Skip to main content

New Molecules for Treating Resistant Hypertension: a Clinical Perspective


Purpose of Review

To review the findings of trials evaluating pharmacological treatment approaches for hypertension in general, and resistant hypertension (RH) in particular, and propose future research and clinical directions.

Recent Findings

RH is defined as blood pressure (BP) that remains above target levels despite adherence to at least three antihypertensive medications, including a diuretic. Thus far, clinical trials of pharmacological approaches in RH have focused on older molecules, with spironolactone being demonstrated as the most efficacious fourth-line agent. However, the use of spironolactone in clinical practice is hampered by its side effect profile and the risk of hyperkalaemia in important RH subgroups, such as patients with moderate-severe chronic kidney disease (CKD). Clinical trials of new molecules targeting both well-established and more recently elucidated pathophysiologic mechanisms of hypertension offer a multitude of potential treatment avenues that warrant further evaluation in the context of RH. These include selective mineralocorticoid receptor antagonists (MRAs), aldosterone synthase inhibitors (ASIs), activators of the counterregulatory renin-angiotensin-system (RAS), vaccines, neprilysin inhibitors alone and in combined formulations, natriuretic peptide receptor agonists A (NPRA-A) agonists, vasoactive intestinal peptide (VIP) agonists, centrally acting aminopeptidase A (APA|) inhibitors, antimicrobial suppression of central sympathetic outflow (minocycline), dopamine β-hydroxylase (DβH) inhibitors and Na+/H+ Exchanger 3 (NHE3) inhibitors.


There is a paucity of data from trials evaluating newer molecules for the treatment of RH. Emergent novel molecules for non-resistant forms of hypertension heighten the prospects of identifying new, effective and well-tolerated pharmacological approaches to RH. There is a glaring need to undertake RH-focused trials evaluating their efficacy and clinical applicability.

This is a preview of subscription content, access via your institution.


Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.

    Gifford RW Jr. Resistant hypertension. Introduction and definitions. Hypertension. 1988;11(3 Pt 2):II65–6.

    PubMed  Google Scholar 

  2. 2.

    Calhoun DA, Jones D, Textor S, Goff DC, Murphy TP, Toto RD, et al. Resistant hypertension: diagnosis, evaluation, and treatment. A scientific statement from the American Heart Association Professional Education Committee of the Council for High Blood Pressure Research. Hypertension. 2008;51(6):1403–19.

    CAS  PubMed  Google Scholar 

  3. 3.

    James PA, Oparil S, Carter BL, Cushman WC, Dennison-Himmelfarb C, Handler J, et al. 2014 evidence-based guideline for the management of high blood pressure in adults: report from the panel members appointed to the Eighth Joint National Committee (JNC 8). JAMA. 2014;311(5):507–20.

    CAS  Google Scholar 

  4. 4.

    Brambilla G, Bombelli M, Seravalle G, Cifkova R, Laurent S, Narkiewicz K, et al. Prevalence and clinical characteristics of patients with true resistant hypertension in central and Eastern Europe: data from the BP-CARE study. J Hypertens. 2013;31(10):2018–24.

    CAS  PubMed  Google Scholar 

  5. 5.

    Persell SD. Prevalence of resistant hypertension in the United States, 2003-2008. Hypertension. 2011;57(6):1076–80.

    CAS  PubMed  Google Scholar 

  6. 6.

    Daugherty SL, Powers JD, Magid DJ, Tavel HM, Masoudi FA, Margolis KL, et al. Incidence and prognosis of resistant hypertension in hypertensive patients. Circulation. 2012;125(13):1635–42.

    PubMed  PubMed Central  Google Scholar 

  7. 7.

    Sim JJ, Bhandari SK, Shi J, Reynolds K, Calhoun DA, Kalantar-Zadeh K, et al. Comparative risk of renal, cardiovascular, and mortality outcomes in controlled, uncontrolled resistant, and nonresistant hypertension. Kidney Int. 2015;88(3):622–32.

    PubMed  PubMed Central  Google Scholar 

  8. 8.

    de la Sierra A, Segura J, Banegas JR, Gorostidi M, de la Cruz JJ, Armario P, et al. Clinical features of 8295 patients with resistant hypertension classified on the basis of ambulatory blood pressure monitoring. Hypertension. 2011;57(5):898–902.

    PubMed  Google Scholar 

  9. 9.

    Lewington S, et al. Age-specific relevance of usual blood pressure to vascular mortality: a meta-analysis of individual data for one million adults in 61 prospective studies. Lancet. 2002;360(9349):1903–13.

    Google Scholar 

  10. 10.

    Oliva RV, Bakris GL. Sympathetic activation in resistant hypertension: theory and therapy. Semin Nephrol. 2014;34(5):550–9.

    PubMed  Google Scholar 

  11. 11.

    Putnam K, Shoemaker R, Yiannikouris F, Cassis LA. The renin-angiotensin system: a target of and contributor to dyslipidemias, altered glucose homeostasis, and hypertension of the metabolic syndrome. Am J Physiol Heart Circ Physiol. 2012;302(6):H1219–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Sim JJ, Bhandari SK, Shi J, Liu ILA, Calhoun DA, McGlynn EA, et al. Characteristics of resistant hypertension in a large, ethnically diverse hypertension population of an integrated health system. Mayo Clin Proc. 2013;88(10):1099–107.

    PubMed  PubMed Central  Google Scholar 

  13. 13.

