Skip to main content
Log in

The Complement System and Preeclampsia

  • Preeclampsia (VD Garovic, Section Editor)
  • Published:
Current Hypertension Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Preeclampsia affects 3–4% of pregnancies with few treatment options to reduce maternal and fetal harm. Recent evidence that targeting the complement system may be an effective therapeutic strategy in prevention or treatment of preeclampsia will be reviewed.

Recent Findings

Studies in humans confirm the safety and efficacy of C5 blockade in complement-mediated disorders of pregnancy, including preeclampsia. Animal models mimic the placental abnormalities and/or the maternal symptoms which characterize preeclampsia. These models in mouse and rat have defined a role for complement and its regulators in placental dysfunction, hypertension, proteinuria, endothelial dysfunction, fetal growth restriction, and angiogenic imbalance, thus informing future human studies.

Summary

Targeting excessive complement activation, particularly the terminal complement complex (C5b-9) and C5a may be an effective strategy to prolong pregnancy in women with preeclampsia. Continued research is needed to identify the initiator(s) of activation, the pathways involved, and the key component(s) in the pathophysiology to allow development of safe and effective therapeutics to target complement without compromising its role in homeostasis and host defense.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Abalos E, Cuesta C, Grosso AL, Chou D, Say L. Global and regional estimates of preeclampsia and eclampsia: a systematic review. Eur J Obstet Gynecol Reprod Biol. 2013;170(1):1–7. https://doi.org/10.1016/j.ejogrb.2013.05.005.

    Article  PubMed  Google Scholar 

  2. ACOG. Hypertension in pregnancy. Report of the American College of Obstetricians and Gynecologists’ Task Force on Hypertension in Pregnancy. Obstet Gynecol. 2013;122(5):1122–31. https://doi.org/10.1097/01.AOG.0000437382.03963.88.

    Article  Google Scholar 

  3. Ananth CV, Keyes KM, Wapner RJ. Pre-eclampsia rates in the United States, 1980-2010: age-period-cohort analysis. BMJ. 2013;347:f6564. https://doi.org/10.1136/bmj.f6564.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Alsnes IV, Vatten LJ, Fraser A, Bjorngaard JH, Rich-Edwards J, Romundstad PR, et al. Hypertension in pregnancy and offspring cardiovascular risk in young adulthood: prospective and sibling studies in the HUNT study (Nord-Trondelag Health Study) in Norway. Hypertension. 2017;69(4):591–8. https://doi.org/10.1161/HYPERTENSIONAHA.116.08414.

    Article  CAS  PubMed  Google Scholar 

  5. Behrens I, Basit S, Melbye M, Lykke JA, Wohlfahrt J, Bundgaard H, et al. Risk of post-pregnancy hypertension in women with a history of hypertensive disorders of pregnancy: nationwide cohort study. BMJ. 2017;358:j3078. https://doi.org/10.1136/bmj.j3078.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Best LG, Lunday L, Webster E, Falcon GR, Beal JR. Pre-eclampsia and risk of subsequent hypertension: in an American Indian population. Hypertens Pregnancy Off J Int Soc Study Hypertens Pregnancy. 2017;36(2):131–7. https://doi.org/10.1080/10641955.2016.1250905.

    Article  CAS  Google Scholar 

  7. Weinstein L. Syndrome of hemolysis, elevated liver enzymes, and low platelet count: a severe consequence of hypertension in pregnancy. Am J Obstet Gynecol. 1982;142(2):159–67.

    Article  CAS  PubMed  Google Scholar 

  8. Force USPST, Bibbins-Domingo K, Grossman DC, Curry SJ, Barry MJ, Davidson KW, et al. Screening for preeclampsia: US Preventive Services Task Force recommendation statement. JAMA. 2017;317(16):1661–7. https://doi.org/10.1001/jama.2017.3439.

    Article  Google Scholar 

  9. Redman CW, Sargent IL. Latest advances in understanding preeclampsia. Science. 2005;308(5728):1592–4. https://doi.org/10.1126/science.1111726.

