Skip to main content
Log in

Angiotensin-(1–7) and Alamandine on Experimental Models of Hypertension and Atherosclerosis

  • Pathogenesis of Hypertension (W Elliott and R Santos, Section Editors)
  • Published:
Current Hypertension Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The purpose of this review was to summarize the current knowledge on the role of angiotensin-(1–7) [Ang-(1–7)] and alamandine in experimental hypertension and atherosclerosis.

Recent Findings

The renin-angiotensin system (RAS) is a very complex system, composed of a cascade of enzymes, peptides, and receptors, known to be involved in the pathogenesis of hypertension and atherosclerosis. Ang-(1–7), identified and characterized in 1987, and alamandine, discovered 16 years after, are the newest two main effector molecules from the RAS, protecting the vascular system against hypertension and atherosclerosis.

Summary

While the beneficial effects of Ang-(1–7) have been widely studied in several experimental models of hypertension, much less studies were performed in experimental models of atherosclerosis. Alamandine has shown similar vascular effects to Ang-(1–7), namely, endothelial-dependent vasorelaxation mediated by nitric oxide and hypotensive effects in experimental hypertension. There are few studies on the effects of alamandine on atherosclerosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

2K1C:

Two-kidney, one clip

Ang-(1–7):

Angiotensin-(1–7)

A-779:

D-Ala7-Angiotensin-(1–7)

ACE:

Angiotensin-converting enzyme

ACE2:

Angiotensin-converting enzyme 2

AdACE2:

Transfected plasmids for ACE2

Ang A:

Angiotensin A

Ang I:

Angiotensin I

Ang II:

Angiotensin II

Ang III:

Angiotensin-(2–8)

Ang IV:

Angiotensin-(3–8)

Ang-(1–4):

Angiotensin-(1–4)

Ang-(1–5):

Angiotensin-(1–5)

Ang-(1–9):

Angiotensin-(1–9)

ANP:

Atrial natriuretric peptide

ApoE-KO:

ApolE knockout

AT1R:

Angiotensin receptor type I

AT2R:

Angiotensin receptor type II

AVP:

arginine vasopressin

Bcl2:

B-cell lymphoma 2

BLA:

basolateral amygdala

BW:

body weight

CAT:

Catalase

CHO cells:

Chinese hamster ovary cells

CVD:

cardiovascular diseases

CVLM:

caudal ventrolateral medulla

DBP:

Diastolic blood pressure

DKO:

Double-knockout

DOCA-salt:

Deoxycorticosterone acetate salt

D-Pro7Ang-(1-7) :

D-Pro7Angiotensin-(1-7)

GMP:

Guanosine monophosphate

Gp91:

subunit of phagocyte NADPH oxidase

HF:

High frequency

HNS:

hypothalamo-neurohypophysial system

HPβCD:

2-Hydroxypropyl-β-cyclodextrin

HR:

Heart rate

HUVEC:

Human umbilical vein endothelial cells

HW:

heart weight

ICAM-1:

Intercellular adhesion molecule-1

IL-6:

Interleukin-6

IL-12:

Interleukin-12

MAP:

Mean arterial pressure

MasR:

Mas receptor

MCP-1:

Monocyte chemoattractant protein-1

MDA:

Malondialdehyde

MMPs:

Matrix metalloproteinases

MMP-3:

Matrix metalloproteinases 3

MMP-8:

Matrix metalloproteinases 8

MMP-9:

Matrixmetalloproteinases 9

(mRen2)27:

Hypertensive transgenic rats

MrgD:

Mas-related G protein-coupled type D

NFAT:

Nuclear factor of activated T-cells

NO:

Nitric oxide

NZW:

New Zealand white

p38 MAPK:

p38 mitogen-activated protein kinases

PAI-1:

Plasminogen activator inhibitor-1

RAS:

Renin-angiotensin system

ROS:

Reactive oxygen species

RSNA:

Renal sympathetic nerve activity

RVLM:

Rostral ventrolateral medulla

SAA:

Skeletal α-actin

SaA:

Serum amyloid A

SBP:

Systolic blood pressure

SD:

Sprague-Dawley

SHR:

Spontaneously hypertensive rats

SOD:

Superoxide dismutase

TGF-1:

Transforming growth factor-1

TIMP-2:

Tissue inhibitor of metalloproteinases-2

VCAM-1:

vascular cell adhesion protein-1

VSMC:

Vascular smooth muscle cells

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. (2015) Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 19902013: A systematic analysis for the global burden of disease study 2013. Lancet 385(9963):117–71. https://doi.org/10.1016/S0140-6736(14)61682-2

  2. Granger DN, et al. Microvascular responses to cardiovascular risk factors. Microcirculation. 2010;17(3):192–205. https://doi.org/10.1111/j.1549-8719.2009.00015.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Tunon J, et al. Common pathways of hypercholesterolemia and hypertension leading to atherothrombosis: the need for a global approach in the management of cardiovascular risk factors. Vasc Health Risk Manag. 2007;3(4):521–6.

    PubMed  PubMed Central  Google Scholar 

  4. Bader M. ACE2, angiotensin-(1-7), and Mas: the other side of the coin. Pflugers Arch. 2013;465(1):79–85. https://doi.org/10.1007/s00424-012-1120-0.