    Irvin MR, Booth JN III, Shimbo D, Lackland DT, Oparil S, Howard G, et al. Apparent treatment-resistant hypertension and risk for stroke, coronary heart disease, and all-cause mortality. J Am Soc Hypertens. 2014;8(6):405–13.

    PubMed  PubMed Central  Google Scholar 

  14. 14.

    Muntner P, Davis BR, Cushman WC, Bangalore S, Calhoun DA, Pressel SL, et al. Treatment-resistant hypertension and the incidence of cardiovascular disease and end-stage renal disease: results from the Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (ALLHAT). Hypertension. 2014;64(5):1012–21.

    CAS  PubMed  Google Scholar 

  15. 15.

    Acharya T, Tringali S, Singh M, Huang J. Resistant hypertension and associated comorbidities in a veterans affairs population. J Clin Hypertens (Greenwich). 2014;16(10):741–5.

    Google Scholar 

  16. 16.

    Whelton PK, et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA guideline for the prevention, detection, evaluation, and Management of High Blood Pressure in adults: executive summary: a report of the American College of Cardiology/American Heart Association Task Force on clinical practice guidelines. Hypertension. 2018;71(6):1269–324.

    CAS  Google Scholar 

  17. 17.

    Oparil S, Schmieder RE. New approaches in the treatment of hypertension. Circ Res. 2015;116(6):1074–95.

    CAS  PubMed  Google Scholar 

  18. 18.

    Freeman AJ, Vinh A, Widdop RE. Novel approaches for treating hypertension. F1000Res. 2017;6:80.

    PubMed  PubMed Central  Google Scholar 

  19. 19.

    PhRMA. 2018 Report: medicines in development for heart disease and stroke 2018 drug list. Available from: Accessed 9 Jun 2019.

  20. 20.

    Ubaid-Girioli S, de Souza LA, Yugar-Toledo JC, Cláudio Martins L, Ferreira-Melo S, Rizzi Coelho O, et al. Aldosterone excess or escape: treating resistant hypertension. J Clin Hypertens (Greenwich). 2009;11(5):245–52.

    CAS  Google Scholar 

  21. 21.

    Yugar-Toledo JC, Modolo R, de Faria AP, Moreno H. Managing resistant hypertension: focus on mineralocorticoid-receptor antagonists. Vasc Health Risk Manag. 2017;13:403–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Cranston WI, Juel-Jensen BE. The effects of spironolactone and chlorthalidone on arterial pressure. Lancet. 1962;1(7240):1161–4.

    CAS  PubMed  Google Scholar 

  23. 23.

    Williams B, MacDonald TM, Morant S, Webb DJ, Sever P, McInnes G, et al. Spironolactone versus placebo, bisoprolol, and doxazosin to determine the optimal treatment for drug-resistant hypertension (PATHWAY-2): a randomised, double-blind, crossover trial. Lancet. 2015;386(10008):2059–68.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Krieger EM, Drager LF, Giorgi DMA, Pereira AC, Barreto-Filho JAS, Nogueira AR, et al. Spironolactone versus clonidine as a fourth-drug therapy for resistant hypertension: the ReHOT randomized study (resistant hypertension optimal treatment). Hypertension. 2018;71(4):681–90.

    CAS  PubMed  Google Scholar 

  25. 25.

    Corvol P, et al. Antiandrogenic effect of spirolactones: mechanism of action. Endocrinology. 1975;97(1):52–8.

    CAS  PubMed  Google Scholar 

  26. 26.

    Chapman N, Dobson J, Wilson S, Dahlöf B̈, Sever PS, Wedel H, et al. Effect of spironolactone on blood pressure in subjects with resistant hypertension. Hypertension. 2007;49(4):839–45.

    CAS  PubMed  Google Scholar 

  27. 27.

    Pitt B, Zannad F, Remme WJ, Cody R, Castaigne A, Perez A, et al. The effect of spironolactone on morbidity and mortality in patients with severe heart failure. Randomized aldactone evaluation study investigators. N Engl J Med. 1999;341(10):709–17.

    CAS  PubMed  Google Scholar 

  28. 28.

    Juurlink DN, Mamdani MM, Lee DS, Kopp A, Austin PC, Laupacis A, et al. Rates of hyperkalemia after publication of the randomized aldactone evaluation study. N Engl J Med. 2004;351(6):543–51.

    CAS  PubMed  Google Scholar 

  29. 29.

    Witham MD, Gillespie ND, Struthers AD. Hyperkalemia after the publication of RALES. N Engl J Med. 2004;351(23):2448–50 author reply 2448-50.

    PubMed  Google Scholar 

  30. 30.

    De Nicola L, et al. Burden of resistant hypertension in hypertensive patients with non-dialysis chronic kidney disease. Kidney Blood Press Res. 2011;34(1):58–67.

    PubMed  Google Scholar 

  31. 31.

    Tanner RM, Calhoun DA, Bell EK, Bowling CB, Gutiérrez OM, Irvin MR, et al. Prevalence of apparent treatment-resistant hypertension among individuals with CKD. Clin J Am Soc Nephrol. 2013;8(9):1583–90.

    PubMed  PubMed Central  Google Scholar 

  32. 32.

    Wolley MJ, Stowasser M. Resistant hypertension and chronic kidney disease: a dangerous liaison. Curr Hypertens Rep. 2016;18(5):36.

