Vasopressin, Central Autonomic Control and Blood Pressure Regulation

  • Maja Lozić
  • Olivera Šarenac
  • David Murphy
  • Nina Japundžić-Žigon
Hypertension and the Brain (R Wainford, Section Editor)
  • 144 Downloads
Part of the following topical collections:
  1. Topical Collection on Hypertension and the Brain

Abstract

Purpose of Review

We present recent advances in understanding of the role of vasopressin as a neurotransmitter in autonomic nervous system control of the circulation, emphasizing hypothalamic mechanisms in the paraventricular nucleus (PVN) involved in controlling sympathetic outflow toward the cardiovascular system.

Recent Findings

Suggest that somato-dendritically released vasopressin modulates the activity of magnocellular neurons in the PVN and SON, their discharge pattern and systemic release. Advances have been made in uncovering autocrine and paracrine mechanisms controlling presympathetic neuron activity, involving intranuclear receptors, co-released neuroactive substances and glia.

Summary

It is now obvious that intranuclear release of vasopressin and the co-release of neuroactive substances in the PVN, as well as the level of expression of vasopressin receptors, modulate sympathetic outflow to the cardiovascular system and determine vulnerability to stress. Further research involving patho-physiological models is needed to validate these targets and foster the development of more efficient treatment.

Keywords

Vasopressin Blood pressure Autonomic control Paraventricular nucleus Magnocellular neurons Somato-dendritic release 

Notes

Compliance with Ethical Standards

Conflict of Interest

The authors declare no conflicts of interest relevant to this manuscript.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance. •• Of major importance