    Article  CAS  PubMed  Google Scholar 

  5. Bader M, Peters J, Baltatu O, Müller DN, Luft FC, Ganten D. Tissue renin-angiotensin systems: new insights from experimental animal models in hypertension research. J Mol Med (Berl). 2001;79(2–3):76–102. https://doi.org/10.1007/s001090100210.

    Article  CAS  Google Scholar 

  6. Fraga-Silva RA, Ferreira AJ, Dos Santos RA. Opportunities for targeting the angiotensin-converting enzyme 2/angiotensin-(1-7)/mas receptor pathway in hypertension. Curr Hypertens Rep. 2013;15(1):31–8. https://doi.org/10.1007/s11906-012-0324-1.

    Article  CAS  PubMed  Google Scholar 

  7. Zaman MA, Oparil S, Calhoun DA. Drugs targeting the renin-angiotensin-aldosterone system. Nat Rev Drug Discov. 2002;1(8):621–36. https://doi.org/10.1038/nrd873.

    Article  CAS  PubMed  Google Scholar 

  8. Mazzolai L, Hayoz D. The renin-angiotensin system and atherosclerosis. Curr Hypertens Rep. 2006;8(1):47–53. https://doi.org/10.1007/s11906-006-0040-9.

    Article  CAS  PubMed  Google Scholar 

  9. Durante A, Peretto G, Laricchia A, Ancona F, Spartera M, Mangieri A, et al. Role of the renin-angiotensin-aldosterone system in the pathogenesis of atherosclerosis. Curr Pharm Des. 2012;18(7):981–1004. https://doi.org/10.2174/138161212799436467.

    Article  CAS  PubMed  Google Scholar 

  10. Husain K, Hernandez W, Ansari RA, Ferder L. Inflammation, oxidative stress and renin angiotensin system in atherosclerosis. World J Biol Chem. 2015;6(3):209–17. https://doi.org/10.4331/wjbc.v6.i3.209.

    Article  PubMed  PubMed Central  Google Scholar 

  11. •• Lautner RQ, Villela DC, Fraga-Silva RA, Silva N, Verano-Braga T, Costa-Fraga F, et al. Discovery and characterization of alamandine: a novel component of the renin-angiotensin system. Circ Res. 2013;112(8):1104–1111. This paper reports the discovery and characterization of alamandine, providing first experimental data on its biological activity, biochemical profile and interaction with its receptor, MrgD. https://doi.org/10.1161/CIRCRESAHA.113.301077.

    Article  CAS  PubMed  Google Scholar 

  12. Dickson ME, Sigmund CD. Genetic basis of hypertension: revisiting angiotensinogen. Hypertension. 2006;48(1):14–20. https://doi.org/10.1161/01.HYP.0000227932.13687.60.

    Article  CAS  PubMed  Google Scholar 

  13. Patel S, Rauf A, Khan H, Abu-Izneid T. Renin-angiotensin-aldosterone (RAAS): the ubiquitous system for homeostasis and pathologies. Biomed Pharmacother. 2017;94:317–25. https://doi.org/10.1016/j.biopha.2017.07.091.

    Article  CAS  PubMed  Google Scholar 

  14. Bader M, Ganten D. Regulation of renin: new evidence from cultured cells and genetically modified mice. J Mol Med (Berl). 2000;78(3):130–9. https://doi.org/10.1007/s001090000089.

    Article  CAS  Google Scholar 

  15. Gonzalez AA, Prieto MC. Roles of collecting duct renin and (pro)renin receptor in hypertension: mini review. Ther Adv Cardiovasc Dis. 2015;9(4):191–200. https://doi.org/10.1177/1753944715574817.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gonzalez AA, et al. Angiotensin II stimulates renin in inner medullary collecting duct cells via protein kinase C and independent of epithelial sodium channel and mineralocorticoid receptor activity. Hypertens. 2011;57(3):594–99.

    Article  CAS  Google Scholar 

  17. Lavoie JL, Liu X, Bianco RA, Beltz TG, Johnson AK, Sigmund CD. Evidence supporting a functional role for intracellular renin in the brain. Hypertension. 2006;47(3):461–6. https://doi.org/10.1161/01.HYP.0000203308.52919.dc.

    Article  CAS  PubMed  Google Scholar 

  18. Nguyen G. Renin/prorenin receptors. Kidney Int. 2006;69(9):1503–6. https://doi.org/10.1038/sj.ki.5000265.

    Article  CAS  PubMed  Google Scholar 

  19. Villela DC, Passos-Silva DG, Santos RA. Alamandine: a new member of the angiotensin family. Curr Opin Nephrol Hypertens. 2014;23(2):130–4. https://doi.org/10.1097/01.mnh.0000441052.44406.92.

    Article  CAS  PubMed  Google Scholar 

  20. Bernstein KE, Gonzalez-Villalobos RA, Giani JF, Shah K, Bernstein E, Janjulia T, et al. Angiotensin-converting enzyme overexpression in myelocytes enhances the immune response. Biol Chem. 2014;395(10):1173–8. https://doi.org/10.1515/hsz-2013-0295.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Crisan D, Carr J. Angiotensin I-converting enzyme: genotype and disease associations. J Mol Diagn. 2000;2(3):105–15. https://doi.org/10.1016/S1525-1578(10)60624-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Teixeira LG, et al. Conformational properties of seven Toac-labeled angiotensin I analogues correlate with their muscle contraction activity and their ability to act as ACE substrates. PLoS One. 2015;10(8):e0136608. https://doi.org/10.1371/journal.pone.0136608.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Ahmad S, Simmons T, Varagic J, Moniwa N, Chappell MC, Ferrario CM. Chymase-dependent generation of angiotensin II from angiotensin-(1-12) in human atrial tissue. PLoS One. 2011;6(12):e28501. https://doi.org/10.1371/journal.pone.0028501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Biancardi VC, Bomfim GF, Reis WL, al-Gassimi S, Nunes KP. The interplay between angiotensin II, TLR4 and hypertension. Pharmacol Res. 2017;120:88–96. https://doi.org/10.1016/j.phrs.2017.03.017.

