The Story of the Silent Killer

A History of Hypertension: Its Discovery, Diagnosis, Treatment, and Debates

A Commentary to this article was published on 03 February 2021

Abstract

Hypertension is the leading risk factor for death and disability-adjusted life-years lost globally. Despite this tremendous impact on health, blood pressure measurement and treatment are relatively new to medical practice, with widespread measurement beginning just over 100 years ago. How, in such a short time, did blood pressure become such an integral measurement in medical practice that it is now considered one of the vital signs? Key revelations through Stephen Hales and his horse experiment, Riva-Rocci’s modern blood pressure cuff, Korotkoff sounds, and President Roosevelt’s death set the stage for discovery. Landmark trials such as the VA Cooperative studies of the 1960s through the recent Systolic Blood Pressure Intervention Trial and Prevention with Mediterranean Diet trials provide the foundation for modern clinical practice. An understanding of the history of hypertension can directly affect current clinical practice and offers unique insights into how the medical community has approached the management of one of the deadliest medical conditions in history.

This is a preview of subscription content, access via your institution.

Fig. 1

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.

    GBD 2017 Risk Factor Collaborators. Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks for 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2018;392(10159):1923–94.

    Google Scholar 

  2. 2.

    Forouzanfar MH, Liu P, Roth GA, Ng M, Biryukov S, Marczak L, et al. Global burden of hypertension and systolic blood pressure of at least 110 to 115 mm hg, 1990-2015. JAMA. 2017;317(2):165–82.

    PubMed  Google Scholar 

  3. 3.

    NCD Risk Factor Collaboration (NCD-RisC). Worldwide trends in blood pressure from 1975 to 2015: a pooled analysis of 1479 population-based measurement studies with 19·1 million participants. Lancet. 2017;389:37–55.

    Google Scholar 

  4. 4.

    Benjamin EJ, Muntner P, Alonso A, Bittencourt MS, Callaway CW, Carson AP, et al. Heart disease and stroke statistics-2019 update: a report from the American Heart Association. Circulation. 2019;139(10):e56–e528.

    PubMed  PubMed Central  Google Scholar 

  5. 5.

    Constant AF, Geladari EV, Geladari CV. The economic burden of hypertension. Chapter 21. In: Andreadis EA, editor. Hypertension and cardiovascular disease. Switzerland: Springer International Publishing; 2016.

    Google Scholar 

  6. 6.

    Wang G, Grosse SD, Schooley MW. Conducting research on the economics of hypertension to improve cardiovascular health. Am J Prev Med. 2017;53(6 Suppl 2):S115–7.

    PubMed  PubMed Central  Google Scholar 

  7. 7.

    Halperin ED. Why do clinicians need to study the history of medicine and why should this journal publish articles about it? Am J Med Sci. 2017;354(1):1–2.

    PubMed  Google Scholar 

  8. 8.

    Dalley S, translator. Myths from Mesopotamia: creation, the flood, Gilgamesh, and others. Oxford: Oxford University Press; 1989.

  9. 9.

    •• Hajar R. The pulse in ancient medicine part 1. Heart Views. 2018;19(1):36–43. This in depth review provides original source citations and comprehensive descriptions of key health discoveries from various cultures of the ancient world.

  10. 10.

    Curran J. The Yellow Emperor’s classic of internal medicine. BMJ. 2008;336(7647):777. https://doi.org/10.1136/bmj.39527.472303.4E.

    Article  PubMed Central  Google Scholar 

  11. 11.

    •• O’brien E, Fitzgerald D. The history of blood pressure measurement. From the journal of human hypertension. Macmillian Press Ltd. 1994;8:73–84. This in depth review provides original source citations and comprehensive descriptions of key health discoveries from various cultures of the ancient world.

  12. 12.

    Saba MM, Ventura HO, Saleh M, Mehra MR. Ancient Egyptian medicine and the concept of heart failure. J Card Fail. 2006;12(6):416–21.

    PubMed  Google Scholar 

  13. 13.

    Ghasemzadeh N, Zafari AM. A brief journey into the history of the arterial pulse. Cardiol Res Pract. 2011;2011:164832.

    PubMed  PubMed Central  Google Scholar 

  14. 14.

    • Dustan HP. History of clinical hypertension: from 1827 to 1970. In: Oparil S, Weber MA, editors. Hypertension: a companion to Brenner and Rector’s The Kidney. Philadelphia: W.B. Saunders Company; 2000. p. 1–3. This early chapter in one of the definitive textbooks on HTN and its management provides insight on the early history of hypertension as a clinical discipline.