  1. 1.
    World Health Organization: A global brief on Hypertension 2013.Google Scholar
  2. 2.
    Japundžić-Žigon N. Vasopressin and oxytocin in control of the cardiovascular system. Curr Neuropharmacol. 2013;11(2):218–30.  https://doi.org/10.2174/1570159X11311020008.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Dampney RAL, Coleman MJ, Fontes MA, Hirooka Y, Horiuchi J, Li Y-W, et al. Central mechanisms underlying short- and long-term regulation of the cardiovascular system. Clin Exp Pharmacol Physiol. 2002;29:261–8.CrossRefPubMedGoogle Scholar
  4. 4.
    Dampney RAL. Central neural control of the cardiovascular system: current perspectives. Adv Physiol Educ. 2016;40:283–96.CrossRefPubMedGoogle Scholar
  5. 5.
    Guyenet PG. The sympathetic control of blood pressure. Nat Rev Neurosci. 2006;7(5):335–46.  https://doi.org/10.1038/nrn1902.CrossRefPubMedGoogle Scholar
  6. 6.
    Carmichael CY, Wainford RD. Hypothalamic signaling mechanisms in hypertension. Curr Hypertens Rep. 2015;17:39.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    DiBona GF. Sympathetic nervous system and hypertension. Hypertension. 2013;61(3):556–60.  https://doi.org/10.1161/HYPERTENSIONAHA.111.00633.CrossRefPubMedGoogle Scholar
  8. 8.
    Parati G, Elser M. The human sympathetic nervous system: its relevance in hypertension and heart failure. Eur Heart J. 2012;33(9):1058–66.  https://doi.org/10.1093/eurheartj/ehs041.CrossRefPubMedGoogle Scholar
  9. 9.
    Burbach JP, Luckman SM, Murphy D, Gainer H. Gene regulation in the magnocellular hypothalamo-neurohypophysial system. Physiol Rev. 2001;81(3):1197–267.  https://doi.org/10.1152/physrev.2001.81.3.1197.CrossRefPubMedGoogle Scholar
  10. 10.
    Pyner S. Neurochemistry of the paraventricular nucleus of the hypothalamus: implications for cardiovascular regulation. J Chem Neuroanat. 2009;38:197–208.CrossRefPubMedGoogle Scholar
  11. 11.
    Pyner S, Guyenet GP. The sympathetic control of blood pressure. Nat Rev Neurosci. 2006;7:335–46.Google Scholar
  12. 12.
    Pyner S, Coote JH. Identification of an efferent projection from the paraventricular nucleus of the hypothalamus terminating close to spinally projecting rostral ventrolateral medullary neurons. Neuroscience. 1999;88(3):949–57.  https://doi.org/10.1016/S0306-4522(98)00255-3.CrossRefPubMedGoogle Scholar
  13. 13.
    Pyner S, Coote JH. Identification of branching paraventricular neurons of the hypothalamus that project to the rostroventrolateral medulla and spinal cord. Neuroscience. 2000;100(3):549–56.  https://doi.org/10.1016/S0306-4522(00)00283-9.CrossRefPubMedGoogle Scholar
  14. 14.
    Hallbeck M, Blomqvist A. Spinal cord-projecting vasopressinergic neurons in the rat paraventricular hypothalamus. J Comp Neurol. 1999;411(2):201–11.  https://doi.org/10.1002/(SICI)1096-9861(19990823)411:2<201::AID-CNE3>3.0.CO;2-3.CrossRefPubMedGoogle Scholar
  15. 15.
    Koshimizu T, Nakamura K, Egashira N, Hiroyama M, Nonoguchi H, Tanoue A. Vasopressin V1a and V1b receptors: from molecules to physiological systems. Physiol Rev. 2012;92(4):1813–64.  https://doi.org/10.1152/physrev.00035.2011.CrossRefPubMedGoogle Scholar
  16. 16.
    Kato Y, Igarashi N, Hirasawa A, Tsujimoto G, Kobayashi M. Distribution and developmental changes in vasopressin V2 receptor mRNA in rat brain. Differentiation. 1995;59(3):163–9.  https://doi.org/10.1046/j.1432-0436.1995.5930163.x.CrossRefPubMedGoogle Scholar
  17. 17.
