Skip to main content

Advertisement

Log in

Sex-Specific Mechanisms in Inflammation and Hypertension

  • Inflammation and Cardiovascular Diseases (A Kirabo, Section Editor)
  • Published:
Current Hypertension Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Despite enhanced screening and therapeutic management, hypertension remains the most prevalent chronic disease in the United States and the leading cause of heart disease, chronic kidney disease, and stroke in both men and women. It is widely accepted that hypertension is a pro-inflammatory disease and that the immune system plays a vital role in mediating hypertensive outcomes and end organ damage. Despite known discrepancies in the risk of hypertension development between men and women, preclinical models of immune-mediated hypertension were historically developed solely in male animals, leading to a lack of sex-specific clinical practice guidelines or therapeutic targets.

Recent Findings

Following the NIH policy on the consideration of sex as a biological variable in 2015, significant advancements have been made into sex-specific disease mechanisms in inflammation and hypertension.

Summary

This review article serves to critically evaluate recent advancements in the field of sex-specific immune-mediated hypertension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Heart Disease and Stroke Statistics—2015. Update: a report from the American Heart Association. Circulation. 2015;131:e29–322.

    Google Scholar 

  2. Heart Disease and Stroke Statistics—2019. Update: a report from the American Heart Association. Circulation. 2019;139:e56–528.

    Google Scholar 

  3. Writing Group for the Women’s Health Initiative Investigators. Risks and benefits of estrogen plus progestin in healthy postmenopausal women: principal results from the Women’s Health Initiative Randomized Controlled Trial. JAMA. 2002;288:321–33.

    Article  Google Scholar 

  4. Wassertheil-Smoller S, Anderson G, Psaty BM, Black HR, Manson J, Wong N, et al. Hypertension and its treatment in postmenopausal women: baseline data from the women’s health initiative. Hypertension. 2000;36:780–9.

    Article  CAS  Google Scholar 

  5. Nwankwo T, Gu Q. Hypertension among adults in the United States: National Health and Nutrition Examination Survey, 2011–2012. NCHS Data Brief. 2013;133:1–8.

    Google Scholar 

  6. Rodriguez-Iturbe B, Pons H, Johnson RJ. Role of the immune system in hypertension. Physiol Rev. 2017;97:1127–64.

    Article  CAS  Google Scholar 

  7. Guzik TJ, Hoch NE, Brown KA, McCann LA, Rahman A, Dikalov S, et al. Role of the T cell in the genesis of angiotensin II–induced hypertension and vascular dysfunction. J Exp Med. 2007;204:2449–60.

    Article  CAS  Google Scholar 

  8. •• Pollow DP, Uhrlaub J, Romero-Aleshire M, Sandberg K, Nikolich-Zugich J, Brooks HL, et al. sex differences in T-lymphocyte tissue infiltration and development of angiotensin II hypertension. Hypertension. 2014;64:384–90 First identification of a sex difference in T cell-mediated hypertension using male and female Rag-1 −/− mouse model.

    Article  CAS  Google Scholar 

  9. Ji H, Zheng W, Li X, Liu J, Wu X, Zhang MA, et al. Sex-specific T-cell regulation of angiotensin II–dependent hypertension novelty and significance. Hypertension. 2014;64:573–82.

    Article  CAS  Google Scholar 

  10. Peeters AC, Netea MG, Janssen MC, Kullberg BJ, Van der Meer JW, Thien T. Pro-inflammatory cytokines in patients with essential hypertension. Eur J Clin Investig. 2001;31:31–6.

    Article  CAS  Google Scholar 

  11. McMaster WG, Kirabo A, Madhur MS, Harrison DG. Inflammation, immunity, and hypertensive end-organ damage. Circ Res. 2015;116:1022–33.

    Article  CAS  Google Scholar 

  12. Norlander AE, Madhur MS. Inflammatory cytokines regulate renal sodium transporters: how, where, and why? Am J Physiol Ren Physiol. 2017;313:F141–4.

    Article  CAS  Google Scholar 

  13. Barbaro NR, Harrison DG. Markers or makers: inflammatory cytokines in treatment-resistant hypertension. Hypertension. 2019;73:767–9.

    Article  CAS  Google Scholar 

  14. Lee DL, Sturgis LC, Labazi H, Osborne JB, Fleming C, Pollock JS, et al. Angiotensin II hypertension is attenuated in interleukin-6 knockout mice. Am J Physiol Heart Circ Physiol. 2006;290:H935–40.