  15. 15.

    Clark-Kennedy AE 1929 Stephen Hales, D.D. F.R.S. Cambridge University Press. 1929; 35. Accessed from University of Minnesota web article, A history of cardiovascular disease epidemiology. http://www.epi.umn.edu/cvdepi/essay/reverend-stephen-hales-on-blood-pressure/. Accessed 2 Feb 2020.

  16. 16.

    Hales S. Haemastatics, 3rd edition, p. 1. 1738.

  17. 17.

    •• Smulyan H, Safar ME. Blood pressure measurement: retrospective and prospective views. Am J Hypertens. 2011;24(6):628–34. This review gives a concise yet thorough explanation of the differences between the mechanics of the auscultatory and oscillometric methods of blood pressure measurement.

  18. 18.

    Sutera SP, Skalak R. Biographical highlights and mysteries. In: The History of Poiseuille’s Law. Annu. Rev. Fluid Mech. 1993. 25: 1–19. Downloaded from www.annualreviews.org. Retrieved from 67.218.213.114. Accessed 28 May 2019.

  19. 19.

    Vierordt K. Die Lehre vonl Arlerienpuls, F. Viecveg, Braunschcveig, 1855.

  20. 20.

    Riva-Rocci S. Un Nuovo Sfigmomanometro. Gaz Med Torino 1896; 47:981–996.

  21. 21.

    Korotkoff NS. On the subject of methods of measuring blood pressure. Bull Imp Military Med Acad. 1905;11:365–7.

    Google Scholar 

  22. 22.

    Kotchen TA. Historical trends and milestones in hypertension research. American Heart Association Hypertension. 2011;58:522–38.

    CAS  Google Scholar 

  23. 23.

    Laher M, O’Brien E. In search of Korotkoff. Br Med J (Clin Res Ed). 1982;285(6357):1796–8.

    CAS  Google Scholar 

  24. 24.

    Korotkoff NC. Contribution to the methods of measuring blood pressure; second preliminary report 13 December 1905. Vracl~ebtraya Gazcta. 1906;10:278.

  25. 25.

    American National Standard for Electronic or Automated Sphygmomanometers. ANSI/AAMI SP 10-1992. Arlington VA. Association for the Advancement of Medical Instrumentation. 1993, p. 12.

  26. 26.

    Korner PI. A short history and some clinical aspects. In: Essential hypertension and its causes: neural and non-neural mechanisms. Oxford: University Press; 2007.

    Google Scholar 

  27. 27.

    Frank E. Deutsches Archiv Fur Klin Medizin 1911;103:397–412.

  28. 28.

    Chrysant SG. Current status of aggressive blood pressure control. World J Cardiol. 2011;3(3):65–71.

    PubMed  PubMed Central  Google Scholar 

  29. 29.

    Janeway TC. A clinical study of hypertensive cardiovascular disease. Arch Intern Med. 1913;12:755.

    Google Scholar 

  30. 30.

    • Moser M. Historical perspectives on the management of hypertension. J Clin Hypertens (Greenwich). 2006;8(8 Suppl. 2):15–20. This excellent review presents a clear history of progress in blood pressure management, starting from the 1940s with a description of President Roosevelt’s death through the early 21st century.

  31. 31.

    Osler W. High blood pressure: its associations, advantages, and disad-vantages. BMJ. 1912;2:1173–7.

    CAS  PubMed  Google Scholar 

  32. 32.

    Keith NM, Wagener HP, Kernohan JW. The syndrome of malignant hypertension. Arch Intern Med. 1928;41:44.

    Google Scholar 

  33. 33.

    Keith NM, Wagener HP, Barker NW. Some different types of essential hypertension: their course and prognosis. Am J Med Sci. 1939;197:132.

    Google Scholar 

  34. 34.

    Society of Actuaries. Blood pressure: report of the Joint Committee on Mortality of the Association of Life Insurance Medical Directors and the Actuarial Society of America. New York: Society of Actuaries; 1925.

    Google Scholar 

  35. 35.

    Dustan HP, Roccella EJ, Garrison HH. Controlling hypertension: a research success story. Arch Intern Med. 1996;156(17):1926–35.

    CAS  PubMed  Google Scholar 

  36. 36.