    Article  CAS  PubMed  Google Scholar 

  25. Lacolley P, Safar ME, Regnault V, Frohlich ED. Angiotensin II, mechanotransduction, and pulsatile arterial hemodynamics in hypertension. Am J Physiol Heart Circ Physiol. 2009;297(5):H1567–75. https://doi.org/10.1152/ajpheart.00622.2009.

    Article  CAS  PubMed  Google Scholar 

  26. Weiss D, Sorescu D, Taylor WR. Angiotensin II and atherosclerosis. Am J Cardiol. 2001;87(8A):25C–32C.

    Article  CAS  PubMed  Google Scholar 

  27. •• Santos RA, Brosnihan KB, Chappell MC, Pesquero J, Chernicky CL, Greene LJ, et al. Converting enzyme activity and angiotensin metabolism in the dog brainstem. Hypertension. 1988;11(2 Pt 2):I153–I157. This paper reports for the fist time the presence of Ang-(1–7) and ECA activity in the dog brain. https://doi.org/10.1161/01.HYP.11.2_Pt_2.I153.

    Article  CAS  PubMed  Google Scholar 

  28. Schiavone MT, Santos RA, Brosnihan KB, Khosla MC, Ferrario CM. Release of vasopressin from the rat hypothalamo-neurohypophysial system by angiotensin-(1-7) heptapeptide. Proc Natl Acad Sci U S A. 1988;85(11):4095–8. https://doi.org/10.1073/pnas.85.11.4095.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Campagnole-Santos MJ, et al. Cardiovascular effects of angiotensin-(1-7) injected into the dorsal medulla of rats. Am J Phys. 1989;257(1 Pt 2):H324–9.

    CAS  Google Scholar 

  30. •• Chappell MC, Brosnihan KB, Diz DI, Ferrario CM. Identification of angiotensin-(1–7) in rat brain. Evidence for differential processing of angiotensin peptides. J Biol Chem. 1989;264(28):16518–23. Using radioimmunoassays and high-performance liquid chromatography, the authors described for first time Ang-(1–7) as an endogenous product of the renin-angiotensin system, and detected in brain, adrenal and rat plasma.

    CAS  PubMed  Google Scholar 

  31. Chappell MC. Biochemical evaluation of the renin-angiotensin system: the good, bad, and absolute? Am J Physiol Heart Circ Physiol. 2016;310(2):H137–52. https://doi.org/10.1152/ajpheart.00618.2015.

    Article  PubMed  Google Scholar 

  32. Ferrario CM, et al. Advances in the renin angiotensin system focus on angiotensin-converting enzyme 2 and angiotensin-(1-7). Adv Pharmacol. 2010;59:197–233. https://doi.org/10.1016/S1054-3589(10)59007-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. •• Santos RA, et al. Angiotensin-(1–7) is an endogenous ligand for the G protein-coupled receptor Mas. Proc Natl Acad Sci U S A. 2003;100(14):8258–8263. By using transgenic mice and in vitro transfected cell model, the authors demonstrated for the first time the interaction between Ang-(1–7) and the Mas receptor. https://doi.org/10.1073/pnas.1432869100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Santos RA, Ferreira AJ, Simoes ESAC. Recent advances in the angiotensin-converting enzyme 2-angiotensin(1-7)-Mas axis. Exp Physiol. 2008;93(5):519–27. https://doi.org/10.1113/expphysiol.2008.042002.

    Article  CAS  PubMed  Google Scholar 

  35. McCollum LT, Gallagher PE, Ann Tallant E. Angiotensin-(1–7) attenuatesangiotensin II-induced cardiac remodeling associated with upregulation of dual-specificityphosphatase 1. Am J Physiol Heart Circ Physiol. 2012;302(3):H801–H810.

    Article  CAS  PubMed  Google Scholar 

  36. Santos, RA. Angiotensin-(1–7). Hypertens. 2014;63(6):1138–47.

    Article  CAS  Google Scholar 

  37. Jankowski V, Vanholder R, van der Giet M, Tölle M, Karadogan S, Gobom J, et al. Mass-spectrometric identification of a novel angiotensin peptide in human plasma. Arterioscler Thromb Vasc Biol. 2007;27(2):297–302. https://doi.org/10.1161/01.ATV.0000253889.09765.5f.

    Article  CAS  PubMed  Google Scholar 

  38. • Gembardt F, Grajewski S, Vahl M, Schultheiss HP, Walther T. Angiotensin metabolites can stimulate receptors of the Mas-related genes family. Mol Cell Biochem. 2008;319(1–2):115–123. This article summarizes the findings of the new components of the renin-angiotensin system with homologous sequences to Ang-(1–7) and how they interact with the Mas receptor. https://doi.org/10.1007/s11010-008-9884-4.