    Article  CAS  Google Scholar 

  15. Li K, Guo D, Zhu H, Hering-Smith KS, Hamm LL, Ouyang J, et al. Interleukin-6 stimulates epithelial sodium channels in mouse cortical collecting duct cells. Am J Phys Regul Integr Comp Phys. 2010;299:R590–5.

    CAS  Google Scholar 

  16. Hashmat S, Rudemiller N, Lund H, Abais-Battad JM, Van Why S, Mattson DL. Interleukin-6 inhibition attenuates hypertension and associated renal damage in Dahl salt-sensitive rats. Am J Physiol Ren Physiol. 2016;311:F555–61.

    Article  CAS  Google Scholar 

  17. O’Leary R, Penrose H, Miyata K, Satou R. Macrophage-derived IL-6 contributes to ANG II-mediated angiotensinogen stimulation in renal proximal tubular cells. Am J Physiol Ren Physiol. 2016;310:F1000–7.

    Article  Google Scholar 

  18. • Itani HA, McMaster WG, Saleh MA, Nazarewicz RR, Mikolajczyk TP, Kaszuba A, et al. Activation of human T cells in hypertension: studies of humanized mice and hypertensive humans. Hypertension. 2016;68:123–32 First known use of humanized mice to study immune-mediated hypertension. Humanized mice were used to study the impact of human T cell activation on hypertensive outcomes specifically in male mice.

    Article  CAS  Google Scholar 

  19. Nguyen H, Chiasson VL, Chatterjee P, Kopriva SE, Young KJ, Mitchell BM. Interleukin-17 causes Rho-kinase-mediated endothelial dysfunction and hypertension. Cardiovasc Res. 2013;97:696–704.

    Article  CAS  Google Scholar 

  20. Madhur MS, Lob HE, McCann LA, Iwakura Y, Blinder Y, Guzik TJ, et al. Interleukin 17 promotes angiotensin II-induced hypertension and vascular dysfunction. Hypertension. 2010;55:500–7.

    Article  CAS  Google Scholar 

  21. Norlander AE, Saleh MA, Kamat NV, Ko B, Gnecco J, Zhu L, et al. Interleukin-17A regulates renal sodium transporters and renal injury in angiotensin II-induced hypertension. Hypertension. 2016;68:167–74.

    Article  CAS  Google Scholar 

  22. Kamat NV, Thabet SR, Xiao L, Saleh MA, Kirabo A, Madhur MS, et al. Renal transporter activation during angiotensin-II hypertension is blunted in interferon-γ−/− and interleukin-17A−/− mice. Hypertension. 2015;65:569–76.

    Article  CAS  Google Scholar 

  23. Barhoumi T, Kasal DA, Li MW, Shbat L, Laurant P, Neves MF, et al. T regulatory lymphocytes prevent angiotensin II–induced hypertension and vascular injury. Hypertension. 2011;57:469–76.

    Article  CAS  Google Scholar 

  24. Tipton AJ, Baban B, Sullivan JC. Female spontaneously hypertensive rats have greater renal anti-inflammatory T lymphocyte infiltration than males. Am J Phys Regul Integr Comp Phys. 2012;303:R359–67.

    CAS  Google Scholar 

  25. •• Tipton AJ, Musall JB, Crislip GR, Sullivan JC. Greater transforming growth factor-β in adult female SHR is dependent on blood pressure, but does not account for sex differences in renal T-regulatory cells. Am J Physiol Ren Physiol. 2017;313:F847–53 Important investigation into sex-specific TGF-β signaling and sex difference in T regulatory cell expression in spontaneously hypertensive rats.

    Article  Google Scholar 

  26. Taylor LE, Gillis EE, Musall JB, Baban B, Sullivan JC. High-fat diet-induced hypertension is associated with a proinflammatory T cell profile in male and female Dahl salt-sensitive rats. Am J Physiol Heart Circ Physiol. 2018;315:H1713–23.

    Article  CAS  Google Scholar 

  27. Tamaya-Mori N, Uemura K, Iguchi A. Gender differences in the dietary lard-induced increase in blood pressure in rats. Hypertension. 2002;39:1015–20.

    Article  CAS  Google Scholar 

  28. Roberts CK, Vaziri ND, Barnard RJ. Protective effects of estrogen on gender-specific development of diet-induced hypertension. J Appl Physiol. 2001;91:2005–9.

    Article  CAS  Google Scholar 

  29. •• Pollow, DP, Uhlorn, J, Sylvester, MA, Romero-Aleshire, MJ, Uhrlaub, JU, Lindsey, M, et al. Menopause and FOXP3+ Treg cell depletion eliminate female protection against T cell-mediated Angiotensin II hypertension. Am J Physiol Heart Circ Physiol. 2019; in press Depletion of FoxP3 + T regulatory cells eliminates premenopausal protection from hypertension.