    Hay J. The significance of a raised blood pressure. BMJ. 1931;2:43–7.

    CAS  PubMed  Google Scholar 

  37. 37.

    Bruenn HG. Clinical notes on the illness and death of President Franklin D. Roosevelt Ann Intern Med. 1970;72(4):579–91.

    CAS  PubMed  Google Scholar 

  38. 38.

    Mahmood SS, Levy D, Vasan R, Wang TJ. The Framingham Heart Study and the epidemiology of cardiovascular disease: a historical perspective. Lancet. 2014;383(9921):999–1008.

    PubMed  Google Scholar 

  39. 39.

    • Kotchen TA. Developing hypertension guidelines: an evolving process. Am J Hypertens. 2014;27(6):765–72. This overview of hypertension guideline development offers very useful tables summarizing key recommendations from each JNC report.

  40. 40.

    Postal-Vinay N. Treating hypertension. In: A century of arterial hypertension. 1896–1996. Chichester: Wiley; 1996. p. 105–11.

    Google Scholar 

  41. 41.

    Grollman A, Harrison TR, Mason MF, et al. Sodium restriction in the diet for hypertension. JAMA. 1945;129:533–7.

    Google Scholar 

  42. 42.

    Chast F. A history of drug discovery: from first steps of chemistry to achievements in molecular pharmacology. In: Wermuth CG, Kubinyi H, Bowker MJ, Proudfoot JR, Reuben BG, Silverman RB, Triggle DJ, Waterbeemd H, editors. The practice of medicinal chemistry. 3rd ed. Burlington: Elsevier; 2008. p. 12.

    Google Scholar 

  43. 43.

    Sica DA. Mineralocorticoid receptor antagonists for treatment of hypertension and heart failure. Methodist Debakey Cardiovasc J. 2015;11(4):235–9.

    PubMed  PubMed Central  Google Scholar 

  44. 44.

    Moser M, Feig PU. Fifty years of thiazide diuretic therapy for hypertension. Arch Intern Med. 2009;169(20):1851–6.

    CAS  PubMed  Google Scholar 

  45. 45.

    • Alpert BS, Quinn D, Gallick D. Oscillometric blood pressure: a review for clinicians. J Am Soc Hypertens. 2014;8(12):930–8. This review provides a thorough explanation of the physics behind how oscillometric blood pressure measurement devices work, as well as descriptions of the key discoveries leading to the development of modern oscillometric devices.

  46. 46.

    Forouzanfar M, Dajani HR, Groza VZ, Bolic M, Rajan S, Batkin I. Oscillometric blood pressure estimation: past, present, and future. IEEE Rev Biomed Eng. 2015;8:44–63.

    PubMed  Google Scholar 

  47. 47.

    • Benmira A, Perez-Martin A, Schuster I, Aichoun I, Coudray S, Bereksi-Reguig F, et al. From Korotkoff and Marey to automatic non-invasive oscillometric blood pressure measurement: does easiness come with reliability? Expert Rev Med Devices. 2016;13(2):179–89. This review provides a history of key discoveries leading to the development of oscillometric blood pressure measuring devices, as well as an explanation of the mechanics of how the method works, including its limitations.

  48. 48.

    •• Saklayen MG, Deshpande NV. Timeline of history of hypertension treatment. Front Cardiovasc Med. 2016;3:3. This excellent and concise review provides descriptions of the landmark clinical trials of hypertension treatment and how they influenced subsequent research in the field.

  49. 49.

    Freis ED. Effects of treatment on morbidity in hypertension results in patients with diastolic blood pressures averaging 115 through 129 mmHg. JAMA. 1967;202(11):1028–34.

    Google Scholar 

  50. 50.

    Freis ED. Effects of treatment on morbidity and mortality in hypertension: II. Results in patients with diastolic blood pressures averaging 90 through 114 mmHg. JAMA. 1970;213:1143–51.

    Google Scholar 

  51. 51.

    Garland C, Barrett-Connor E, Suarez L, Criqui MH. Isolated systolic hypertension and mortality after age 60 years. A prospective population-based study. Am J Epidemiol. 1983;118(3):365–76.

    CAS  PubMed  Google Scholar 

  52. 52.

    Stamler J, Neaton JD, Wentworth DN. Blood pressure (systolic and diastolic) and risk of fatal coronary heart disease. Hypertension. 1989;13(5 Suppl):I2–12.