    PubMed  Google Scholar 

  33. 33.

    Fagart J, Hillisch A, Huyet J, Bärfacker L, Fay M, Pleiss U, et al. A new mode of mineralocorticoid receptor antagonism by a potent and selective nonsteroidal molecule. J Biol Chem. 2010;285(39):29932–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Bramlage P, Swift SL, Thoenes M, Minguet J, Ferrero C, Schmieder RE. Non-steroidal mineralocorticoid receptor antagonism for the treatment of cardiovascular and renal disease. Eur J Heart Fail. 2016;18(1):28–37.

    CAS  PubMed  Google Scholar 

  35. 35.

    Kolkhof P, Delbeck M, Kretschmer A, Steinke W, Hartmann E, Bärfacker L, et al. Finerenone, a novel selective nonsteroidal mineralocorticoid receptor antagonist protects from rat cardiorenal injury. J Cardiovasc Pharmacol. 2014;64(1):69–78.

    CAS  PubMed  Google Scholar 

  36. 36.

    Pitt B, Kober L, Ponikowski P, Gheorghiade M, Filippatos G, Krum H, et al. Safety and tolerability of the novel non-steroidal mineralocorticoid receptor antagonist BAY 94-8862 in patients with chronic heart failure and mild or moderate chronic kidney disease: a randomized, double-blind trial. Eur Heart J. 2013;34(31):2453–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Bakris GL, Agarwal R, Chan JC, Cooper ME, Gansevoort RT, Haller H, et al. Effect of finerenone on albuminuria in patients with diabetic nephropathy: a randomized clinical trial. JAMA. 2015;314(9):884–94.

    CAS  PubMed  Google Scholar 

  38. 38.

    Filippatos G, Anker SD, Böhm M, Gheorghiade M, Køber L, Krum H, et al. A randomized controlled study of finerenone vs. eplerenone in patients with worsening chronic heart failure and diabetes mellitus and/or chronic kidney disease. Eur Heart J. 2016;37(27):2105–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Gomez-Sanchez EP, Gomez-Sanchez CE. Central regulation of blood pressure by the mineralocorticoid receptor. Mol Cell Endocrinol. 2012;350(2):289–98.

    CAS  PubMed  Google Scholar 

  40. 40.

    Cp, C., et al. Preclinical development of KBP-5074, a novel non-steroidal mineralocorticoid receptor antagonist for the treatment of cardiorenal Diseases. 2018 [cited 4; Available from:

  41. 41.

    Pharmacological profile of KBP-5074, a novel non-steroidal, highly selective, mineralocorticoid receptor antagonist (MRA) for the treatment of cardiorenal diseases. Am J Kidney Dis, 2016. 67(5): p. A118.

  42. 42.

    • Connaire, J., et al. Safety, tolerability, and pharmacokinetics of the selective mineralocorticoid receptor antagonist KBP-5074 in hemodialysis and non-hemodialysis patients with severe CKD. 2017; Available from: Accessed 9 Jun 2019. The safety data in this study encourages more advanced phase trials of MRA KBP-5074 in the CKD subgroup of patients with RH.

  43. 43.

    •• Carey RM, et al. Resistant hypertension: detection, evaluation, and management: a scientific statement from the American Heart Association. Hypertension. 2018;72(5):e53–90 Comprehensive evidence-based guidance on on evaluation and management of RH.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Chai W, Danser AH. Why are mineralocorticoid receptor antagonists cardioprotective? Naunyn Schmiedeberg's Arch Pharmacol. 2006;374(3):153–62.

    CAS  Google Scholar 

  45. 45.

    Schiffrin EL. Effects of aldosterone on the vasculature. Hypertension. 2006;47(3):312–8.

    CAS  PubMed  Google Scholar 

  46. 46.

    Colussi G, Catena C, Sechi LA. Spironolactone, eplerenone and the new aldosterone blockers in endocrine and primary hypertension. J Hypertens. 2013;31(1):3–15.

    CAS  PubMed  Google Scholar 

  47. 47.

    Calhoun DA, White WB, Krum H, Guo W, Bermann G, Trapani A, et al. Effects of a novel aldosterone synthase inhibitor for treatment of primary hypertension: results of a randomized, double-blind, placebo- and active-controlled phase 2 trial. Circulation. 2011;124(18):1945–55.

    CAS  PubMed  Google Scholar 

  48. 48.

    Karns AD, Bral JM, Hartman D, Peppard T, Schumacher C. Study of aldosterone synthase inhibition as an add-on therapy in resistant hypertension. J Clin Hypertens (Greenwich). 2013;15(3):186–92.

    CAS  Google Scholar 

  49. 49.

    • Bogman K, et al. Preclinical and early clinical profile of a highly selective and potent oral inhibitor of aldosterone synthase (CYP11B2). Hypertension. 2017;69(1):189–96 ASI which selectively suppresses aldosterone production but spares cortisol production.

    CAS  PubMed  Google Scholar 

  50. 50.

    • Sloan-Lancaster J, et al. LY3045697: results from two randomized clinical trials of a novel inhibitor of aldosterone synthase. J Renin-Angiotensin-Aldosterone Syst. 2017;18(3):1470320317717883 Another ASI demonstrating selectivity and worth evaluating in hypertension trials.

    PubMed  PubMed Central  Google Scholar 

  51. 51.