  30. Wu C, Yosef N, Thalhamer T, Zhu C, Xiao S, Kishi Y, et al. Induction of pathogenic TH17 cells by inducible salt-sensing kinase SGK1. Nature. 2013;496:513–7.

    Article  CAS  Google Scholar 

  31. • Norlander AE, Saleh MA, Pandey AK, Itani HA, Wu J, Xiao L, et al. A salt-sensing kinase in T lymphocytes, SGK1, drives hypertension and hypertensive end-organ damage. JCI Insight. 2017;2:13 In males, evidence of salt-sensing signaling on T cell leads to hypertensive response.

    Article  Google Scholar 

  32. Du Y-N, Tang X-F, Xu L, Chen W-D, Gao P-J, Han W-Q. SGK1-FoxO1 signaling pathway mediates Th17/Treg imbalance and target organ inflammation in angiotensin II-induced hypertension. Front Physiol. 2018;9:1581.

    Article  Google Scholar 

  33. Sun X-N, Li C, Liu Y, Du L-J, Zeng M-R, Zheng X-J, et al. T-cell mineralocorticoid receptor controls blood pressure by regulating interferon-gamma. Circ Res. 2017;120:1584–97.

    Article  CAS  Google Scholar 

  34. Maas AHEM, Franke HR. Women’s health in menopause with a focus on hypertension. Neth Hear J. 2009;17:68–72.

    Article  CAS  Google Scholar 

  35. Vural P, Akgul C, Canbaz M. Effects of hormone replacement therapy on plasma pro-inflammatory and anti-inflammatory cytokines and some bone turnover markers in postmenopausal women. Pharmacol Res. 2006;54:298–302.

    Article  CAS  Google Scholar 

  36. Cunningham M, Gilkeson G. Estrogen receptors in immunity and autoimmunity. Clin Rev Allergy Immunol. 2011;40:66–73.

    Article  CAS  Google Scholar 

  37. Phiel KL, Henderson RA, Adelman SJ, Elloso MM. Differential estrogen receptor gene expression in human peripheral blood mononuclear cell populations. Immunol Lett. 2005;97:107–13.

    Article  CAS  Google Scholar 

  38. Lélu K, Laffont S, Delpy L, Paulet P-E, Périnat T, Tschanz SA, et al. Estrogen receptor α signaling in T lymphocytes is required for estradiol-mediated inhibition of Th1 and Th17 cell differentiation and protection against experimental autoimmune encephalomyelitis. J Immunol. 2011;187:2386–93.

    Article  Google Scholar 

  39. Xue B, Pamidimukkala J, Lubahn DB, Hay M. Estrogen receptor-alpha mediates estrogen protection from angiotensin II-induced hypertension in conscious female mice. Am J Physiol Heart Circ Physiol. 2007;292:H1770–6.

    Article  CAS  Google Scholar 

  40. •• Pollow DP, Romero-Aleshire MJ, Sanchez JN, Konhilas JP, Brooks HL. ANG II-induced hypertension in the VCD mouse model of menopause is prevented by estrogen replacement during perimenopause. Am J Physiol Regul Integr Comp Physiol. 2015;309:R1546–52 First evidence that female mice lose protection from hypertension following ovarian failure using the VCD model of menopause.

    Article  CAS  Google Scholar 

  41. Itani HA, Xiao L, Saleh MA, Wu J, Pilkinton MA, Dale BL, et al. CD70 exacerbates blood pressure elevation and renal damage in response to repeated hypertensive stimuli. Circ Res. 2016;118:1233–43.

    Article  CAS  Google Scholar 

  42. • Barbaro NR, Foss JD, Kryshtal DO, Tsyba N, Kumaresan S, Xiao L, et al. Dendritic cell amiloride-sensitive channels mediate sodium-induced inflammation and hypertension. Cell Rep. 2017;21:1009–20 Evidence of sodium signaling directly on dendritic cells leading to increased hypertensive response specifically in male mice.

    Article  CAS  Google Scholar 

  43. Cheng H-F, Harris RC. Cyclooxygenases, the kidney, and hypertension. Hypertension. 2004;43:525–30.

    Article  CAS  Google Scholar 

  44. D’Abril Ruíz-Leyja E, Villalobos-Molina R, López-Guerrero JJ, Gallardo-Ortíz IA, Estrada-Soto SE, Ibarra-Barajas M. Differential role of cyclooxygenase-1 and -2 on renal vasoconstriction to α1-adrenoceptor stimulation in normotensive and hypertensive rats. Life Sci. 2013;93:552–7.

