab for the treatment of preeclampsia/HELLP syndrome. Placenta. 2013;34(2):201–3.

    CAS  Google Scholar 

  61. Vaught AJ, Braunstein EM, Jasem J, Yuan X, Makhlin I, Eloundou S, et al. Germline mutations in the alternative pathway of complement predispose to HELLP syndrome. Jci Insight. 2018;3(6).

  62. Salmon JE, Heuser C, Triebwasser M, Liszewski MK, Kavanagh D, Roumenina L, et al. Mutations in complement regulatory proteins predispose to preeclampsia: a genetic analysis of the PROMISSE cohort. PLoS Med. 2011;8(3):e1001013.

    CAS  Google Scholar 

  63. Sibai BM. Imitators of severe preeclampsia. Obstet Gynecol. 2007;109(4):956–66.

    Google Scholar 

  64. Odutayo A, Hladunewich M. Obstetric nephrology: renal hemodynamic and metabolic physiology in normal pregnancy. Clin J Am Soc Nephrol. 2012.

  65. Irani RA, Xia Y. The functional role of the renin-angiotensin system in pregnancy and preeclampsia. Placenta. 2008;29(9):763–71.

    CAS  Google Scholar 

  66. Wallukat G, Homuth V, Fischer T, Lindschau C, Horstkamp B, Jupner A, et al. Patients with preeclampsia develop agonistic autoantibodies against the angiotensin AT1 receptor. J Clin Invest. 1999;103(7):945–52.

    CAS  Google Scholar 

  67. Xia Y, Wen H, Bobst S, Day MC, Kellems RE. Maternal autoantibodies from preeclamptic patients activate angiotensin receptors on human trophoblast cells. J Soc Gynecol Investig. 2003;10(2):82–93.

    CAS  Google Scholar 

  68. Zhou CC, Ahmad S, Mi T, Abbasi S, Xia L, Day MC, et al. Autoantibody from women with preeclampsia induces soluble Fms-like tyrosine kinase-1 production via angiotensin type 1 receptor and calcineurin/nuclear factor of activated T-cells signaling. Hypertension. 2008;51(4):1010–9.

    CAS  Google Scholar 

  69. Bar J, Kaplan B, Wittenberg C, Erman A, Boner G, Ben-Rafael Z, et al. Microalbuminuria after pregnancy complicated by pre-eclampsia. Nephrol Dial Transplant. 1999;14(5):1129–32.

    CAS  Google Scholar 

  70. North RA, Simmons D, Barnfather D, Upjohn M. What happens to women with preeclampsia? Microalbuminuria and hypertension following preeclampsia. Aust N Z J Obstet Gynaecol. 1996;36(3):233–8.

    CAS  Google Scholar 

  71. Nisell H, Lintu H, Lunell NO, Mollerstrom G, Pettersson E. Blood pressure and renal function seven years after pregnancy complicated by hypertension. Br J Obstet Gynaecol. 1995;102(11):876–81.

    CAS  Google Scholar 

  72. Jacquemyn Y, Jochems L, Duiker E, Bosmans JL, Van Hoof V, Van Campenhout C. Long-term renal function after HELLP syndrome. Gynecol Obstet Investig. 2004;57(2):117–20.

    Google Scholar 

  73. Lampinen KH, Ronnback M, Groop PH, Kaaja RJ. Renal and vascular function in women with previous preeclampsia: a comparison of low- and high-degree proteinuria. Kidney Int. 2006;70(10):181822.

    Google Scholar 

  74. Gerstein HC, Mann JF, Yi Q, Zinman B, Dinneen SF, Hoogwerf B, et al. Albuminuria and risk of cardiovascular events, death, and heart failure in diabetic and nondiabetic individuals. JAMA. 2001;286(4):421–6.

    CAS  Google Scholar 

  75. Ray JG, Vermeulen MJ, Schull MJ, Redelmeier DA. Cardiovascular health after maternal placental syndromes (CHAMPS): population-based retrospective cohort study. Lancet. 2005;366(9499):1797–803.