    Milutinović-Smiljanić S, Šarenac O, Lozić-Djurić M, Murphy D, Japundžić-Žigon N. Evidence for involvement of central vasopressin V1b and V2 receptors in stress-induced baroreflex desensitization. Br J Pharmacol. 2013;169(4):900–8.  https://doi.org/10.1111/bph.12161.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Koshimizu TA, Nasa Y, Tanoue A, Oikawa R, Kawahara Y, Kiyono Y, et al. V1a vasopressin receptors maintain normal blood pressure by regulating circulating blood volume and baroreflex sensitivity. Proc Natl AcadSci U S A. 2006;103(20):7807–12.  https://doi.org/10.1073/pnas.0600875103.CrossRefGoogle Scholar
  19. 19.
    Berecek KH, Webb RL, Barron KW, Brody MJ. Vasopressin projections and central control of cardiovascular function. Ann N Y Acad Sci. 1982;394(1 The Brattlebo):729–34.  https://doi.org/10.1111/j.1749-6632.1982.tb37490.x.CrossRefPubMedGoogle Scholar
  20. 20.
    Ostrowski NL, Lolait SJ, Bradley DJ, O'Carroll AM, Brownstein MJ, Young WS 3rd. Distribution of V1a and V2 vasopressin receptor messenger ribonucleic acids in rat liver, kidney, pituitary and brain. Endocrinology. 1992;131(1):533–5.  https://doi.org/10.1210/endo.131.1.1535312.CrossRefPubMedGoogle Scholar
  21. 21.
    Barberis C, Tribollet E. Vasopressin and oxytocin receptors in the central nervous system. Crit Rev Neurobiol. 1996;10(1):119–54.CrossRefPubMedGoogle Scholar
  22. 22.
    Gerstberger R, Fahrenholz F. Autoradiographic localization of V1 vasopressin binding sites in rat brain and kidney. Eur J Pharmacol. 1989;167(1):105–16.  https://doi.org/10.1016/0014-2999(89)90752-8.CrossRefPubMedGoogle Scholar
  23. 23.
    Sermasi E, Howl J, Wheatley M, Coote JH. Localisation of arginine vasopressin V1a receptors on sympatho-adrenal preganglionic neurones. Exp Brain Res. 1998;119(1):85–91.  https://doi.org/10.1007/s002210050322.CrossRefPubMedGoogle Scholar
  24. 24.
    Tribollet E, Barberis C, Arsenijevic Y. Distribution of vasopressin and oxytocin receptors in the rat spinal cord: sex-related differences and effect of castration in pudendal motor nuclei. Neuroscience. 1997;78(2):499–509.  https://doi.org/10.1016/S0306-4522(96)00591-X.CrossRefPubMedGoogle Scholar
  25. 25.
    Martin SM, Malkinson TJ, Veale WL, Pittman QJ. The action of centrally administered arginine vasopressin on blood pressure in the conscious rabbit. Brain Res. 1985;348(1):137–45.  https://doi.org/10.1016/0006-8993(85)90369-5.CrossRefPubMedGoogle Scholar
  26. 26.
    • Han SY, Bouwer GT, Seymour AJ, Korpal AK, Schwenke DO, Brown CH. Induction of hypertension blunts baroreflex inhibition of vasopressin neurons in the rat. Eur J Neurosci. 2015;42(9):2690–8. Centrally injected angiotensin II increases the firing rate of magnocellular neurons, and that this increase was not related to the changes in plasma osmolality, but rather to a decrease in baroreflex inhibition of vasopressin neurons.CrossRefPubMedGoogle Scholar
  27. 27.
    Son SJ, Filosa JA, Potapenko ES, Biancardi VC, Zheng H, Patel KP, et al. Dendritic peptide release mediates interpopulation crosstalk between neurosecretory and preautonomic networks. Neuron. 2013;78(6):1036–49.  https://doi.org/10.1016/j.neuron.2013.04.025.CrossRefPubMedGoogle Scholar
  28. 28.
    • Ribeiro N, do Nascimento Panizza H, dos Santos KM, Ferreira-Neto HC, Antunes VR. Salt-induced sympathoexcitation involves vasopressin V1a receptor activation in the paraventricular nucleus of the hypothalamus. Am J Physiol Regul Integr Comp Physiol. 2015;309:R1369–79. The consumption of a high salt diet induces sympatho-exitation and high blood pressure via the action of vasopressin on V1aRs in the PVN.CrossRefPubMedGoogle Scholar
  29. 29.