    Article  CAS  PubMed  Google Scholar 

  10. Blois SM, Dechend R, Barrientos G, Staff AC. A potential pathophysiological role for galectins and the renin-angiotensin system in preeclampsia. Cell Mol Life Sci. 2015;72(1):39–50. https://doi.org/10.1007/s00018-014-1713-1.

    Article  CAS  PubMed  Google Scholar 

  11. Redman CW, Sargent IL. Immunology of pre-eclampsia. Am J Reprod Immunol. 2010;63(6):534–43. https://doi.org/10.1111/j.1600-0897.2010.00831.x.

    Article  CAS  PubMed  Google Scholar 

  12. Pilliod RA, Feinberg BB, Burwick RM. Maternal and feto-placental phenotypes of early-onset severe preeclampsia. J Matern Fetal Neonatal Medicine. 2016;29(8):1209–13. https://doi.org/10.3109/14767058.2015.1045867.

    Article  Google Scholar 

  13. •• Liszewski MK, Kolev M, Le Friec G, Leung M, Bertram PG, Fara AF, et al. Intracellular complement activation sustains T cell homeostasis and mediates effector differentiation. Immunity. 2013;39(6):1143–57. https://doi.org/10.1016/j.immuni.2013.10.018. First description of the intracellular pathway for generation of C3a and C5a.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Samstad EO, Niyonzima N, Nymo S, Aune MH, Ryan L, Bakke SS, et al. Cholesterol crystals induce complement-dependent inflammasome activation and cytokine release. J Immunol. 2014;192(6):2837.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Arbore G, West EE, Spolski R, Robertson AAB, Klos A, Rheinheimer C, et al. T helper 1 immunity requires complement-driven NLRP3 inflammasome activity in CD4+ T cells. Science. 2016;352(6292)

  16. Arbore G, Kemper C. A novel "complement-metabolism-inflammasome axis" as a key regulator of immune cell effector function. Eur J Immunol. 2016;46(7):1563–73. https://doi.org/10.1002/eji.201546131.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Arbore G, West EE, Spolski R, Robertson AAB, Klos A, Rheinheimer C, et al. T helper 1 immunity requires complement-driven NLRP3 inflammasome activity in CD4(+) T cells. Science. 2016;352(6292):aad1210. https://doi.org/10.1126/science.aad1210.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Haggadone MD, Grailer JJ, Fattahi F, Zetoune FS, Ward PA. Bidirectional crosstalk between C5a receptors and the NLRP3 inflammasome in macrophages and monocytes. Mediat Inflamm. 2016;2016:1340156. https://doi.org/10.1155/2016/1340156.

    Article  Google Scholar 

  19. • Satyam A, Kannan L, Matsumoto N, Geha M, Lapchak PH, Bosse R, et al. Intracellular activation of complement 3 is responsible for intestinal tissue damage during mesenteric ischemia. J Immunol. 2017;198(2):788. Demonstrates the intracellular complement pathway in an injury model and suggests that different cathepsins are operative in distinct cell types.

    Article  CAS  PubMed  Google Scholar 

  20. Stephan AH, Barres BA, Stevens B. The complement system: an unexpected role in synaptic pruning during development and disease. Annu Rev Neurosci. 2012;35

  21. Zabel MK, Kirsch WM. From development to dysfunction: microglia and the complement cascade in CNS homeostasis. Ageing Res Rev. 2013;12(3):749–56. https://doi.org/10.1016/j.arr.2013.02.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Fonseca MI, Chu SH, Hernandez MX, Fang MJ, Modarresi L, Selvan P, et al. Cell-specific deletion of C1qa identifies microglia as the dominant source of C1q in mouse brain. J Neuroinflammation. 2017;14(1):48. https://doi.org/10.1186/s12974-017-0814-9.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Thielens NM, Tedesco F, Bohlson SS, Gaboriaud C, Tenner AJ. C1q: a fresh look upon an old molecule. Mol Immunol. 2017; https://doi.org/10.1016/j.molimm.2017.05.025.