    Brenner BM, Cooper ME, de Zeeuw D, Keane WF, Mitch WE, Parving HH, et al. Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N Engl J Med. 2001;345(12):861–9.

    CAS  Google Scholar 

  52. 52.

    Lewis EJ, Hunsicker LG, Clarke WR, Berl T, Pohl MA, Lewis JB, et al. Renoprotective effect of the angiotensin-receptor antagonist irbesartan in patients with nephropathy due to type 2 diabetes. N Engl J Med. 2001;345(12):851–60.

    CAS  PubMed  Google Scholar 

  53. 53.

    Parving HH, Lehnert H, Bröchner-Mortensen J, Gomis R, Andersen S, Arner P, et al. The effect of irbesartan on the development of diabetic nephropathy in patients with type 2 diabetes. N Engl J Med. 2001;345(12):870–8.

    CAS  PubMed  Google Scholar 

  54. 54.

    Yusuf S, et al. Telmisartan, ramipril, or both in patients at high risk for vascular events. N Engl J Med. 2008;358(15):1547–59.

    CAS  PubMed  Google Scholar 

  55. 55.

    Fried LF, Emanuele N, Zhang JH, Brophy M, Conner TA, Duckworth W, et al. Combined angiotensin inhibition for the treatment of diabetic nephropathy. N Engl J Med. 2013;369(20):1892–903.

    CAS  PubMed  Google Scholar 

  56. 56.

    Parving HH, Brenner BM, McMurray JJV, de Zeeuw D, Haffner SM, Solomon SD, et al. Cardiorenal end points in a trial of aliskiren for type 2 diabetes. N Engl J Med. 2012;367(23):2204–13.

    CAS  PubMed  Google Scholar 

  57. 57.

    • Ionis Pharmaceuticals. In: Our antisense-powered pipeline. 2019; Available from: Accessed 9 Jun 2019. One of several molecules developed in this innovative antisense technology that undergoing multiple simultaneous trials to address a broad range of diseases. Watch the space.

  58. 58.

    Hoogwerf BJ. Renin-angiotensin system blockade and cardiovascular and renal protection. Am J Cardiol. 2010;105(1 Suppl):30A–5A.

    CAS  PubMed  Google Scholar 

  59. 59.

    Donoghue M, et al. A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1-9. Circ Res. 2000;87(5):E1–9.

    CAS  PubMed  Google Scholar 

  60. 60.

    Keidar S, Kaplan M, Gamliel-Lazarovich A. ACE2 of the heart: from angiotensin I to angiotensin (1-7). Cardiovasc Res. 2007;73(3):463–9.

    CAS  PubMed  Google Scholar 

  61. 61.

    Patel VB, Zhong JC, Grant MB, Oudit GY. Role of the ACE2/angiotensin 1-7 axis of the renin-angiotensin system in heart failure. Circ Res. 2016;118(8):1313–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. 62.

    Yamazato M, Yamazato Y, Sun C, Diez-Freire C, Raizada MK. Overexpression of angiotensin-converting enzyme 2 in the rostral ventrolateral medulla causes long-term decrease in blood pressure in the spontaneously hypertensive rats. Hypertension. 2007;49(4):926–31.

    CAS  PubMed  Google Scholar 

  63. 63.

    Rentzsch B, Todiras M, Iliescu R, Popova E, Campos LA, Oliveira ML, et al. Transgenic angiotensin-converting enzyme 2 overexpression in vessels of SHRSP rats reduces blood pressure and improves endothelial function. Hypertension. 2008;52(5):967–73.

    CAS  PubMed  Google Scholar 

  64. 64.

    Ye M, Wysocki J, Gonzalez-Pacheco FR, Salem M, Evora K, Garcia-Halpin L, et al. Murine recombinant angiotensin-converting enzyme 2: effect on angiotensin II-dependent hypertension and distinctive angiotensin-converting enzyme 2 inhibitor characteristics on rodent and human angiotensin-converting enzyme 2. Hypertension. 2012;60(3):730–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. 65.

    Lo J, Patel VB, Wang Z, Levasseur J, Kaufman S, Penninger JM, et al. Angiotensin-converting enzyme 2 antagonizes angiotensin II-induced pressor response and NADPH oxidase activation in Wistar-Kyoto rats and spontaneously hypertensive rats. Exp Physiol. 2013;98(1):109–22.

    CAS  PubMed  Google Scholar 

  66. 66.

    • Liu P, et al. Novel ACE2-Fc chimeric fusion provides long-lasting hypertension control and organ protection in mouse models of systemic renin angiotensin system activation. Kidney Int. 2018;94(1):114–25 Encouraging Preclinical Findings.

    CAS  PubMed  Google Scholar 

  67. 67.

    Haschke M, Schuster M, Poglitsch M, Loibner H, Salzberg M, Bruggisser M, et al. Pharmacokinetics and pharmacodynamics of recombinant human angiotensin-converting enzyme 2 in healthy human subjects. Clin Pharmacokinet. 2013;52(9):783–92.

    CAS  PubMed  Google Scholar 

  68. 68.

    Khan A, Benthin C, Zeno B, Albertson TE, Boyd J, Christie JD, et al. A pilot clinical trial of recombinant human angiotensin-converting enzyme 2 in acute respiratory distress syndrome. Crit Care. 2017;21(1):234.

    PubMed  PubMed Central  Google Scholar 

  69. 69.