    Article  CAS  PubMed  Google Scholar 

  39. van Twist DJ, Kroon AA, de Leeuw PW. Angiotensin-(1-7) as a strategy in the treatment of hypertension? Curr Opin Nephrol Hypertens. 2014;23(5):480–6. https://doi.org/10.1097/MNH.0000000000000050.

    Article  PubMed  CAS  Google Scholar 

  40. Shi Y, Lo CS, Padda R, Abdo S, Chenier I, Filep JG, et al. Angiotensin-(1-7) prevents systemic hypertension, attenuates oxidative stress and tubulointerstitial fibrosis, and normalizes renal angiotensin-converting enzyme 2 and Mas receptor expression in diabetic mice. Clin Sci (Lond). 2015;128(10):649–63. https://doi.org/10.1042/CS20140329.

    Article  CAS  Google Scholar 

  41. Kangussu LM, Guimaraes PS, Nadu AP, Melo MB, Santos RAS, Campagnole-Santos MJ. Activation of angiotensin-(1-7)/Mas axis in the brain lowers blood pressure and attenuates cardiac remodeling in hypertensive transgenic (mRen2)27 rats. Neuropharmacology. 2015;97:58–66. https://doi.org/10.1016/j.neuropharm.2015.04.036.

    Article  CAS  PubMed  Google Scholar 

  42. Diez-Freire C, et al. ACE2 gene transfer attenuates hypertension-linked pathophysiological changes in the SHR. Physiol Genomics. 2006;27(1):12–9. https://doi.org/10.1152/physiolgenomics.00312.2005.

    Article  CAS  PubMed  Google Scholar 

  43. Feng Y, Xia H, Cai Y, Halabi CM, Becker LK, Santos RAS, et al. Brain-selective overexpression of human angiotensin-converting enzyme type 2 attenuates neurogenic hypertension. Circ Res. 2010;106(2):373–82. https://doi.org/10.1161/CIRCRESAHA.109.208645.

    Article  CAS  PubMed  Google Scholar 

  44. Feng Y, Yue X, Xia H, Bindom SM, Hickman PJ, Filipeanu CM, et al. Angiotensin-converting enzyme 2 overexpression in the subfornical organ prevents the angiotensin II-mediated pressor and drinking responses and is associated with angiotensin II type 1 receptor downregulation. Circ Res. 2008;102(6):729–36. https://doi.org/10.1161/CIRCRESAHA.107.169110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Sriramula S, Cardinale JP, Lazartigues E, Francis J. ACE2 overexpression in the paraventricular nucleus attenuates angiotensin II-induced hypertension. Cardiovasc Res. 2011;92(3):401–8. https://doi.org/10.1093/cvr/cvr242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Xia H, Sriramula S, Chhabra KH, Lazartigues E. Brain angiotensin-converting enzyme type 2 shedding contributes to the development of neurogenic hypertension. Circ Res. 2013;113(9):1087–96. https://doi.org/10.1161/CIRCRESAHA.113.301811.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Xiao L, Gao L, Lazartigues E, Zucker IH. Brain-selective overexpression of angiotensin-converting enzyme 2 attenuates sympathetic nerve activity and enhances baroreflex function in chronic heart failure. Hypertension. 2011;58(6):1057–65. https://doi.org/10.1161/HYPERTENSIONAHA.111.176636.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. • Guimaraes PS, Oliveira MF, Braga JF, Nadu AP, Schreihofer A, Santos RAS, et al. Increasing angiotensin-(1–7) levels in the brain attenuates metabolic syndrome-related risks in fructose-fed rats. Hypertension. 2014;63(5):1078–1085. The authors demonstrated that the chronic increase of Ang-(1–7) levels in the brain promotes cardiovascular and metabolic effects that protect animals with fructose-induced metabolic syndrome. https://doi.org/10.1161/HYPERTENSIONAHA.113.01847.

    Article  CAS  PubMed  Google Scholar 

  49. Guimaraes PS, Santiago NM, Xavier CH, Velloso EPP, Fontes MAP, Santos RAS, et al. Chronic infusion of angiotensin-(1-7) into the lateral ventricle of the brain attenuates hypertension in DOCA-salt rats. Am J Physiol Heart Circ Physiol. 2012;303(3):H393–400. https://doi.org/10.1152/ajpheart.00075.2012.

    Article  CAS  PubMed  Google Scholar 

  50. •• Santiago NM, Guimaraes PS, Sirvente RA, Oliveira LAM, Irigoyen MC, Santos RAS, et al. Lifetime overproduction of circulating Angiotensin-(1–7) attenuates deoxycorticosterone acetate-salt hypertension-induced cardiac dysfunction and remodeling. Hypertension. 2010;55(4):889–896. In this work, it was demonstrated that animals with lifetime increase in circulating levels of Ang-(1–7) are protected against the damage caused by DOCA-salt hypertension model. https://doi.org/10.1161/HYPERTENSIONAHA.110.149815.

    Article  CAS  PubMed  Google Scholar 

  51. Bertagnolli M, Casali KR, de Sousa FB, Rigatto K, Becker L, Santos SHS, et al. An orally active angiotensin-(1-7) inclusion compound and exercise training produce similar cardiovascular effects in spontaneously hypertensive rats. Peptides. 2014;51:65–73. https://doi.org/10.1016/j.peptides.2013.11.006.