    CAS  PubMed  Google Scholar 

  53. 53.

    Hulley SB, et al. Prevention of stroke by antihypertensive drug treatment in older persons with isolated systolic hypertension final results of the Systolic Hypertension in the Elderly Program (SHEP). JAMA. 1991;265(24):3255–64.

    Google Scholar 

  54. 54.

    Staessen JA, Fagard R, Thijs L, Celis H, Arabidze GG, Birkenhäger WH, et al. Randomised double-blind comparison of placebo and active treatment for older patients with isolated systolic hypertension. The Systolic Hypertension in Europe (Syst-Eur) trial investigators. Lancet. 1997;350(9080):757–64.

    CAS  PubMed  Google Scholar 

  55. 55.

    Medical Research Council Working Party. MRC trial of treatment of mild hypertension: principal results. Br Med J (Clin Res Ed). 1985;291(6488):97–104.

    Google Scholar 

  56. 56.

    Beckett NS, Peters R, Fletcher AE, Staessen JA, Liu L, Dumitrascu D, et al. Treatment of hypertension in patients 80 years of age or older. N Engl J Med. 2008;358:1887–98.

    CAS  Google Scholar 

  57. 57.

    Appel LJ, Moore TJ, Obarzanek E, Vollmer WM, Svetkey LP, Sacks FM, et al. A clinical trial of the effects of dietary patterns on blood pressure. N Engl J Med. 1997;336:1117–24.

    CAS  PubMed  Google Scholar 

  58. 58.

    Cappuccio FP, Markandu ND, Carney C, Sagnella GA, MacGregor GA. Double-blind randomized trial of modest salt restriction in older people. Lancet. 1997;350:850–4.

    CAS  PubMed  Google Scholar 

  59. 59.

    Sacks FM, Svetkey LP, Vollmer WM, Appel LJ, Bray GA, Harsha D, et al. Effects on blood pressure of reduced dietary sodium and the Dietary Approaches to Stop Hypertension (DASH) diet. DASH-sodium collaborative research group. N Engl J Med. 2001;344(1):3–10.

    CAS  PubMed  Google Scholar 

  60. 60.

    Estruch R, Ros E, Salas-Salvadó J, Covas MI, Corella D, Arós F, et al. Primary prevention of cardiovascular disease with a Mediterranean diet. N Engl J Med. 2013;368:1279–90.

    CAS  PubMed  Google Scholar 

  61. 61.

    Estruch R, Ros E, Salas-Salvadó J, Covas MI, Corella D, Arós F, et al. Primary prevention of cardiovascular disease with a Mediterranean diet supplemented with extra-virgin olive oil or nuts. N Engl J Med. 2018;378:e34.

    CAS  PubMed  Google Scholar 

  62. 62.

    Neaton JD, Grimm RH, Prineas RJ, Stamler J, Grandits GA, Elmer PJ, et al. Treatment of mild hypertension study: final results. JAMA. 1993;270:713–24.

    CAS  PubMed  Google Scholar 

  63. 63.

    Wright JT, et al. Major outcomes in high-risk hypertensive patients randomized to angiotensin-converting enzyme inhibitor or calcium channel blocker vs. diuretic. J Am Med Assoc. 2002;288(23):2981–97.

    Google Scholar 

  64. 64.

    • Thomopoulos C, Parati G, Zanchetti A. Effects of blood pressure-lowering on outcome incidence in hypertension: 5. Head-to-head comparisons of various classes of antihypertensive drugs - overview and meta-analyses. J Hypertens. 2015;33(7):1321–41. This meta-analysis summarizes the findings of numerous clinical trials comparing the effectiveness of the different antihypertensive drug classes.

  65. 65.

    Suchard MA, Schuemie MJ, Krumholz HM, You SC, Chen RJ, Pratt N, et al. Comprehensive comparative effectiveness and safety of first-line antihypertensive drug classes: a systematic, multinational, large-scale analysis. Lancet. 2019;394(10211):1816–26.

    PubMed  PubMed Central  Google Scholar 

  66. 66.

    Fretheim A, Odgaard-Jensen J, Brørs O. Comparative effectiveness of antihypertensive medication for primary prevention of cardiovascular disease: systematic review and multiple treatments meta-analysis. BMC Med. 2012;10:33.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. 67.