  24. Gorelik A, Sapir T, Haffner-Krausz R, Olender T, Woodruff TM, Reiner O. Developmental activities of the complement pathway in migrating neurons. Nat Commun. 2017;8:15096. https://doi.org/10.1038/ncomms15096.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Jiang TT, Chaturvedi V, Ertelt JM, Kinder JM, Clark DR, Valent AM, et al. Regulatory T cells: new keys for further unlocking the enigma of fetal tolerance and pregnancy complications. J Immunol. 2014;192(11):4949–56. https://doi.org/10.4049/jimmunol.1400498.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. La Rocca C, Carbone F, Longobardi S, Matarese G. The immunology of pregnancy: regulatory T cells control maternal immune tolerance toward the fetus. Immunol Lett. 2014;(1 Pt A):162, 41–8. https://doi.org/10.1016/j.imlet.2014.06.013.

  27. Rahimzadeh M, Norouzian M, Arabpour F, Naderi N. Regulatory T-cells and preeclampsia: an overview of literature. Expert Rev Clin Immunol. 2016;12(2):209–27. https://doi.org/10.1586/1744666X.2016.1105740.

    Article  CAS  PubMed  Google Scholar 

  28. Matias ML, Romao M, Weel IC, Ribeiro VR, Nunes PR, Borges VT, et al. Endogenous and uric acid-induced activation of NLRP3 inflammasome in pregnant women with preeclampsia. PLoS One. 2015;10(6):e0129095. https://doi.org/10.1371/journal.pone.0129095.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Mulla MJ, Myrtolli K, Potter J, Boeras C, Kavathas PB, Sfakianaki AK, et al. Uric acid induces trophoblast IL-1beta production via the inflammasome: implications for the pathogenesis of preeclampsia. Am J Reprod Immunol. 2011;65(6):542–8. https://doi.org/10.1111/j.1600-0897.2010.00960.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Strainic MG, Shevach EM, An F, Lin F, Medof ME. Absence of signaling into CD4(+) cells via C3aR and C5aR enables autoinductive TGF-beta1 signaling and induction of Foxp3(+) regulatory T cells. Nat Immunol. 2013;14(2):162–71. https://doi.org/10.1038/ni.2499.

    Article  CAS  PubMed  Google Scholar 

  31. Drouin SM, Sinha M, Sfyroera G, Lambris JD, Wetsel RA. A protective role for the fifth complement component (c5) in allergic airway disease. Am J Respir Crit Care Med. 2006;173(8):852–7. https://doi.org/10.1164/rccm.200503-334OC.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ghebrehiwet B, Silverberg M, Kaplan AP. Activation of the classical pathway of complement by Hageman factor fragment. J Exp Med. 1981;153(3):665–76.

    Article  CAS  PubMed  Google Scholar 

  33. Krisinger MJ, Goebeler V, Lu Z, Meixner SC, Myles T, Pryzdial EL, et al. Thrombin generates previously unidentified C5 products that support the terminal complement activation pathway. Blood. 2012;120(8):1717–25. https://doi.org/10.1182/blood-2012-02-412080.

    Article  CAS  PubMed  Google Scholar 

  34. Kozarcanin H, Lood C, Munthe-Fog L, Sandholm K, Hamad OA, Bengtsson AA, et al. The lectin complement pathway serine proteases (MASPs) represent a possible crossroad between the coagulation and complement systems in thromboinflammation. J Thromb Haemost. 2016;14(3):531–45. https://doi.org/10.1111/jth.13208.

    Article  CAS  PubMed  Google Scholar 

  35. Ritis K, Doumas M, Mastellos D, Micheli A, Giaglis S, Magotti P, et al. A novel C5a receptor-tissue factor cross-talk in neutrophils links innate immunity to coagulation pathways. J Immunol. 2006;177(7):4794–802.

    Article  CAS  PubMed  Google Scholar 

  36. Erez O, Gotsch F, Mazaki-Tovi S, Vaisbuch E, Kusanovic JP, Kim CJ, et al. Evidence of maternal platelet activation, excessive thrombin generation, and high amniotic fluid tissue factor immunoreactivity and functional activity in patients with fetal death. J Matern Fetal Neonatal Med. 2009;22(8):672–87. https://doi.org/10.1080/14767050902853117.