    Article  CAS  PubMed  Google Scholar 

  52. Lu W, Kang J, Hu K, Tang S, Zhou X, Yu S, et al. Angiotensin-(1-7) relieved renal injury induced by chronic intermittent hypoxia in rats by reducing inflammation, oxidative stress and fibrosis. Braz J Med Biol Res. 2017;50(1):e5594. https://doi.org/10.1590/1414-431X20165594.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Li P, Zhang F, Sun HJ, Zhang F, Han Y. Angiotensin-(1-7) enhances the effects of angiotensin II on the cardiac sympathetic afferent reflex and sympathetic activity in rostral ventrolateral medulla in renovascular hypertensive rats. J Am Soc Hypertens. 2015;9(11):865–77. https://doi.org/10.1016/j.jash.2015.08.005.

    Article  CAS  PubMed  Google Scholar 

  54. Du D, Chen J, Liu M, Zhu M, Jing H, Fang J, et al. The effects of angiotensin II and angiotensin-(1-7) in the rostral ventrolateral medulla of rats on stress-induced hypertension. PLoS One. 2013;8(8):e70976. https://doi.org/10.1371/journal.pone.0070976.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Oscar CG, Müller-Ribeiro FCF, de Castro LG, Martins Lima A, Campagnole-Santos MJ, Santos RAS, et al. Angiotensin-(1-7) in the basolateral amygdala attenuates the cardiovascular response evoked by acute emotional stress. Brain Res. 2015;1594:183–9. https://doi.org/10.1016/j.brainres.2014.11.006.

    Article  CAS  PubMed  Google Scholar 

  56. Olivon VC, Aires RD, Santiago LB, Ramalho LZN, Cortes SF, Lemos VS. Mas receptor overexpression increased Ang-(1-7) relaxation response in renovascular hypertensive rat carotid. Peptides. 2015;71:250–8. https://doi.org/10.1016/j.peptides.2015.08.002.

    Article  CAS  PubMed  Google Scholar 

  57. •• de Almeida PW, et al. Beneficial effects of angiotensin-(1–7) against deoxycorticosterone acetate-induced diastolic dysfunction occur independently of changes in blood pressure. Hypertension. 2015;66(2):389–395. In this work the authors demonstrated that the signaling pathways involved in the cardioprotective effects of Ang-(1–7) are activated even under conditions of high blood pressure. https://doi.org/10.1161/HYPERTENSIONAHA.114.04893.

    Article  PubMed  CAS  Google Scholar 

  58. Grobe JL, Mecca AP, Mao H, Katovich MJ. Chronic angiotensin-(1-7) prevents cardiac fibrosis in DOCA-salt model of hypertension. Am J Physiol Heart Circ Physiol. 2006;290(6):H2417–23. https://doi.org/10.1152/ajpheart.01170.2005.

    Article  CAS  PubMed  Google Scholar 

  59. Xue B, Zhang Z, Johnson RF, Guo F, Hay M, Johnson AK. Central endogenous angiotensin-(1-7) protects against aldosterone/NaCl-induced hypertension in female rats. Am J Physiol Heart Circ Physiol. 2013;305(5):H699–705. https://doi.org/10.1152/ajpheart.00193.2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Meng W, Zhao W, Zhao T, Liu C, Chen Y, Liu H, et al. Autocrine and paracrine function of angiotensin 1-7 in tissue repair during hypertension. Am J Hypertens. 2014;27(6):775–82. https://doi.org/10.1093/ajh/hpt270.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. • Guo L, Yin A, Zhang Q, Zhong T, O’Rourke ST, Sun C. Angiotensin-(1–7) attenuates angiotensin II-induced cardiac hypertrophy via a Sirt3-dependent mechanism. Am J Physiol Heart Circ Physiol. 2017;312(5):H980–H991. In this paper it was demonstrated that Ang-(1–7) significantly attenuates Ang II-induced cardiac hypertrophy and perivascular fibrosis through of SOD2 expression via stimulation of Sirt3-dependent deacetylation of FoxO3a in cardiomyocytes. https://doi.org/10.1152/ajpheart.00768.2016.

    Article  PubMed  Google Scholar 

  62. Lin L, Liu X, Xu J, Weng L, Ren J, Ge J, et al. Mas receptor mediates cardioprotection of angiotensin-(1-7) against angiotensin II-induced cardiomyocyte autophagy and cardiac remodelling through inhibition of oxidative stress. J Cell Mol Med. 2016;20(1):48–57. https://doi.org/10.1111/jcmm.12687.

    Article  CAS  PubMed  Google Scholar 

  63. •• Gomes ER, et al. Angiotensin-(1–7) prevents cardiomyocyte pathological remodeling through a nitric oxide/guanosine 3′,5′-cyclic monophosphate-dependent pathway. Hypertension. 2010;55(1):153–160. This paper demonstrated that the protective NO/cGMP signaling pathway is activated by Ang-(1–7) on Ang II-induced cardiomyocyte remodeling. https://doi.org/10.1161/HYPERTENSIONAHA.109.143255.