    Law MR, Morris JK, Wald NJ. Use of blood pressure lowering drugs in the prevention of cardiovascular disease: meta-analysis of 147 randomised trials in the context of expectations from prospective epidemiological studies. BMJ. 2009;338:b1665.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. 68.

    Lewis EJ, Hunsicker LG, Bain RP, Rohde RD. The effect of angiotensin-converting-enzyme inhibition on diabetic nephropathy. The Collaborative Study Group. N Engl J Med. 1993;329(20):1456–62.

    CAS  PubMed  Google Scholar 

  69. 69.

    Fox KM, EURopean trial On reduction of cardiac events with Perindopril in stable coronary Artery disease Investigators. Efficacy of perindopril in reduction of cardiovascular events among patients with stable coronary artery disease. Lancet. 2003;362(9386):782–8.

    CAS  PubMed  Google Scholar 

  70. 70.

    CONSENSUS Trial Study Group. Effects of enalapril on mortality in severe congestive heart failure, results of the cooperative north Scandinavian enalapril survival study. N Engl J Med. 1987;316(23):1429–35.

    Google Scholar 

  71. 71.

    Yusuf S, et al. Effect of enalapril on survival in patients with reduced left ventricular ejection fractions and congestive heart failure. N Engl J Med. 1991;325(5):293–302.

    PubMed  Google Scholar 

  72. 72.

    Pfeffer MA, Braunwald E, Moyé LA, Basta L, Brown EJ Jr, Cuddy TE, et al. Effect of captopril on mortality and morbidity in patients with left ventricular dysfunction after myocardial infarction — results of the survival and ventricular enlargement trial. N Engl J Med. 1992;327(10):669–77.

    CAS  PubMed  Google Scholar 

  73. 73.

    Brenner BM, Cooper ME, de Zeeuw D, Keane WF, Mitch WE, Parving HH, et al. Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N Engl J Med. 2001;345(12):861–9.

    CAS  Google Scholar 

  74. 74.

    Dahlof B, et al. Cardiovascular morbidity and mortality in the losartan intervention for endpoint reduction in hypertension study (LIFE). Lancet. 2002;359:995–1003.

    CAS  PubMed  Google Scholar 

  75. 75.

    Whelton PK, Carey RM, Aronow WS, Casey de Jr, Collins KJ, Dennison Himmelfarb C, et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: a report of the American College of Cardiology/American Heart Association Task Force on clinical practice guidelines. J Am Coll Cardiol. 2018;71:e127–248.

    PubMed  PubMed Central  Google Scholar 

  76. 76.

    Jamerson K, DeQuattro V. The impact of ethnicity on response to antihypertensive therapy. Am J Med. 1996;101:22S–32S.

    CAS  PubMed  Google Scholar 

  77. 77.

    Ogedegbe G, Shah NR, Phillips C, Goldfeld K, Roy J, Guo Y, et al. Comparative effectiveness of angiotensin-converting enzyme inhibitor-based treatment on cardiovascular outcomes in hypertensive blacks versus whites. J Am Coll Cardiol. 2015;66:1224–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. 78.

    Brewster LM, van Montfrans GA, Kleijnen J. Systematic review: antihypertensive drug therapy in black patients. Ann Intern Med. 2004;141:614–27.

    PubMed  Google Scholar 

  79. 79.

    Woo KS, Nicholls MG. High prevalence of persistent cough with angiotensin converting enzyme inhibitors in Chinese. Br J Clin Pharmacol. 1995;40:141–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. 80.

    Dahlof B, et al. Prevention of cardiovascular events with an antihypertensive regimen of amlodipine adding perindopril as required versus atenolol adding bendroflumethiazide as required, in the Anglo-Scandinavian Cardiac Outcomes Trial-Blood Pressure Lowering Arm. Lancet. 2005;386:895–906.

    Google Scholar 

  81. 81.

    Jamerson K, Weber MA, Bakris GL, Dahlöf B, Pitt B, Shi V, et al. Benazepril plus amlodipine or hydrochlorothiazide for hypertension in high-risk patients. N Engl J Med. 2008;359(23):2417–28.

    CAS  PubMed  Google Scholar 

  82. 82.

    Law MR, Wald NJ, Morris JK, Jordan RE. Value of low dose combination treatment with blood pressure lowering drugs: analysis of 354 randomised trials. BMJ. 2003;326:1427–0.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. 83.

    Bangalore S, Kamalakkannan G, Parkar S, Messerli FH. Fixed-dose combinations improve medication compliance: a meta-analysis. Am J Med. 2007;120:713–9.