    • Lozic M, Tasic T, Martin A, Greenwood M, Sarenac O, Hindmarch C, et al. Over-expression of V1a receptors in PVN modulates autonomic cardiovascular control. Pharmacol Res. 2016;114:185–95. Virally mediated overexpression of V1aRs in the PVN reduces baroreceptor sensitivity under baseline conditions, and increase BP and HR variability during exposure to stress, indicating that V1aRs in the PVN influences autonomic cardiovascular regulation and demarcate vulnerability to stress.CrossRefPubMedGoogle Scholar
  30. 30.
    Rossi NF, Maliszewska-Scislo M. Role of paraventricular nucleus vasopressin V1A receptors in the response to endothelin 1 activation of the subfornical organ in the rat. J Physiol Pharmacol. 2008;59(Suppl 8):47–5.PubMedPubMedCentralGoogle Scholar
  31. 31.
    Japundžić-Žigon N, Šarenac O, Lozić M, Vasić M, Tasić T, Bajić D, et al. Sudden death: neurogenic causes, prediction and prevention. Eur J Prev Cardiol. 2017;25(1):2047487317736827–39.  https://doi.org/10.1177/2047487317736827.Google Scholar
  32. 32.
    Oikawa R, Hosoda C, Nasa Y, Daicho T, Tanoue A, Tsujimoto G, et al. Decreased susceptibility to salt-induced hypertension in subtotally nephrectomized mice lacking the vasopressin V1a receptor. Cardiovasc Res. 2010;87(1):187–94.CrossRefPubMedGoogle Scholar
  33. 33.
    Fujiwara Y, Tanoue A, Tsujimoto G, Koshimizu TA. The roles of V1a vasopressin receptors in blood pressure homeostasis: a review of studies on V1a receptor knockout mice. Clin Exp Nephrol. 2012;16(1):30–4.  https://doi.org/10.1007/s10157-011-0497-y.CrossRefPubMedGoogle Scholar
  34. 34.
    Koshimizu TA, Nasa Y, Tanoue A, Oikawa R, Kawahara Y, Kiyono Y, et al. V1a vasopressin receptors maintain normal blood pressure by regulating circulating blood volume and baroreflex sensitivity. Proc Natl Acad Sci U S A. 2006;103(20):7807–12.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Gouzènes L, Desarménien MG, Hussy N, Richard P, Moos FC. Vasopressin regularizes the phasic firing pattern of rat hypothalamic magnocellular vasopressin neurons. J Neurosci. 1998;18(5):1879–85.PubMedGoogle Scholar
  36. 36.
    Ludwig M, Leng G. Dendritic peptide release and peptide-dependent behaviours. Nat Rev Neurosci. 2006;7(2):126–36.  https://doi.org/10.1038/nrn1845.CrossRefPubMedGoogle Scholar
  37. 37.
    Tobin V, Leng G, Ludwig M. The involvement of actin, calcium channels and exocytosis proteins in somato-dendritic oxytocin and vasopressin release. Front Physiol. 2012;3:261.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Lombardi F. Clinical implications of present physiological understanding of HRV components. Card Electrophysiol Rev. 2002;6:245–9.CrossRefPubMedGoogle Scholar
  39. 39.
    Narkiewicz K, Grassi G. Impaired baroreflex sensitivity as a potential marker of cardiovascular risk in hypertension. J Hypertens. 2008;26(7):1303–4.  https://doi.org/10.1097/HJH.0b013e328305e1a5.CrossRefPubMedGoogle Scholar
  40. 40.
    Parati G, Ochoa JE, Bilo G. Blood pressure variability, cardiovascular risk, and risk for renal disease progression. Curr Hypertens Rep. 2012;14:421–31.CrossRefPubMedGoogle Scholar
  41. 41.
    Jackiewicz E, Szczepanska-Sadowska E, Dobruch J. Altered expression of angiotensin at1a and vasopressinv1a receptors and nitric oxide synthase mRNA in the brain of rats with renovascular hypertension. J Physiol Pharmacol. 2004;55(4):725–37.PubMedGoogle Scholar
  42. 42.
    God A, Malinski W, Kumosa M, Dobruch J, Szczepanska-Sadowska E. Differential expression of vasopressin V1a and V1b receptors mRNA in the brain of renin transgenic TGRmRen2 (27) and Sprague Dawley rats. Brain Res Bull. 2003;59:399–403.CrossRefGoogle Scholar