    Article  CAS  PubMed  Google Scholar 

  64. Bennion DM, Haltigan E, Regenhardt RW, Steckelings UM, Sumners C. Neuroprotective mechanisms of the ACE2-angiotensin-(1-7)-Mas axis in stroke. Curr Hypertens Rep. 2015;17(2):3. https://doi.org/10.1007/s11906-014-0512-2.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Jiang T, Gao L, Lu J, Zhang YD. ACE2-Ang-(1-7)-Mas axis in brain: a potential target for prevention and treatment of ischemic stroke. Curr Neuropharmacol. 2013;11(2):209–17. https://doi.org/10.2174/1570159X11311020007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. • Regenhardt RW, Mecca AP, Desland F, Ritucci-Chinni PF, Ludin JA, Greenstein D, et al. Centrally administered angiotensin-(1–7) increases the survival of stroke-prone spontaneously hypertensive rats. Exp Physiol. 2014;99(2):442–453. These authors showed the beneficial effects of central administration of Ang-(1–7) on stroke-prone spontaneously hypertensive rats, a haemorrhagic stroke model, demonstrating its therapeutic potential in this disease. https://doi.org/10.1113/expphysiol.2013.075242.

    Article  CAS  PubMed  Google Scholar 

  67. Cunha TM, et al. The nonpeptide ANG-(1-7) mimic AVE 0991 attenuates cardiac remodeling and improves baroreflex sensitivity in renovascular hypertensive rats. Life Sci. 2013;92(4–5):266–75. https://doi.org/10.1016/j.lfs.2012.12.008.

    Article  CAS  PubMed  Google Scholar 

  68. Souza AP, et al. Angiotensin II type 1 receptor blockade restores angiotensin-(1-7)-induced coronary vasodilation in hypertrophic rat hearts. Clin Sci (Lond). 2013;125(9):449–59. https://doi.org/10.1042/CS20120519.

    Article  CAS  Google Scholar 

  69. Raffai G, Durand MJ, Lombard JH. Acute and chronic angiotensin-(1-7) restores vasodilation and reduces oxidative stress in mesenteric arteries of salt-fed rats. Am J Physiol Heart Circ Physiol. 2011;301(4):H1341–52. https://doi.org/10.1152/ajpheart.00202.2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Savergnini SQ, Beiman M, Lautner RQ, de Paula-Carvalho V, Allahdadi K, Pessoa DC, et al. Vascular relaxation, antihypertensive effect, and cardioprotection of a novel peptide agonist of the MAS receptor. Hypertension. 2010;56(1):112–20. https://doi.org/10.1161/HYPERTENSIONAHA.110.152942.

    Article  CAS  PubMed  Google Scholar 

  71. Savergnini SQ, Ianzer D, Carvalho MBL, Ferreira AJ, Silva GAB, Marques FD, et al. The novel Mas agonist, CGEN-856S, attenuates isoproterenol-induced cardiac remodeling and myocardial infarction injury in rats. PLoS One. 2013;8(3):e57757. https://doi.org/10.1371/journal.pone.0057757.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Tetzner A, Gebolys K, Meinert C, Klein S, Uhlich A, Trebicka J, et al. G-protein-coupled receptor MrgD is a receptor for angiotensin-(1-7) involving adenylyl cyclase, cAMP, and phosphokinase A. Hypertension. 2016;68(1):185–94. https://doi.org/10.1161/HYPERTENSIONAHA.116.07572.

    Article  CAS  PubMed  Google Scholar 

  73. Soares ER, Barbosa CM, Campagnole-Santos MJ, Santos RAS, Alzamora AC. Hypotensive effect induced by microinjection of Alamandine, a derivative of angiotensin-(1-7), into caudal ventrolateral medulla of 2K1C hypertensive rats. Peptides. 2017;96:67–75. https://doi.org/10.1016/j.peptides.2017.09.005.

    Article  CAS  PubMed  Google Scholar 

  74. Soltani Hekmat A, Javanmardi K, Kouhpayeh A, Baharamali E, Farjam M. Differences in cardiovascular responses to alamandine in two-kidney, one clip hypertensive and normotensive rats. Circ J. 2017;81(3):405–12. https://doi.org/10.1253/circj.CJ-16-0958.

    Article  PubMed  Google Scholar 

  75. • Anitschkow N, Chalatow S. Ueber experimentelle Cholester-insteatose und ihre Bedeutung fuer die Entstehung einiger pathologischer Prozesse. Zentrbl Allg Pathol Pathol Anat. 1913;24:1–9. First published paper on animal model for atherosclerosis, from which further investigation emerged and, thus, helped to conceive new approaches in animal models, to improve experimental designs and to elucidate its pathophysiology.

    Google Scholar 

  76. Daugherty A, Tall AR, Daemen MJAP, Falk E, Fisher EA, García-Cardeña G, et al. Recommendation on design, execution, and reporting of animal atherosclerosis studies: a scientific statement from the American Heart Association. Circ Res. 2017;121(6):e53–79. https://doi.org/10.1161/RES.0000000000000169.

    Article  CAS  PubMed  Google Scholar 

  77. Emini Veseli B, Perrotta P, de Meyer GRA, Roth L, van der Donckt C, Martinet W, et al. Animal models of atherosclerosis. Eur J Pharmacol. 2017;816:3–13. https://doi.org/10.1016/j.ejphar.2017.05.010.