    Hemnes AR, et al. A potential therapeutic role for angiotensin-converting enzyme 2 in human pulmonary arterial hypertension. Eur Respir J. 2018;51(6).

    PubMed  Google Scholar 

  70. 70.

    Kluskens LD, Nelemans SA, Rink R, de Vries L, Meter-Arkema A, Wang Y, et al. Angiotensin-(1-7) with thioether bridge: an angiotensin-converting enzyme-resistant, potent angiotensin-(1-7) analog. J Pharmacol Exp Ther. 2009;328(3):849–54.

    CAS  PubMed  Google Scholar 

  71. 71.

    Marques FD, et al. Beneficial effects of long-term administration of an oral formulation of angiotensin-(1-7) in infarcted rats. Int J Hypertens. 2012;2012:795452.

    PubMed  PubMed Central  Google Scholar 

  72. 72.

    Koenen J, et al. Abstract P309: safety, tolerability and pharmacokinetic data of the novel orally active formulation of angiotensin- (1-7), Hydroxypropyl-β-cyclodextrin/ Ang- (1-7), in healthy volunteers- a randomized double-blinded controlled pilot study. Hypertension. 2016;68(suppl_1):AP309–9.

  73. 73.

    Singh Y, Singh K, Sharma PL. Effect of combination of renin inhibitor and Mas-receptor agonist in DOCA-salt-induced hypertension in rats. Mol Cell Biochem. 2013;373(1–2):189–94.

    CAS  PubMed  Google Scholar 

  74. 74.

    Savergnini SQ, Ianzer D, Carvalho MBL, Ferreira AJ, Silva GAB, Marques FD, et al. The novel Mas agonist, CGEN-856S, attenuates isoproterenol-induced cardiac remodeling and myocardial infarction injury in rats. PLoS One. 2013;8(3):e57757.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. 75.

    Jankowski V, Vanholder R, van der Giet M, Tölle M, Karadogan S, Gobom J, et al. Mass-spectrometric identification of a novel angiotensin peptide in human plasma. Arterioscler Thromb Vasc Biol. 2007;27(2):297–302.

    CAS  PubMed  Google Scholar 

  76. 76.

    Lautner RQ, Villela DC, Fraga-Silva RA, Silva N, Verano-Braga T, Costa-Fraga F, et al. Discovery and characterization of alamandine: a novel component of the renin-angiotensin system. Circ Res. 2013;112(8):1104–11.

    CAS  PubMed  Google Scholar 

  77. 77.

    • Liu C, et al. Alamandine attenuates hypertension and cardiac hypertrophy in hypertensive rats. Amino Acids. 2018;50(8):1071–81 Encouraging preclinical findings.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. 78.

    de Souza-Neto FP, Silva MM, Santuchi MC, de Alcântara-Leonídio TC, Motta-Santos D, Oliveira AC, et al. Alamandine attenuates arterial remodelling induced by transverse aortic constriction in mice. Clin Sci (Lond). 2019;133(5):629–43.

    Google Scholar 

  79. 79.

    Steckelings UM, Paulis L, Unger T, Bader M. Emerging drugs which target the renin-angiotensin-aldosterone system. Expert Opin Emerg Drugs. 2011;16(4):619–30.

    CAS  PubMed  Google Scholar 

  80. 80.

    Foulquier S, Steckelings UM, Unger T. Impact of the AT(2) receptor agonist C21 on blood pressure and beyond. Curr Hypertens Rep. 2012;14(5):403–9.

    CAS  PubMed  Google Scholar 

  81. 81.

    Wan Y, Wallinder C, Plouffe B, Beaudry H, Mahalingam AK, Wu X, et al. Design, synthesis, and biological evaluation of the first selective nonpeptide AT2 receptor agonist. J Med Chem. 2004;47(24):5995–6008.

    CAS  PubMed  Google Scholar 

  82. 82.

    Ali Q, Patel S, Hussain T. Angiotensin AT2 receptor agonist prevents salt-sensitive hypertension in obese Zucker rats. Am J Physiol Ren Physiol. 2015;308(12):F1379–85.

    CAS  Google Scholar 

  83. 83.

    • Steckelings U, Lindblad L, Leisvuori A, Lovro Z, Vainio P, Graens J, et al. [PP.02.17] successful completion of a pHASE I, randomized, double-blind, placebo controlled, single ascending dose trial for the first in class angiotensin AT2-receptor agonist compound 21. J Hypertens. 2017;35:e105–6.

    Google Scholar 

  84. 84.

    Steckelings UM, Paulis L, Namsolleck P, Unger T. AT2 receptor agonists: hypertension and beyond. Curr Opin Nephrol Hypertens. 2012;21(2):142–6.

    CAS  PubMed  Google Scholar 

  85. 85.

    Pandey KN. Biology of natriuretic peptides and their receptors. Peptides. 2005;26(6):901–32.

    CAS  PubMed  Google Scholar 

  86. 86.

    Nakagami H, Morishita R. Therapeutic vaccines for hypertension: a new option for clinical practice. Curr Hypertens Rep. 2018;20(3):22.

    PubMed  Google Scholar 

  87. 87.

    Tissot AC, Maurer P, Nussberger J, Sabat R, Pfister T, Ignatenko S, et al. Effect of immunisation against angiotensin II with CYT006-AngQb on ambulatory blood pressure: a double-blind, randomised, placebo-controlled phase IIa study. Lancet. 2008;371(9615):821–7.