    Article  CAS  PubMed  Google Scholar 

  37. Redecha P, van Rooijen N, Torry D, Girardi G. Pravastatin prevents miscarriages in mice: role of tissue factor in placental and fetal injury. Blood. 2009;113(17):4101–9. https://doi.org/10.1182/blood-2008-12-194258.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Rayes J, Roumenina LT, Dimitrov JD, Repesse Y, Ing M, Christophe O, et al. The interaction between factor H and VWF increases factor H cofactor activity and regulates VWF prothrombotic status. Blood. 2014;123(1):121–5. https://doi.org/10.1182/blood-2013-04-495853.

    Article  CAS  PubMed  Google Scholar 

  39. •• Lokki AI, Kaartokallio T, Holmberg V, Onkamo P, Koskinen LLE, Saavalainen P, et al. Analysis of complement C3 gene reveals susceptibility to severe preeclampsia. Front Immunol. 2017;8:589. https://doi.org/10.3389/fimmu.2017.00589. Describes association of SNP haplotype within C3 gene that influences susceptibility to severe forms of preeclampsia.

    Article  PubMed  PubMed Central  Google Scholar 

  40. • Salmon JE, Heuser C, Triebwasser M, Liszewski MK, Kavanagh D, Roumenina L, et al. Mutations in complement regulatory proteins predispose to preeclampsia: a genetic analysis of the PROMISSE cohort. PLoS Med. 2011;8(3):e1001013. https://doi.org/10.1371/journal.pmed.1001013. Demonstration of the importance of complement regulatory proteins in maintaining a successful pregnancy.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Fang CJ, Fremeaux-Bacchi V, Liszewski MK, Pianetti G, Noris M, Goodship TH, et al. Membrane cofactor protein mutations in atypical hemolytic uremic syndrome (aHUS), fatal Stx-HUS, C3 glomerulonephritis, and the HELLP syndrome. Blood. 2008;111(2):624–32. https://doi.org/10.1182/blood-2007-04-084533.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lynch AM, Murphy JR, Byers T, Gibbs RS, Neville MC, Giclas PC, et al. Alternative complement pathway activation fragment Bb in early pregnancy as a predictor of preeclampsia. Am J Obstet Gynecol. 2008;198(4):385 e1-9. https://doi.org/10.1016/j.ajog.2007.10.793.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Lynch AM, Gibbs RS, Murphy JR, Giclas PC, Salmon JE, Holers VM. Early elevations of the complement activation fragment C3a and adverse pregnancy outcomes. Obstet Gynecol. 2011;117(1):75–83. https://doi.org/10.1097/AOG.0b013e3181fc3afa.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Lynch AM, Eckel RH, Murphy JR, Gibbs RS, West NA, Giclas PC, et al. Prepregnancy obesity and complement system activation in early pregnancy and the subsequent development of preeclampsia. Am J Obstet Gynecol. 2012;(5):206, 428 e1-8. https://doi.org/10.1016/j.ajog.2012.02.035.

  45. Cushen SC, Goulopoulou S. New models of pregnancy-associated hypertension. Am J Hypertens. 2017; https://doi.org/10.1093/ajh/hpx063.

  46. Sones JL, Davisson RL. Preeclampsia, of mice and women. Physiol Genomics. 2016;48(8):565–72. https://doi.org/10.1152/physiolgenomics.00125.2015.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Davisson RL, Hoffmann DS, Butz GM, Aldape G, Schlager G, Merrill DC, et al. Discovery of a spontaneous genetic mouse model of preeclampsia. Hypertension. 2002;39(2 Pt 2):337–42.

    Article  CAS  PubMed  Google Scholar 

  48. Dokras A, Hoffmann DS, Eastvold JS, Kienzle MF, Gruman LM, Kirby PA, et al. Severe feto-placental abnormalities precede the onset of hypertension and proteinuria in a mouse model of preeclampsia. Biol Reprod. 2006;75(6):899–907. https://doi.org/10.1095/biolreprod.106.053603.