    PubMed  PubMed Central  Google Scholar 

  84. 84.

    Hypertension Detection and Follow-Up Program Cooperative Group. Five-year findings of the hypertension detection and follow-up program. I. Reduction in mortality of persons with high blood pressure, including mild hypertension. JAMA. 1979;242:2562–71.

    Google Scholar 

  85. 85.

    Hansson L, et al. Effects of intensive blood-pressure lowering and low-dose aspirin in patients with hypertension: principal results of the Hypertension Optimal Treatment (HOT) randomised trial. HOT Study Group. Lancet. 1998;351(9118):1755–62.

    CAS  PubMed  Google Scholar 

  86. 86.

    Vidal-Petiot E, Ford I, Greenlaw N, Ferrari R, Fox KM, Tardif JC, et al. Cardiovascular event rates and mortality according to achieved systolic and diastolic blood pressure in patients with stable coronary artery disease: an international cohort study. Lancet. 2016;388(10056):2142–52.

    PubMed  Google Scholar 

  87. 87.

    Turner R, et al. Tight blood pressure control and risk of macrovascular and microvascular complications in type 2 diabetes: UKPDS 38. BMJ. 1998;317(7160):703–13.

    Google Scholar 

  88. 88.

    ACCORD Study Group. Effects of intensive blood-pressure control in type 2 diabetes mellitus. N Engl J Med. 2010;362(17):1575–85.

    Google Scholar 

  89. 89.

    Beddhu S, Chertow GM, Greene T, Whelton PK, Ambrosius WT, Cheung AK, et al. Effects of intensive systolic blood pressure lowering on cardiovascular events and mortality in patients with type 2 diabetes mellitus on standard glycemic control and in those without diabetes mellitus: reconciling results from ACCORD BP and SPRINT. J Am Heart Assoc. 2018;7(18):e009326.

    PubMed  PubMed Central  Google Scholar 

  90. 90.

    The SPRINT Research Group. A randomized trial of intensive versus standard blood-pressure control. N Engl J Med. 2015;373(22):2103–16.

    PubMed Central  Google Scholar 

  91. 91.

    Williamson JD, Supiano MA, Applegate WB, Berlowitz DR, Campbell RC, Chertow GM, et al. Intensive vs standard blood pressure control and cardiovascular disease outcomes in adults aged ≥75 years: a randomized clinical trial. JAMA. 2016;315(24):2673–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. 92.

    Cohen JB, Townsend RR. The ACC/AHA 2017 hypertension guidelines: both too much and not enough of a good thing? Ann Intern Med. 2018;168(4):287–8.

    PubMed  Google Scholar 

  93. 93.

    Bassler D, Briel M, Montori VM, Lane M, Glasziou P, Zhou Q, et al. Stopping randomized trials early for benefit and estimation of treatment effects: systematic review and meta-regression analysis. JAMA. 2010;303(12):1180–7.

    CAS  PubMed  Google Scholar 

  94. 94.

    Joint National Committee on Detection, Evaluation, and Treatment of High Blood Pressure. Report of the Joint National Committee on Detection, Evaluation, and Treatment of High Blood Pressure: a cooperative study. JAMA. 1977;237:255–61.

    Google Scholar 

  95. 95.

    Joint National Committee on Detection, Evaluation, and Treatment of High Blood Pressure. The 1980 report of the Joint National Committee on Detection, Evaluation, and Treatment of High Blood Pressure. Arch Intern Med. 1980;140:1280–5.

    Google Scholar 

  96. 96.

    Joint National Committee on Detection, Evaluation, and Treatment of High Blood Pressure. The 1984 report of the Joint National Committee on Detection, Evaluation, and Treatment of High Blood Pressure. Arch Intern Med. 1984;144:1045–57.

    Google Scholar 

  97. 97.

    Joint National Committee on Detection, Evaluation, and Treatment of High Blood Pressure. The 1988 report of the Joint National Committee on Detection, Evaluation, and Treatment of High Blood Pressure. Arch Intern Med. 1988;148:1023–38.

    Google Scholar 

  98. 98.

    Joint National Committee on Detection, Evaluation, and Treatment of High Blood Pressure. The fifth report of the Joint National Committee on Detection, Evaluation, and Treatment of High Blood Pressure (JNC V). Arch Intern Med. 1993;153:154–83.