    CAS  PubMed  Google Scholar 

  88. 88.

    Business Wire. 2018. Resistant Hypertension Drug Development Pipeline Study, H1 2018 - 9 June 2019]; Available from: Accessed 10 Jun 2019.

  89. 89.

    Brown MJ. Success and failure of vaccines against renin-angiotensin system components. Nat Rev Cardiol. 2009;6(10):639–47.

    CAS  PubMed  Google Scholar 

  90. 90.

    Chen X, Qiu Z, Yang S, Ding D, Chen F, Zhou Y, et al. Effectiveness and safety of a therapeutic vaccine against angiotensin II receptor type 1 in hypertensive animals. Hypertension. 2013;61(2):408–16.

    CAS  PubMed  Google Scholar 

  91. 91.

    Li LD, Tian M, Liao YH, Zhou ZH, Wei F, Zhu F, et al. Effect of active immunization against angiotensin II type 1 (AT1) receptor on hypertension & arterial remodelling in spontaneously hypertensive rats (SHR). Indian J Med Res. 2014;139(4):619–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. 92.

    Corti R, Burnett Jr JC, Rouleau JL, Ruschitzka F, Lüscher TF. Vasopeptidase inhibitors: a new therapeutic concept in cardiovascular disease? Circulation. 2001;104(15):1856–62.

    CAS  PubMed  Google Scholar 

  93. 93.

    Richards AM, Wittert GA, Crozier IG, Espiner EA, Yandle TG, Ikram H, et al. Chronic inhibition of endopeptidase 24.11 in essential hypertension: evidence for enhanced atrial natriuretic peptide and angiotensin II. J Hypertens. 1993;11(4):407–16.

    CAS  PubMed  Google Scholar 

  94. 94.

    Kostis JB, et al. Omapatrilat and enalapril in patients with hypertension: the omapatrilat cardiovascular treatment vs. Enalapril (OCTAVE) trial. Am J Hypertens. 2004;17(2):103–11.

    CAS  Google Scholar 

  95. 95.

    Weber MA. Vasopeptidase inhibitors. Lancet. 2001;358(9292):1525–32.

    CAS  PubMed  Google Scholar 

  96. 96.

    Sagnella GA. Vasopeptidase inhibitors. J Renin-Angiotensin-Aldosterone Syst. 2002;3(2):90–5.

    CAS  PubMed  Google Scholar 

  97. 97.

    •• Yi BA, et al. Abstract 12892: safety and efficacy of LHW090 in patients with resistant hypertension: results of a randomized, double blind, parallel group, placebo-controlled study. Circulation. 2018;138(Suppl_1):A12892-A12892 Very encouraging findings which warrant a phase III trial.

    Google Scholar 

  98. 98.

    Packer M, Califf RM, Konstam MA, Krum H, McMurray J, Rouleau JL, et al. Comparison of omapatrilat and enalapril in patients with chronic heart failure: the omapatrilat versus enalapril randomized trial of utility in reducing events (OVERTURE). Circulation. 2002;106(8):920–6.

    CAS  Google Scholar 

  99. 99.

    Coats AJ. Omapatrilat--the story of overture and octave. Int J Cardiol. 2002;86(1):1–4.

    PubMed  Google Scholar 

  100. 100.

    Ruilope LM, Dukat A, Böhm M, Lacourcière Y, Gong J, Lefkowitz MP. Blood-pressure reduction with LCZ696, a novel dual-acting inhibitor of the angiotensin II receptor and neprilysin: a randomised, double-blind, placebo-controlled, active comparator study. Lancet. 2010;375(9722):1255–66.

    CAS  PubMed  Google Scholar 

  101. 101.

    Kario K, Sun N, Chiang FT, Supasyndh O, Baek SH, Inubushi-Molessa A, et al. Efficacy and safety of LCZ696, a first-in-class angiotensin receptor neprilysin inhibitor, in Asian patients with hypertension: a randomized, double-blind, placebo-controlled study. Hypertension. 2014;63(4):698–705.

    CAS  PubMed  Google Scholar 

  102. 102.

    McMurray JJ, et al. Angiotensin-neprilysin inhibition versus enalapril in heart failure. N Engl J Med. 2014;371(11):993–1004.

    Google Scholar 

  103. 103.

    Solomon SD, Zile M, Pieske B, Voors A, Shah A, Kraigher-Krainer E, et al. The angiotensin receptor neprilysin inhibitor LCZ696 in heart failure with preserved ejection fraction: a phase 2 double-blind randomised controlled trial. Lancet. 2012;380(9851):1387–95.

    CAS  PubMed  Google Scholar 

  104. 104.

    Kario K, Tamaki Y, Okino N, Gotou H, Zhu M, Zhang J. LCZ696, a first-in-class angiotensin receptor-neprilysin inhibitor: the first clinical experience in patients with severe hypertension. J Clin Hypertens (Greenwich). 2016;18(4):308–14.

    CAS  Google Scholar 

  105. 105.

    Dhaun N, Goddard J, Kohan DE, Pollock DM, Schiffrin EL, Webb DJ. Role of endothelin-1 in clinical hypertension: 20 years on. Hypertension. 2008;52(3):452–9.

    CAS  PubMed  Google Scholar 

  106. 106.

    Tikkanen I, Tikkanen T, Cao Z, Allen TJ, Davis BJ, Lassila M, et al. Combined inhibition of neutral endopeptidase with angiotensin converting enzyme or endothelin converting enzyme in experimental diabetes. J Hypertens. 2002;20(4):707–14.