    Article  CAS  PubMed  Google Scholar 

  49. • Gelber SE, Brent E, Redecha P, Perino G, Tomlinson S, Davisson RL, et al. Prevention of defective placentation and pregnancy loss by blocking innate immune pathways in a syngeneic model of placental insufficiency. J Immunol. 2015;195(3):1129–38. https://doi.org/10.4049/jimmunol.1402220. An important animal model of preeclampsia demonstrating the importance of excessive complement activation in adversely affecting placental development.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Sones JL, Merriam AA, Grenier J, Douglas NA, Davisson RL. Inflammatory mediators during the pre-implantation period play a key role in the pathogenesis of preeclampsia in the spontaeous preeclamptic-like BPH/5 mouse. FASEB J Off Publ Fed Am Soc Exp Biol. 2017;31(1):1033.

    Google Scholar 

  51. Sutton EF, Lob HE, Song J, Xia Y, Butler S, Liu CC, et al. Adverse metabolic phenotype of female offspring exposed to preeclampsia in utero: a characterization of the BPH/5 mouse in postnatal life. Am J Physiol Regul Integr Comp Physiol. 2017;312(4):R485–R91. https://doi.org/10.1152/ajpregu.00512.2016.

    Article  PubMed  Google Scholar 

  52. Agostinis C, Bulla R, Tripodo C, Gismondi A, Stabile H, Bossi F, et al. An alternative role of C1q in cell migration and tissue remodeling: contribution to trophoblast invasion and placental development. J Immunol. 2010;185(7):4420–9. https://doi.org/10.4049/jimmunol.0903215.

    Article  CAS  PubMed  Google Scholar 

  53. Bulla R, Agostinis C, Bossi F, Rizzi L, Debeus A, Tripodo C, et al. Decidual endothelial cells express surface-bound C1q as a molecular bridge between endovascular trophoblast and decidual endothelium. Mol Immunol. 2008;45(9):2629–40. https://doi.org/10.1016/j.molimm.2007.12.025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Bulla R, Bossi F, Agostinis C, Radillo O, Colombo F, De Seta F, et al. Complement production by trophoblast cells at the feto-maternal interface. J Reprod Immunol. 2009;82(2):119–25. https://doi.org/10.1016/j.jri.2009.06.124.

    Article  CAS  PubMed  Google Scholar 

  55. • Singh J, Ahmed A, Girardi G. Role of complement component C1q in the onset of preeclampsia in mice. Hypertension. 2011;58(4):716–24. https://doi.org/10.1161/HYPERTENSIONAHA.111.175919. An important animal model demonstrating that complement C1q is essential for normal placental development independent of activation of the complement pathways.

    Article  CAS  PubMed  Google Scholar 

  56. Agostinis C, Tedesco F, Bulla R. Alternative functions of the complement protein C1q at embryo implantation site. J Reprod Immunol. 2017;119:74–80. https://doi.org/10.1016/j.jri.2016.09.001.

    Article  CAS  PubMed  Google Scholar 

  57. Lokki AI, Heikkinen-Eloranta J, Jarva H, Saisto T, Lokki ML, Laivuori H, et al. Complement activation and regulation in preeclamptic placenta. Front Immunol. 2014;5:312. https://doi.org/10.3389/fimmu.2014.00312.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Than NG, Romero R, Erez O, Kusanovic JP, Tarca AL, Edwin SS, et al. A role for mannose-binding lectin, a component of the innate immune system in pre-eclampsia. Am J Reprod Immunol. 2008;60(4):333–45. https://doi.org/10.1111/j.1600-0897.2008.00631.x.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Agostinis C, Bossi F, Masat E, Radillo O, Tonon M, De Seta F, et al. MBL interferes with endovascular trophoblast invasion in pre-eclampsia. Clin Dev Immunol. 2012;2012:484321. https://doi.org/10.1155/2012/484321.

    Article  PubMed  Google Scholar 

  60. Girardi G, Yarilin D, Thurman JM, Holers VM, Salmon JE. Complement activation induces dysregulation of angiogenic factors and causes fetal rejection and growth restriction. J Exp Med. 2006;203(9):2165–75. https://doi.org/10.1084/jem.20061022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Qing X, Redecha PB, Burmeister MA, Tomlinson S, D'Agati VD, Davisson RL, et al. Targeted inhibition of complement activation prevents features of preeclampsia in mice. Kidney Int. 2011;79(3):331–9. https://doi.org/10.1038/ki.2010.393.