    Google Scholar 

  99. 99.

    Joint National Committee on Detection, Evaluation, and Treatment of High Blood Pressure. The sixth report of the Joint National Committee on Detection, Evaluation, and Treatment of High Blood Pressure. Arch Intern Med. 1997;157:2413–46.

    Google Scholar 

  100. 100.

    Joint National Committee on Detection, Evaluation, and Treatment of High Blood Pressure. The seventh report of the Joint National Committee on Detection, Evaluation, and Treatment of High Blood Pressure. JAMA. 2003;289:2560–72.

    Google Scholar 

  101. 101.

    Gibbons GH, Shurin SB, Mensah GA, Lauer MS. Refocusing the agenda on cardiovascular guidelines: an announcement from the National Heart, Lung, and Blood Institute. Circulation. 2013;128:1713–5.

    PubMed  Google Scholar 

  102. 102.

    James PA, Oparil S, Carter BL, Cushman WC, Dennison-Himmelfarb C, Handler J, et al. 2014 evidence-based guideline for the management of high blood pressure in adults: report from the panel members appointed to the eighth Joint National Committee (JNC 8). JAMA. 2014;311(5):507–20.

    CAS  Google Scholar 

  103. 103.

    Crawford C. AAFP to review AHA/ACC redefinition of high blood pressure. Available from: https://www.aafp.org/news/health-of-the-public/20171115ahaacchbpguideline.html. Accessed 7 May 2020.

  104. 104.

    WHO Expert Committee: arterial hypertension. Technical report series no. 628 Geneva. World Health Organization, 1978.

  105. 105.

    Unger T, Borghi C, Charchar F, Khan NA, Poulter NR, Prabhakaran D, et al. 2020 International Society of Hypertension global hypertension practice guidelines. J Hypertens. 2020;38(6):982–1004.

    CAS  PubMed  Google Scholar 

  106. 106.

    Lenzer J, Hoffman JR, Furberg CD, Ioannidis JP, Guideline Panel Review Working Group. Ensuring the integrity of clinical practice guidelines: a tool for protecting patients. BMJ. 2013;347:f5535.

    PubMed  Google Scholar 

  107. 107.

    Lenfant C. Shattuck lecture--clinical research to clinical practice--lost in translation? N Engl J Med. 2003;349(9):868–74.

    PubMed  Google Scholar 

  108. 108.

    • Sigmund CD, Carey RM, Appel LJ, Arnett DK, Bosworth HB, Cushman WC, et al. Report of the National Heart, Lung, and Blood Institute Working Group on Hypertension: barriers to translation. Hypertension. 2020;75(4):902–17. This review by a working group of leading US experts in hypertension describes barriers in translation of new research in hypertension into clinical practice and where the future of hypertension research is headed.

  109. 109.

    Dzau VJ, Balatbat CA. Future of hypertension. Hypertension. 2019;74(3):450–7.

    CAS  PubMed  Google Scholar 

  110. 110.

    Santisteban MM, Qi Y, Zubcevic J, Kim S, Yang T, Shenoy V, et al. Hypertension-linked pathophysiological alterations in the gut. Circ Res. 2017;120(2):312–23.

    CAS  PubMed  Google Scholar 

  111. 111.

    Mell B, Jala VR, Mathew AV, Byun J, Waghulde H, Zhang Y, et al. Evidence for a link between gut microbiota and hypertension in the Dahl rat. Physiol Genomics. 2015;47(6):187–97.

    CAS  PubMed  PubMed Central  Google Scholar 

  112. 112.

    Muntner P, Shimbo D, Carey RM, Charleston JB, Gaillard T, Misra S, et al. Measurement of blood pressure in humans: a scientific statement from the American Heart Association. Hypertension. 2019;73(5):e35–66.

    CAS  PubMed  Google Scholar 

  113. 113.

    • Picone DS, Schultz MG, Otahal P, Aakhus S, al-Jumaily AM, Black JA, et al. Accuracy of cuff-measured blood pressure: systematic reviews and meta-analyses. J Am Coll Cardiol. 2017;70(5):572–86. This compilation of systematic reviews and meta-analyses assesses the strengths and limitations of the various blood pressure measurement methods and how these impact clinical outcomes.

  114. 114.

    Jones DW, Appel LJ, Sheps SG, Roccella EJ, Lenfant C. Measuring blood pressure accurately: new and persistent challenges. JAMA. 2003;289:1027–30.