    CAS  PubMed  Google Scholar 

  107. 107.

    Parvanova A, van der Meer IM, Iliev I, Perna A, Gaspari F, Trevisan R, et al. Effect on blood pressure of combined inhibition of endothelin-converting enzyme and neutral endopeptidase with daglutril in patients with type 2 diabetes who have albuminuria: a randomised, crossover, double-blind, placebo-controlled trial. Lancet Diabetes Endocrinol. 2013;1(1):19–27.

    CAS  PubMed  Google Scholar 

  108. 108.

    Feldstein C, Romero C. Role of endothelins in hypertension. Am J Ther. 2007;14(2):147–53.

    PubMed  Google Scholar 

  109. 109.

    Black HR, Bakris GL, Weber MA, Weiss R, Shahawy ME, Marple R, et al. Efficacy and safety of darusentan in patients with resistant hypertension: results from a randomized, double-blind, placebo-controlled dose-ranging study. J Clin Hypertens (Greenwich). 2007;9(10):760–9.

    CAS  Google Scholar 

  110. 110.

    Weber MA, Black H, Bakris G, Krum H, Linas S, Weiss R, et al. A selective endothelin-receptor antagonist to reduce blood pressure in patients with treatment-resistant hypertension: a randomised, double-blind, placebo-controlled trial. Lancet. 2009;374(9699):1423–31.

    CAS  PubMed  Google Scholar 

  111. 111.

    Heerspink HJL, Parving HH, Andress DL, Bakris G, Correa-Rotter R, Hou FF, et al. Atrasentan and renal events in patients with type 2 diabetes and chronic kidney disease (SONAR): a double-blind, randomised, placebo-controlled trial. Lancet. 2019;393(10184):1937–47.

    CAS  PubMed  Google Scholar 

  112. 112.

    Sica D, Jordan R, Fischkoff SA. Phase IIa study of the NPR-A agonist, PL-3994, in healthy adult volunteers with controlled hypertension. J Card Fail. 2009;15(6):S67.

    Google Scholar 

  113. 113.

    Chen Y, Huntley BK, Iyer SR, Sangaralingham JS, Burnett JC Jr. ZD100: a novel pGC-A activator for the treatment of resistant hypertension: in vitro resistance to neprilysin degradation. J Am Soc Hypertens. 2016;10(4):e22–3.

    Google Scholar 

  114. 114.

    Frase LL, Gaffney FA, Lane LD, Buckey JC, Said SI, Blomqvist CG, et al. Cardiovascular effects of vasoactive intestinal peptide in healthy subjects. Am J Cardiol. 1987;60(16):1356–61.

    CAS  PubMed  Google Scholar 

  115. 115.

    PhaseBio Pharmaceuticals Inc. 2015. PB1046 (Vasomera™) in: clinical development pipeline. Available from: Accessed 5 Jun 2019.

  116. 116.

    Gao J, Marc Y, Iturrioz X, Leroux V, Balavoine F, Llorens-Cortes C. A new strategy for treating hypertension by blocking the activity of the brain renin-angiotensin system with aminopeptidase A inhibitors. Clin Sci (Lond). 2014;127(3):135–48.

    CAS  Google Scholar 

  117. 117.

    Balavoine F, Azizi M, Bergerot D, de Mota N, Patouret R, Roques BP, et al. Randomised, double-blind, placebo-controlled, dose-escalating phase I study of QGC001, a centrally acting aminopeptidase A inhibitor prodrug. Clin Pharmacokinet. 2014;53(4):385–95.

    CAS  PubMed  Google Scholar 

  118. 118.

    Ferdinand KC, et al. Efficacy and safety of firibastat, a first-in-class brain aminopeptidase a inhibitor, in hypertensive overweight patients of multiple ethnic origins a phase 2, open-label, multicenter, dose-titrating study. Circulation. 2019.

  119. 119.

    •• Azizi M, et al. A pilot double-blind randomized placebo-controlled crossover pharmacodynamic study of the centrally active aminopeptidase A inhibitor, firibastat, in hypertension. J Hypertens. 2019;37(8):1722-1728. The results of this study justify a larger powered trial to assess safety and efficacy in hypertension.

    CAS  PubMed  Google Scholar 

  120. 120.

    Bautista LE, Vera LM, Arenas IA, Gamarra G. Independent association between inflammatory markers (C-reactive protein, interleukin-6, and TNF-alpha) and essential hypertension. J Hum Hypertens. 2005;19(2):149–54.

    CAS  PubMed  Google Scholar 

  121. 121.

    Zubcevic J, et al. Functional neural-bone marrow pathways: implications in hypertension and cardiovascular disease. Hypertension. 2014;63(6):e129–39.

    CAS  PubMed  PubMed Central  Google Scholar 

  122. 122.

    Singh MV, Chapleau MW, Harwani SC, Abboud FM. The immune system and hypertension. Immunol Res. 2014;59(1–3):243–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  123. 123.

    Jun JY, Zubcevic J, Qi Y, Afzal A, Carvajal JM, Thinschmidt JS, et al. Brain-mediated dysregulation of the bone marrow activity in angiotensin II-induced hypertension. Hypertension. 2012;60(5):1316–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  124. 124.