    Article  CAS  PubMed  Google Scholar 

  62. Petitbarat M, Durigutto P, Macor P, Bulla R, Palmioli A, Bernardi A, et al. Critical role and therapeutic control of the lectin pathway of complement activation in an abortion-prone mouse mating. J Immunol. 2015;195(12):5602–7. https://doi.org/10.4049/jimmunol.1501361.

    Article  CAS  PubMed  Google Scholar 

  63. James JL, Chamley LW, Clark AR. Feeding your baby in utero: how the Uteroplacental circulation impacts pregnancy. Physiology (Bethesda). 2017;32(3):234–45. https://doi.org/10.1152/physiol.00033.2016.

    Google Scholar 

  64. Gillis EE, Williams JM, Garrett MR, Mooney JN, Sasser JM. The Dahl salt-sensitive rat is a spontaneous model of superimposed preeclampsia. Am J Physiol Regul Integr Comp Physiol. 2015;309(1):R62–70. https://doi.org/10.1152/ajpregu.00377.2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Takushima S, Nishi Y, Nonoshita A, Mifune H, Hirata R, Tanaka E, et al. Changes in the nitric oxide-soluble guanylate cyclase system and natriuretic peptide receptor system in placentas of pregnant Dahl salt-sensitive rats. J Obstet Gynaecol Res. 2015;41(4):540–50. https://doi.org/10.1111/jog.12602.

    Article  CAS  PubMed  Google Scholar 

  66. Mattson DL. Infiltrating immune cells in the kidney in salt-sensitive hypertension and renal injury. Am J Physiol Renal Physiol. 2014;307(5):F499–508. https://doi.org/10.1152/ajprenal.00258.2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Johnson ACGM, Sasser JM. Gene expression changes in uteroplacental development associated with superimposed preeclampsia in the Dahl salt-sensitive rat model. FASEB J Off Publ Fed Am Soc Exp Biol. 2017;31(1):1033.

    Google Scholar 

  68. Richani K, Soto E, Romero R, Espinoza J, Chaiworapongsa T, Nien JK, et al. Normal pregnancy is characterized by systemic activation of the complement system. J Matern Fetal Neonatal Med. 2005;17(4):239–45. https://doi.org/10.1080/14767050500072722.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Derzsy Z, Prohaszka Z, Rigo J Jr, Fust G, Molvarec A. Activation of the complement system in normal pregnancy and preeclampsia. Mol Immunol. 2010;47(7–8):1500–6. https://doi.org/10.1016/j.molimm.2010.01.021.

    Article  CAS  PubMed  Google Scholar 

  70. Burwick RM, Fichorova RN, Dawood HY, Yamamoto HS, Feinberg BB. Urinary excretion of c5b-9 in severe preeclampsia: tipping the balance of complement activation in pregnancy. Hypertension. 2013;62(6):1040–5. https://doi.org/10.1161/HYPERTENSIONAHA.113.01420.

    Article  CAS  PubMed  Google Scholar 

  71. • Codsi E, Garovic VD, Gonzalez-Suarez ML, Milic N, Borowski KS, Rose CH, et al. Longitudinal characterization of renal proximal tubular markers in normotensive and preeclamptic pregnancies. Am J Physiol Regul Integr Comp Physiol. 2017;312(5):R773–R8. https://doi.org/10.1152/ajpregu.00509.2016. Confirms the presence of terminal complement activation, as measured by urinary C5b-9, in mild forms of preeclampsia.

    Article  PubMed  Google Scholar 

  72. Cofiell R, Kukreja A, Bedard K, Yan Y, Mickle AP, Ogawa M, et al. Eculizumab reduces complement activation, inflammation, endothelial damage, thrombosis, and renal injury markers in aHUS. Blood. 2015;125(21):3253–62. https://doi.org/10.1182/blood-2014-09-600411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. •• Burwick RM, Feinberg BB. Eculizumab for the treatment of preeclampsia/HELLP syndrome. Placenta. 2013;34(2):201–3. https://doi.org/10.1016/j.placenta.2012.11.014. The first demonstration that targeting a complement component resulted in clinical improvement in preeclampsia.