    Google Scholar 

  76. Bellamy L, Casas JP, Hingorani AD, Williams DJ. Pre-eclampsia and risk of cardiovascular disease and cancer in later life: systematic review and meta-analysis. BMJ. 2007;335(7627):974.

    Google Scholar 

  77. Garovic VD, Bailey KR, Boerwinkle E, Hunt SC, Weder AB, Curb D, et al. Hypertension in pregnancy as a risk factor for cardiovascular disease later in life. J Hypertens. 2010;28(4):826–33.

    CAS  Google Scholar 

  78. Murakami S, Saitoh M, Kubo T, Koyama T, Kobayashi M. Renal disease in women with severe preeclampsia or gestational proteinuria. Obstet Gynecol. 2000;96(6):945–9.

    CAS  Google Scholar 

  79. Nwoko R, Plecas D, Garovic VD. Acute kidney injury in the pregnant patient. Clin Nephrol. 2012;78(6):478–86.

    Google Scholar 

  80. Coca SG, Singanamala S, Parikh CR. Chronic kidney disease after acute kidney injury: a systematic review and meta-analysis. Kidney Int. 2012;81(5):442–8.

    Google Scholar 

  81. Stuart JJ, Tanz LJ, Missmer SA, Rimm EB, Spiegelman D, James-Todd TM, et al. Hypertensive disorders of pregnancy and maternal cardiovascular disease risk factor development: an observational cohort study. Ann Intern Med. 2018.

  82. Heida KY, Franx A, van Rijn BB, Eijkemans MJ, Boer JM, Verschuren MW, et al. Earlier age of onset of chronic hypertension and type 2 diabetes mellitus after a hypertensive disorder of pregnancy or gestational diabetes mellitus. Hypertension. 2015;66:1116–22.

    CAS  Google Scholar 

  83. Garovic VD, Wagner SJ, Petrovic LM, Gray CE, Hall P, Sugimoto H, et al. Glomerular expression of nephrin and synaptopodin, but not podocin, is decreased in kidney sections from women with preeclampsia. Nephrol Dial Transplant. 2007;22(4):1136–43.

    CAS  Google Scholar 

  84. Garovic VD, Wagner SJ, Turner ST, Rosenthal DW, Watson WJ, Brost BC, et al. Urinary podocyte excretion as a marker for preeclampsia. Am J Obstet Gynecol. 2007;196(4):320 e1–7.

    Google Scholar 

  85. •• Craici IM, Wagner SJ, Bailey KR, Fitz-Gibbon PD, Wood-Wentz CM, Turner ST, et al. Podocyturia predates proteinuria and clinical features of preeclampsia: longitudinal prospective study. Hypertension. 2013;61(6):1289–96 Study demonstrating the podocyturia is identified in women who go on to develop preeclampsia.

    CAS  Google Scholar 

  86. Penning ME, Bloemenkamp KW, van der Zon T, Zandbergen M, Schutte JM, Bruijn JA, et al. Association of preeclampsia with podocyte turnover. Clin J Am Soc Nephrol. 2014;9(8):1377–85.

    CAS  Google Scholar 

  87. White WM, Garrett AT, Craici IM, Wagner SJ, Fitz-Gibbon PD, Butters KA, et al. Persistent urinary podocyte loss following preeclampsia may reflect subclinical renal injury. PLoS One. 2014;9(3):e92693.

    Google Scholar 

  88. Vogelmann SU, Nelson WJ, Myers BD, Lemley KV. Urinary excretion of viable podocytes in health and renal disease. Am J Physiol Ren Physiol. 2003;285(1):F40–8.

    CAS  Google Scholar 

  89. Heaton JM, Turner DR. Persistent renal damage following pre-eclampsia: a renal biopsy study of 13 patients. J Pathol. 1985;147(2):121–6.

    CAS  Google Scholar 

Download references

Funding

Dr. Kattah is supported by the Catalyst Award from the Department of Medicine, Mayo Clinic, Rochester, MN.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Kattah.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Preeclampsia

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kattah, A. Preeclampsia and Kidney Disease: Deciphering Cause and Effect. Curr Hypertens Rep 22, 91 (2020). https://doi.org/10.1007/s11906-020-01099-1

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11906-020-01099-1

Keywords

Navigation