    PubMed  Google Scholar 

  115. 115.

    Aung K, Htay T. Relationship between outpatient clinic and ambulatory blood pressure measurements and mortality. Curr Cardiol Rep. 2019;21(5):28.

    PubMed  Google Scholar 

  116. 116.

    Kollias A, Lagou S, Zeniodi ME, Boubouchairopoulou N, Stergiou GS. Association of central versus brachial blood pressure with target-organ damage: systematic review and meta-analysis. Hypertension. 2016;67:183–90.

    CAS  PubMed  Google Scholar 

  117. 117.

    Williams B, Mancia G, Spiering W, Agabiti Rosei E, Azizi M, Burnier M, et al. 2018 ESC/ESH guidelines for the management of arterial hypertension. Eur Heart J. 2018;39(33):3021–104.

    PubMed  Google Scholar 

  118. 118.

    Axon RN, Turner M, Buckley R. An update on inpatient hypertension management. Curr Cardiol Rep. 2015;17(11):94.

    PubMed  Google Scholar 

  119. 119.

    Anderson TS, Wray CM. Annals for hospitalists inpatient notes - inpatient hypertension—to treat or tolerate? Ann Intern Med. 2020;172:HO2–3.

    PubMed  Google Scholar 

  120. 120.

    Wing LM, Reid CM, Ryan P, Beilin LJ, Brown MA, Jennings GL, et al. A comparison of outcomes with angiotensin-converting-enzyme inhibitors and diuretics for hypertension in the elderly. N Engl J Med. 2003;348:583–92.

    CAS  PubMed  Google Scholar 

  121. 121.

    Ernst ME, Carter BL, Zheng S, Grimm RH Jr. Meta-analysis of dose-response characteristics of hydrochlorothiazide and chlorthalidone: effects on systolic blood pressure and potassium. Am J Hypertens. 2010;23(4):440–6.

    CAS  PubMed  Google Scholar 

  122. 122.

    Roush GC, Holford TR, Guddati AK. Chlorthalidone compared with hydrochlorothiazide in reducing cardiovascular events: systematic review and network meta-analyses. Hypertension. 2012;59(6):1110–7.

    CAS  PubMed  Google Scholar 

  123. 123.

    VA Office of Research and Development. Cooperative Studies Program #597 - Diuretic Comparison Project. 2014 (ClinicalTrials.gov Identifier: NCT02185417). Retrieved from https://clinicaltrials.gov/ct2/show/study/NCT02185417. Accessed 12 May 2020.

  124. 124.

    Carey RM, Sakhuja S, Calhoun DA, Whelton PK, Muntner P. Prevalence of apparent treatment-resistant hypertension in the United States. Hypertension. 2019;73(2):424–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  125. 125.

    Durand H, Hayes P, Morrissey EC, Newell J, Casey M, Murphy AW, et al. Medication adherence among patients with apparent treatment-resistant hypertension: systematic review and meta-analysis. J Hypertens. 2017;35(12):2346–57.

    CAS  PubMed  Google Scholar 

  126. 126.

    CDC. Achievement in public health, 1900–1999: decline in deaths from heart disease and stroke—United States, 1900–1999. MMWR 1999; 48:649–656. Heart disease and stroke statistics—2013 update. Circulation. 2013;127:e6–e245.

    Google Scholar 

  127. 127.

    Mensah GA, Wei GS, Sorlie PD, Fine LJ, Rosenberg Y, Kaufmann PG, et al. Decline in cardiovascular mortality: possible causes and implications. Circ Res. 2017;120(2):366–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  128. 128.

    Ettehad D, Emdin CA, Kiran A, Anderson SG, Callender T, Emberson J, et al. Blood pressure lowering for prevention of cardiovascular disease and death: a systematic review and meta-analysis. Lancet. 2016;387(10022):957–67.

    PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jonathan P. Kalehoff.

Ethics declarations

Conflict of Interest

The authors declare no conflicts of interest relevant to this manuscript.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kalehoff, J.P., Oparil, S. The Story of the Silent Killer. Curr Hypertens Rep 22, 72 (2020). https://doi.org/10.1007/s11906-020-01077-7

Download citation

Keywords

  • Hypertension history
  • Antihypertensive medication development
  • Sphygmomanometer
  • Oscillometry
  • Korotkoff
  • Hypertension trials
  • Blood pressure goals