    Article  CAS  PubMed  Google Scholar 

  74. Burwick RM, Burwick NR, Feinberg BB. Eculizumab fails to inhibit generation of C5a in vivo. Blood. 2014;124(23):3502–3. https://doi.org/10.1182/blood-2014-07-589366.

    Article  CAS  PubMed  Google Scholar 

  75. •• Vaught AJ, Gavriilaki E, Hueppchen N, Blakemore K, Yuan X, Seifert SM, et al. Direct evidence of complement activation in HELLP syndrome: a link to atypical hemolytic uremic syndrome. Exp Hematol. 2016;44(5):390–8. https://doi.org/10.1016/j.exphem.2016.01.005. Demonstrates that the degree of complement activation in serum is similar in severe preeclampsia, HELLP syndrome, and atypical hemolytic uremic syndrome. Describes a potential screening mechanism to identify patients that might benefit from therapies that target the complement system.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Baines AC, Brodsky RA. Complementopathies. Blood Rev. 2017;31(4):213–23. https://doi.org/10.1016/j.blre.2017.02.003.

    Article  CAS  PubMed  Google Scholar 

  77. • Kelly RJ, Hochsmann B, Szer J, Kulasekararaj A, de Guibert S, Roth A, et al. Eculizumab in pregnant patients with paroxysmal nocturnal hemoglobinuria. N Engl J Med. 2015;373(11):1032–9. https://doi.org/10.1056/NEJMoa1502950. Evidence for safety of C5 blockade in pregnancy.

    Article  CAS  PubMed  Google Scholar 

  78. Andries G, Karass M, Yandrapalli S, Linder K, Liu D, Nelson J, et al. Atypical hemolytic uremic syndrome in first trimester pregnancy successfully treated with eculizumab. Exp Hematol Oncol. 2017;6:4. https://doi.org/10.1186/s40164-017-0064-7.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Bruel A, Kavanagh D, Noris M, Delmas Y, Wong EKS, Bresin E, et al. Hemolytic uremic syndrome in pregnancy and postpartum. Clin J Am Soc Nephrol CJASN. 2017;12(8):1237–47. https://doi.org/10.2215/CJN.00280117.

    Article  PubMed  Google Scholar 

  80. Demir E, Yazici H, Ozluk Y, Kilicaslan I, Turkmen A. Pregnant woman with atypical hemolytic uremic syndrome delivered a healthy newborn under eculizumab treatment. Case Rep Nephrol Dial. 2016;6(3):143–8. https://doi.org/10.1159/000454946.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Hallstensen RF, Bergseth G, Foss S, Jaeger S, Gedde-Dahl T, Holt J, et al. Eculizumab treatment during pregnancy does not affect the complement system activity of the newborn. Immunobiology. 2015;220(4):452–9. https://doi.org/10.1016/j.imbio.2014.11.003.

    Article  CAS  PubMed  Google Scholar 

  82. Burwick RM, Burwick N, Feinberg BB. Response: Maternal and cord C5a in response to eculizumab. Blood. 2015;126(2):279–80. https://doi.org/10.1182/blood-2015-06-642553.

    Article  CAS  PubMed  Google Scholar 

  83. Riedemann NC, Habel M, Ziereisen J, Hermann M, Schneider C, Wehling C, et al. Controlling the anaphylatoxin C5a in diseases requires a specifically targeted inhibition. Clin Immunol. 2017;180:25–32. https://doi.org/10.1016/j.clim.2017.03.012.

    Article  CAS  PubMed  Google Scholar 

  84. Abrahams VM, Chamley LW, Salmon JE. Antiphospholipid syndrome and pregnancy: pathogenesis to translation. Arthritis Rheumatol. 2017; https://doi.org/10.1002/art.40136.

  85. Goodfellow RM, Williams AS, Levin JL, Williams BD, Morgan BP. Local therapy with soluble complement receptor 1 (sCR1) suppresses inflammation in rat mono-articular arthritis. Clin Exp Immunol. 1997;110(1):45–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Piddlesden SJ, Storch MK, Hibbs M, Freeman AM, Lassmann H, Morgan BP. Soluble recombinant complement receptor 1 inhibits inflammation and demyelination in antibody-mediated demyelinating experimental allergic encephalomyelitis. J Immunol. 1994;152(11):5477–84.