  43. 43.
    McDougall J, Roulston CA, Widdop RE, Lawrence AJ. Characterisation of vasopressin V1A, angiotensin AT1 and AT2 receptor distribution and density in normotensive and hypertensive rat brain stem and kidney: effects of restraint stress. Brain Res. 2000;883(1):148–56.CrossRefPubMedGoogle Scholar
  44. 44.
    Volpi S, Rabadan-Diehl C, Aguilera G. Vasopressinergic regulation of the hypothalamic pituitary adrenal axis and stress adaptation. Stress. 2004;7(2):75–83.  https://doi.org/10.1080/10253890410001733535.CrossRefPubMedGoogle Scholar
  45. 45.
    Litvin Y, Murakami G, Pfaff DW. Effects of chronic social defeat on behavioral and neural correlates of sociality: Vasopressin, oxytocin and the vasopressinergic V1b receptor. Physiol Behav. 2011;103(3–4):393–403.CrossRefPubMedGoogle Scholar
  46. 46.
    Vaccari C, Lolait SJ, Ostrowski NL. Comparative distribution of vasopressin V1b and oxytocin receptor messenger ribonucleic acids in brain. Endocrinology. 1998;139(12):5015–33.  https://doi.org/10.1210/endo.139.12.6382.CrossRefPubMedGoogle Scholar
  47. 47.
    Hernando F, Schoots O, Lolait SJ, Burbach JP. Immunohistochemical localization of the vasopressin V1b receptor in the rat brain and pituitary gland: anatomical support for its involvement in the central effects of vasopressin. Endocrinology. 2001;142(4):1659–68.  https://doi.org/10.1210/endo.142.4.8067.CrossRefPubMedGoogle Scholar
  48. 48.
    Wersinger SR, Ginns EI, O’Carroll AM, Lolait SJ, Young WS 3rd. Vasopressin V1b receptor knockout reduces aggressive behavior in male mice. Mol Psychiatry. 2002;7(9):975–84.  https://doi.org/10.1038/sj.mp.4001195.CrossRefPubMedGoogle Scholar
  49. 49.
    Caldwell HK, Dike OE, Stevenson EL, Storck K, Young WS 3rd. Social dominance in male vasopressin 1b receptor knockout mice. Horm Behav. 2010;58(2):257–63.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Blanchard RJ, Griebel G, Farrokhi C, Markham C, Yang M, Blanchard DC. AVP V1b selective antagonist SSR149415 blocks aggressive behaviors in hamsters. Pharmacol Biochem Behav. 2005;80(1):189–94.CrossRefPubMedGoogle Scholar
  51. 51.
    Griebel G, Simiand J, Serradeil-Le Gal C, Wagnon J, Pascal M, Scatton B, et al. Anxiolytic- and antidepressant-like effects of the non-peptide vasopressin V1b receptor antagonist, SSR149415, suggest an innovative approach for the treatment of stress-related disorders. Proc Natl Acad Sci U S A. 2002;99(9):6370–5.  https://doi.org/10.1073/pnas.092012099.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Iijima M, Yoshimizu T, Shimazaki T, Tokugawa K, Fukumoto K, Kurosu S, et al. Antidepressant and anxiolytic profiles of newly synthesized arginine vasopressin V1B receptor antagonists: TASP0233278 and TASP0390325. Br J Pharmacol. 2014;171(14):3511–25.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Brunner SM, Farzi A, Locker F, Holub BS, Drexel M, Reichmann F, et al. GAL3 receptor KO mice exhibit an anxiety-like phenotype. Proc Natl AcadSci U S A. 2014;111(19):7138–43.  https://doi.org/10.1073/pnas.1318066111.CrossRefGoogle Scholar
  54. 54.
    El-Werfali W, Toomasian C, Maliszewska-Scislo M, Li C, Rossi NF. Haemodynamic and renal sympathetic responses to V1b vasopressin receptor activation within the paraventricular nucleus. Exp Physiol. 2015;100(5):553–65.CrossRefPubMedGoogle Scholar
  55. 55.
    Reaux A, De Mota N, Skultetyova I, Lenkei Z, El Messari S, Gallatz K, et al. Physiological role of a novel neuropeptide, apelin, and its receptor in the rat brain. J Neurochem. 2001;77(4):1085–96.  https://doi.org/10.1046/j.1471-4159.2001.00320.x.CrossRefPubMedGoogle Scholar