    Article  Google Scholar 

  45. Sullivan JC, Sasser JM, Pollock DM, Pollock JS. Sexual dimorphism in renal production of Prostanoids in spontaneously hypertensive rats. Hypertension. 2005;45:406–11.

    Article  CAS  Google Scholar 

  46. • Elmarakby AA, Katary M, Pollock JS, Sullivan JC. Influence of the selective COX-2 inhibitor celecoxib on sex differences in blood pressure and albuminuria in spontaneously hypertensive rats. Prostaglandins Other Lipid Mediat. 2018;135:16–20 First investigation into COX-2 signaling mechanisms in both male and female spontaneously hypertensive rats.

    Article  CAS  Google Scholar 

  47. Lebreton F, Berishvili E, Parnaud G, Rouget C, Bosco D, Berney T, et al. NLRP3 inflammasome is expressed and regulated in human islets. Cell Death Dis. 2018;9:726.

    Article  Google Scholar 

  48. Yin J, Zhao F, Chojnacki JE, Fulp J, Klein WL, Zhang S, et al. NLRP3 Inflammasome inhibitor ameliorates amyloid pathology in a mouse model of Alzheimer’s Disease. Mol Neurobiol. 2018;55:1977–87.

    Article  CAS  Google Scholar 

  49. Keane RW, Dietrich WD, de Rivero Vaccari JP. Inflammasome proteins as biomarkers of multiple sclerosis. Front Neurol. 2018;9:135.

    Article  Google Scholar 

  50. Wang Q, So A, Nussberger J, Ives A, Bagnoud N. Renin-dependent hypertension in mice requires the NLRP3- inflammasome. J Hypertens. 2013;3:187.

    Google Scholar 

  51. • Krishnan SM, Ling YH, Huuskes BM, Ferens DM, Saini N, Chan CT, et al. Pharmacological inhibition of the NLRP3 inflammasome reduces blood pressure, renal damage, and dysfunction in salt-sensitive hypertension. Cardiovasc Res. 2019;115:776–87 Novel investigation into the therapeutic potential of the NLRP3 inflammasome pathway in male mice.

    Article  Google Scholar 

  52. Sun H-J, Ren X-S, Xiong X-Q, Chen Y-Z, Zhao M-X, Wang J-J, et al. NLRP3 inflammasome activation contributes to VSMC phenotypic transformation and proliferation in hypertension. Cell Death Dis. 2017;8:e3074.

    Article  Google Scholar 

  53. Varghese GP, Fransén K, Hurtig-Wennlöf A, Bengtsson T, Jansson J-H, Sirsjö A. Q705K variant in NLRP3 gene confers protection against myocardial infarction in female individuals. Biomed Rep. 2013;1:879–82.

    Article  CAS  Google Scholar 

  54. Stødle GS, Silva GB, Tangerås LH, Gierman LM, Nervik I, Dahlberg UE, et al. Placental inflammation in pre-eclampsia by nod-like receptor protein (NLRP)3 inflammasome activation in trophoblasts. Clin Exp Immunol. 2018;193:84–94.

    Article  Google Scholar 

  55. Weel I C, Romão-Veiga M, Matias ML, Fioratti EG, Peraçoli JC, Borges VT, et al. Increased expression of NLRP3 inflammasome in placentas from pregnant women with severe preeclampsia. J Reprod Immunol. 2017;123:40–7.

    Article  Google Scholar 

  56. Shirasuna K, Karasawa T, Usui F, Kobayashi M, Komada T, Kimura H, et al. NLRP3 deficiency improves angiotensin II-induced hypertension but not fetal growth restriction during pregnancy. Endocrinology. 2015;156:4281–92.

    Article  CAS  Google Scholar 

Download references

Funding

This work was funded by the National Institutes of Health Grants HL131834 (H.L.B) and T32HL007249 (M.S.)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heddwen L. Brooks.

Ethics declarations

Conflict of Interest

The authors declare no conflicts of interest relevant to this manuscript.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Inflammation and Cardiovascular Diseases

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sylvester, M.A., Brooks, H.L. Sex-Specific Mechanisms in Inflammation and Hypertension. Curr Hypertens Rep 21, 53 (2019). https://doi.org/10.1007/s11906-019-0959-2

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11906-019-0959-2

Keywords

Navigation