    Article  CAS  PubMed  Google Scholar 

  78. Lee YT, Lin HY, Chan YWF, Li KHC, To OTL, Yan BP, et al. Mouse models of atherosclerosis: a historical perspective and recent advances. Lipids Health Dis. 2017;16(1):12. https://doi.org/10.1186/s12944-016-0402-5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Bader M, Ganten D. Update on tissue renin-angiotensin systems. J Mol Med (Berl). 2008;86(6):615–21. https://doi.org/10.1007/s00109-008-0336-0.

    Article  CAS  Google Scholar 

  80. Sata M, Fukuda D. Crucial role of renin-angiotensin system in the pathogenesis of atherosclerosis. J Med Investig. 2010;57(1–2):12–25. https://doi.org/10.2152/jmi.57.12.

    Article  Google Scholar 

  81. Oliver JA, Sciacca RR. Local generation of angiotensin II as a mechanism of regulation of peripheral vascular tone in the rat. J Clin Invest. 1984;74(4):1247–51. https://doi.org/10.1172/JCI111534.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Swales JD, Samani NJ. Vascular RAA system. J Hum Hypertens. 1993;7(Suppl 2):S3–6.

    PubMed  Google Scholar 

  83. Paul M, Wagner J, Dzau VJ. Gene expression of the renin-angiotensin system in human tissues. Quantitative analysis by the polymerase chain reaction. J Clin Invest. 1993;91(5):2058–64. https://doi.org/10.1172/JCI116428.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Agoudemos MM, Greene AS. Localization of the renin-angiotensin system components to the skeletal muscle microcirculation. Microcirculation. 2005;12(8):627–36. https://doi.org/10.1080/10739680500301664.

    Article  CAS  PubMed  Google Scholar 

  85. Zulli A, Burrell LM, Widdop RE, Black MJ, Buxton BF, Hare DL. Immunolocalization of ACE2 and AT2 receptors in rabbit atherosclerotic plaques. J Histochem Cytochem. 2006;54(2):147–50. https://doi.org/10.1369/jhc.5C6782.2005.

    Article  CAS  PubMed  Google Scholar 

  86. •• Tesanovic S, Vinh A, Gaspari TA, Casley D, Widdop RE. Vasoprotective and atheroprotective effects of angiotensin (1–7) in apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol. 2010;30(8):1606–1613. First published paper on the role of Ang-(1–7) in experimental atherosclerosis using ApoE knockout mice model, showing that the renin-angiotensin system is able to delay the progression of atherosclerosis. https://doi.org/10.1161/ATVBAHA.110.204453.

    Article  CAS  PubMed  Google Scholar 

  87. Dong B, Zhang C, Feng JB, Zhao YX, Li SY, Yang YP, et al. Overexpression of ACE2 enhances plaque stability in a rabbit model of atherosclerosis. Arterioscler Thromb Vasc Biol. 2008;28(7):1270–6. https://doi.org/10.1161/ATVBAHA.108.164715.

    Article  CAS  PubMed  Google Scholar 

  88. Lovren F, Pan Y, Quan A, Teoh H, Wang G, Shukla PC, et al. Angiotensin converting enzyme-2 confers endothelial protection and attenuates atherosclerosis. Am J Physiol Heart Circ Physiol. 2008;295(4):H1377–84. https://doi.org/10.1152/ajpheart.00331.2008.

    Article  CAS  PubMed  Google Scholar 

  89. Zhang YH, Zhang Yh, Dong XF, Hao QQ, Zhou XM, Yu QT, et al. ACE2 and Ang-(1-7) protect endothelial cell function and prevent early atherosclerosis by inhibiting inflammatory response. Inflamm Res. 2015;64(3–4):253–60. https://doi.org/10.1007/s00011-015-0805-1.

    Article  CAS  PubMed  Google Scholar 

  90. Sluimer JC, Gasc JM, Hamming I, van Goor H, Michaud A, van den Akker LH, et al. Angiotensin-converting enzyme 2 (ACE2) expression and activity in human carotid atherosclerotic lesions. J Pathol. 2008;215(3):273–9. https://doi.org/10.1002/path.2357.

    Article  CAS  PubMed  Google Scholar 

  91. Zhang C, Zhao YX, Zhang YH, Zhu L, Deng BP, Zhou ZL, et al. Angiotensin-converting enzyme 2 attenuates atherosclerotic lesions by targeting vascular cells. Proc Natl Acad Sci U S A. 2010;107(36):15886–91. https://doi.org/10.1073/pnas.1001253107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. •• Fraga-Silva RA, Savergnini SQ, Montecucco F, Nencioni A, Caffa I, Soncini D, et al. Treatment with angiotensin-(1–7) reduces inflammation in carotid atherosclerotic plaques. Thromb Haemost. 2014;111(4):736–747. This paper delineates the effects of Ang-(1–7)/HPβCD orally treated ApoE knockout mice on different shear stress prone regions, adding new data about Ang-(1–7) mechanisms in atherosclerotic plaques. https://doi.org/10.1160/TH13-06-0448.

    Article  CAS  PubMed  Google Scholar 

  93. Silva AR, Aguilar EC, Alvarez-Leite JI, da Silva RF, Arantes RME, Bader M, et al. Mas receptor deficiency is associated with worsening of lipid profile and severe hepatic steatosis in ApoE-knockout mice. Am J Phys Regul Integr Comp Phys. 2013;305(11):R1323–30. https://doi.org/10.1152/ajpregu.00249.2013.