  56. 56.
    O’Carroll A-M, Lolait SJ. Regulation of rat APJ receptor messenger ribonucleic acid expression in magnocellular neurones of the paraventricular and supraoptic nuclei by osmotic stimuli. J Neuroendocrinol. 2003;15(7):661–6.  https://doi.org/10.1046/j.1365-2826.2003.01044.x.CrossRefPubMedGoogle Scholar
  57. 57.
    Brown CH, Ruan M, Scott V, Tobin VA, Ludwig M. Multi-factorial somato-dendritic regulation of phasic spike discharge in vasopressin neurons. Prog Brain Res. 2008;170:219–28.  https://doi.org/10.1016/S0079-6123(08)00419-6.CrossRefPubMedGoogle Scholar
  58. 58.
    Zhang Q, Yao F, Raizada MK, O’Rourke ST, Sun C. Apelin gene transfer into the rostral ventrolateral medulla induces chronic blood pressure elevation in normotensive rats. Circ Res. 2009;104(12):1421–8.  https://doi.org/10.1161/CIRCRESAHA.108.192302.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Zhang F, Sun H-J, Xiong X-Q, Chen Q, Li Y-H, Kang Y-M, et al. Apelin-13 and APJ in paraventricular nucleus contribute to hypertension via sympathetic activation and vasopressin release in SHR. Acta Physiol. 2014;212:17–27.CrossRefGoogle Scholar
  60. 60.
    Kagiyama S, Fukuhara M, Matsumura K, Lin Y, Fujii K, Iida M. Central and peripheral cardiovascular actions of apelin in conscious rats. Regul Pept. 2005;125:55–9.CrossRefPubMedGoogle Scholar
  61. 61.
    Reaux-Le Goazigo A, Morinville A, Burlet A, Llorens-Cortes C, Beaudet A. Dehydration-induced cross-regulation of apelin and vasopressin immunoreactivity levels in magnocellular hypothalamic neurons. Endocrinology. 2004;14:4392–400.CrossRefGoogle Scholar
  62. 62.
    • Griffiths PR, Lolait SJ, Harris LE, Paton JFR, O’Carroll A-M. Vasopressin V1a receptors mediate the hypertensive effects of [PYR1]apelin-13 in the rat rostral ventrolateral medulla. J Physiol. 2017;595(11):3303–18. Apelin-induced sympatho-excitation at the level of RVLM is dependent upon V1aRs.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Shen XZ, Li Y, Li L, Shah KH, Bernstein KE, Lyden P, et al. Microglia participate in neurogenic regulation of hypertension. Hypertension. 2015;66(2):309–16.  https://doi.org/10.1161/HYPERTENSIONAHA.115.05333.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Potapenko ES, Biancardi VC, Zhou Y, Stern JE. Altered astrocyte glutamate transporter regulation of hypothalamic neurosecretory neurons in heart failure rats. Am J Physiol Regul Integr Comp Physiol. 2012;303(3):R291–300.  https://doi.org/10.1152/ajpregu.00056.2012.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Stern JE, Son S, Biancardi VC, Zheng H, Sharma N, Patel KP. Astrocytes contribute to angiotensin II stimulation of hypothalamic neuronal activity and sympathetic outflow. Hypertension. 2016;68(6):1483–93.  https://doi.org/10.1161/HYPERTENSIONAHA.116.07747.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Zhang M, Stern JE. Altered NMDA receptor-evoked intracellular Ca2+ dynamics in magnocellular neurosecretory neurons of hypertensive rats. J Physiol. 2017;  https://doi.org/10.1113/JP275169.

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Maja Lozić
    • 1
  • Olivera Šarenac
    • 1
  • David Murphy
    • 2
  • Nina Japundžić-Žigon
    • 1
  1. 1.Laboratory for Cardiovascular Pharmacology, Institute of Pharmacology, Clinical Pharmacology and Toxicology, School of MedicineUniversity of BelgradeBelgradeSerbia
  2. 2.Molecular Neuroendocrinology Research Group, The Henry Wellcome Laboratories for Integrative Neuroscience and EndocrinologyUniversity of BristolBristolUK

Personalised recommendations