    Zubcevic J, Jun JY, Kim S, Perez PD, Afzal A, Shan Z, et al. Altered inflammatory response is associated with an impaired autonomic input to the bone marrow in the spontaneously hypertensive rat. Hypertension. 2014;63(3):542–50.

    CAS  PubMed  Google Scholar 

  125. 125.

    Dutta P, Courties G, Wei Y, Leuschner F, Gorbatov R, Robbins CS, et al. Myocardial infarction accelerates atherosclerosis. Nature. 2012;487(7407):325–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  126. 126.

    Yellowlees Douglas J, Bhatwadekar AD, Li Calzi S, Shaw LC, Carnegie D, Caballero S, et al. Bone marrow-CNS connections: implications in the pathogenesis of diabetic retinopathy. Prog Retin Eye Res. 2012;31(5):481–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  127. 127.

    Shi P, Diez-Freire C, Jun JY, Qi Y, Katovich MJ, Li Q, et al. Brain microglial cytokines in neurogenic hypertension. Hypertension. 2010;56(2):297–303.

    CAS  PubMed  PubMed Central  Google Scholar 

  128. 128.

    Beliaev A, Learmonth DA, Soares-da-Silva P. Synthesis and biological evaluation of novel, peripherally selective chromanyl imidazolethione-based inhibitors of dopamine beta-hydroxylase. J Med Chem. 2006;49(3):1191–7.

    CAS  PubMed  Google Scholar 

  129. 129.

    • Igreja B, et al. Blood pressure-decreasing effect of etamicastat alone and in combination with antihypertensive drugs in the spontaneously hypertensive rat. Hypertens Res. 2015;38(1):30–8 Promising preclinical findings worth evaluating in clinical trials as both monotherapy and as an add-on therapy, including in RH.

    CAS  PubMed  Google Scholar 

  130. 130.

    Pires NM, Igreja B, Moura E, Wright LC, Serrão MP, Soares-da-Silva P. Blood pressure decrease in spontaneously hypertensive rats following renal denervation or dopamine beta-hydroxylase inhibition with etamicastat. Hypertens Res. 2015;38(9):605–12.

    CAS  PubMed  Google Scholar 

  131. 131.

    Nunes T, et al. Safety, tolerability, and pharmacokinetics of etamicastat, a novel dopamine-beta-hydroxylase inhibitor, in a rising multiple-dose study in young healthy subjects. Drugs R D. 2010;10(4):225–42.

    PubMed  PubMed Central  Google Scholar 

  132. 132.

    Almeida L, Nunes T, Costa R, Rocha JF, Vaz-da-Silva M, Soares-da-Silva P. Etamicastat, a novel dopamine beta-hydroxylase inhibitor: tolerability, pharmacokinetics, and pharmacodynamics in patients with hypertension. Clin Ther. 2013;35(12):1983–96.

    CAS  PubMed  Google Scholar 

  133. 133.

    Appel LJ, Brands MW, Daniels SR, Karanja N, Elmer PJ, Sacks FM, et al. Dietary approaches to prevent and treat hypertension: a scientific statement from the American Heart Association. Hypertension. 2006;47(2):296–308.

    CAS  Google Scholar 

  134. 134.

    Linz D, Wirth K, Linz W, Heuer HOO, Frick W, Hofmeister A, et al. Antihypertensive and laxative effects by pharmacological inhibition of sodium-proton-exchanger subtype 3-mediated sodium absorption in the gut. Hypertension. 2012;60(6):1560–7.

    CAS  PubMed  Google Scholar 

  135. 135.

    Rosenbaum DP, Yan A, Jacobs JW. Pharmacodynamics, safety, and tolerability of the NHE3 inhibitor tenapanor: two trials in healthy volunteers. Clin Drug Investig. 2018;38(4):341–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  136. 136.

    Singer DR, Markandu ND, Sugden AL, Miller MA, MacGregor GA. Sodium restriction in hypertensive patients treated with a converting enzyme inhibitor and a thiazide. Hypertension. 1991;17(6 Pt 1):798–803.

    CAS  PubMed  Google Scholar 

  137. 137.

    Lobo MD, Sobotka PA, Dolan E, Witkowski A, Schmieder RE. Central arteriovenous anastomosis and hypertension - authors' reply. Lancet. 2015;386(10006):1821–2.

    PubMed  Google Scholar 

  138. 138.

    Lobo MD, Ott C, Sobotka PA, Saxena M, Stanton A, Cockcroft JR, et al. Central iliac arteriovenous anastomosis for uncontrolled hypertension: one-year results from the ROX CONTROL HTN trial. Hypertension. 2017;70(6):1099–105.

    CAS  PubMed  Google Scholar 

  139. 139.

    Schlaich MP, Azzam O, Sata Y. Hypertension on the ROX: durable blood pressure lowering with central iliac arteriovenous anastomosis. Hypertension. 2017;70(6):1084–6.

    CAS  PubMed  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Markus P. Schlaich.

Ethics declarations

Conflict of Interest

The authors declare no conflicts of interest relevant to this manuscript.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Resistant Hypertension

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Azzam, O., Kiuchi, M.G., Ho, J.K. et al. New Molecules for Treating Resistant Hypertension: a Clinical Perspective. Curr Hypertens Rep 21, 80 (2019).

Download citation


  • Blood pressure
  • Hypertension
  • Resistant hypertension
  • Treatment
  • Sympathetic nervous system
  • Chronic kidney disease