    CAS  Google Scholar 

  94. • Hammer A, Yang G, Friedrich J, Kovacs A, Lee DH, Grave K, et al. Role of the receptor Mas in macrophage-mediated inflammation in vivo. Proc Natl Acad Sci U S A. 2016;113(49):14109–14114. A new approach, by combining knockout models (Mas receptor and ApoE), allowed further investigation on the role of Mas receptor in sponteneously atherosclerotic mice, which lack ApoE expression, as well as the dynamics of these two important components in ahterosclerosis. https://doi.org/10.1073/pnas.1612668113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Yang JM, Dong M, Meng X, Zhao YX, Yang XY, Liu XL, et al. Angiotensin-(1-7) dose-dependently inhibits atherosclerotic lesion formation and enhances plaque stability by targeting vascular cells. Arterioscler Thromb Vasc Biol. 2013;33(8):1978–85. https://doi.org/10.1161/ATVBAHA.113.301320.

    Article  CAS  PubMed  Google Scholar 

  96. Zhang F, Li S, Song J, Liu J, Cui Y, Chen H. Angiotensin-(1-7) regulates angiotensin II-induced matrix metalloproteinase-8 in vascular smooth muscle cells. Atherosclerosis. 2017;261:90–8. https://doi.org/10.1016/j.atherosclerosis.2017.02.012.

    Article  CAS  PubMed  Google Scholar 

  97. Bader M, Alenina N, Andrade-Navarro MA, Santos RA. MAS and its related G protein-coupled receptors,Mrgprs. Pharmacol Rev. 2014;66(4):1080–105. https://doi.org/10.1124/pr.113.008136.

    Article  CAS  PubMed  Google Scholar 

  98. Toton-Zuranska J, Gajda M, Pyka-Fosciak G, Kus K, Pawlowska M, Niepsuj A, et al. AVE 0991-angiotensin-(1-7) receptor agonist, inhibits atherogenesis in apoE-knockout mice. J Physiol Pharmacol. 2010;61(2):181–3.

    CAS  PubMed  Google Scholar 

  99. Jawien J, Toton-Zuranska J, Kus K, Pawlowska M, Olszanecki R, Korbut R. The effect of AVE 0991, nebivolol and doxycycline on inflammatory mediators in an apoE-knockout mouse model of atherosclerosis. Med Sci Monit. 2012;18(10):Br389–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Olszanecki R, Suski M, Gebska A, Toton-Zuranska J, Kus K, Madej J, et al. The influence of angiotensin-(1-7) peptidomimetic (AVE 0991) and nebivolol on angiotensin I metabolism in aorta of apoE-knockout mice. J Physiol Pharmacol. 2013;64(3):317–20.

    CAS  PubMed  Google Scholar 

  101. Jawien J, Toton-Zuranska J, Gajda M, Niepsuj A, Gebska A, Kus K, et al. Angiotensin-(1-7) receptor Mas agonist ameliorates progress of atherosclerosis in apoE-knockout mice. J Physiol Pharmacol. 2012;63(1):77–85.

    CAS  PubMed  Google Scholar 

  102. • Skiba DS, et al. Anti-atherosclerotic effect of the angiotensin 1–7 mimetic AVE0991 is mediated by inhibition of perivascular and plaque inflammation in early atherosclerosis. Br J Pharmacol. 2016; Newest paper about an Ang-(1–7) analogue, AVE0991, and its role in atherosclerosis. This paper comprises previously published works on that issue and provides further information on mechanisms underlying the role of AVE0991.

  103. Habiyakare B, Alsaadon H, Mathai ML, Hayes A, Zulli A. Reduction of angiotensin A and alamandine vasoactivity in the rabbit model of atherogenesis: differential effects of alamandine and Ang(1-7). Int J Exp Pathol. 2014;95(4):290–5. https://doi.org/10.1111/iep.12087.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. •• Da Silva AR, Lenglet S, Carbone F, Burger F, Roth A, Liberale L, et al. Alamandine abrogates neutrophil degranulation in atherosclerotic mice. Eur J Clin Investig. 2017;47(2):117–128. First published paper on the role of alamandine in experimental atherosclerosis, extending the anti-atherosclerotic effects of the protective arm of the renin-angiotensin system to its newest characterized component. https://doi.org/10.1111/eci.12708.

    Article  CAS  Google Scholar 

  105. • Uchiyama T, Okajima F, Mogi C, Tobo A, Tomono S, Sato K. Alamandine reduces leptin expression through the c-Src/p38 MAP kinase pathway in adipose tissue. PLoS One. 2017;12(6):e0178769. This paper brings interesting data on the effects of alamandine on plasminogen activator inhibitor-1 (PAI-1), which is a pro-atherogenic protein. However, it leaves unanswered questions whether alamandine is a pro- or an anti-atherogenic species. https://doi.org/10.1371/journal.pone.0178769.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafaela Fernandes da Silva.

Ethics declarations

Conflict of Interest

The authors declare no conflicts of interest relevant to this manuscript. All the authors have declared that there is nothing to disclosure.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Pathogenesis of Hypertension

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Souza-Neto, F.P., Carvalho Santuchi, M., de Morais e Silva, M. et al. Angiotensin-(1–7) and Alamandine on Experimental Models of Hypertension and Atherosclerosis. Curr Hypertens Rep 20, 17 (2018). https://doi.org/10.1007/s11906-018-0798-6

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11906-018-0798-6

Keywords

Navigation