    CAS  PubMed  Google Scholar 

  87. Regal JF, Strehlke ME, Peterson JM, Wing CR, Parker JE, Nieto NF, et al. Role of IgM and angiotensin II type I receptor autoantibodies in local complement activation in placental ischemia-induced hypertension in the rat. Mol Immunol. 2016;78:38–47. https://doi.org/10.1016/j.molimm.2016.08.016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. • Lillegard KE, Johnson AC, Lojovich SJ, Bauer AJ, Marsh HC, Gilbert JS, et al. Complement activation is critical for placental ischemia-induced hypertension in the rat. Mol Immunol. 2013;56(1–2):91–7. https://doi.org/10.1016/j.molimm.2013.04.009. First demonstration linking complement activation with hypertension following placental ischemia.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Lillegard KE, Loeks-Johnson AC, Opacich JW, Peterson JM, Bauer AJ, Elmquist BJ, et al. Differential effects of complement activation products c3a and c5a on cardiovascular function in hypertensive pregnant rats. J Pharmacol Exp Ther. 2014;351(2):344–51. https://doi.org/10.1124/jpet.114.218123.

  90. Wang W, Irani RA, Zhang Y, Ramin SM, Blackwell SC, Tao L, et al. Autoantibody-mediated complement C3a receptor activation contributes to the pathogenesis of preeclampsia. Hypertension. 2012;60(3):712–21. https://doi.org/10.1161/HYPERTENSIONAHA.112.191817.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Proctor LM, Arumugam TV, Shiels I, Reid RC, Fairlie DP, Taylor SM. Comparative anti-inflammatory activities of antagonists to C3a and C5a receptors in a rat model of intestinal ischaemia/reperfusion injury. Br J Pharmacol. 2004;142(4):756–64. https://doi.org/10.1038/sj.bjp.0705819.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Regal JF, Lillegard KE, Bauer AJ, Elmquist BJ, Loeks-Johnson AC, Gilbert JS. Neutrophil depletion attenuates placental ischemia-induced hypertension in the rat. PLoS One. 2015;10(7):e0132063. https://doi.org/10.1371/journal.pone.0132063.

    Article  PubMed  PubMed Central  Google Scholar 

  93. LaMarca B, Wallace K, Granger J. Role of angiotensin II type I receptor agonistic autoantibodies (AT1-AA) in preeclampsia. Curr Opin Pharmacol. 2011;11(2):175–9. https://doi.org/10.1016/j.coph.2011.01.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Regal JF, Gilbert JS, Burwick RM. The complement system and adverse pregnancy outcomes. Mol Immunol. 2015;67(1):56–70. https://doi.org/10.1016/j.molimm.2015.02.030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Regal JF, Wing CR, McCutcheon L, Gilbert JS, Fleming SD. Endothelin modulates local complement activation in placental ischemia-induced hypertension. Hypertension. 2017;xx(In press).

  96. Intapad S, Warrington JP, Spradley FT, Palei AC, Drummond HA, Ryan MJ, et al. Reduced uterine perfusion pressure induces hypertension in the pregnant mouse. Am J Physiol Regul Integr Comp Physiol. 2014;307(11):R1353–7. https://doi.org/10.1152/ajpregu.00268.2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Fushima T, Sekimoto A, Minato T, Ito T, Oe Y, Kisu K, et al. Reduced uterine perfusion pressure (RUPP) model of preeclampsia in mice. PLoS One. 2016;11(5):e0155426. https://doi.org/10.1371/journal.pone.0155426.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Soares MJ, Chakraborty D, Karim Rumi MA, Konno T, Renaud SJ. Rat placentation: an experimental model for investigating the hemochorial maternal-fetal interface. Placenta. 2012;33(4):233–43. https://doi.org/10.1016/j.placenta.2011.11.026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported in part by NIH HL109843 (JFR, SDF), K-INBRE P20GM103418 (SDF), and Preeclampsia Foundation, Vision Grant (RMB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean F. Regal.

Ethics declarations

Conflict of Interest

Drs. Fleming and Regal report grants from National Institutes of Health and grants from American Heart Association. Dr. Burwick declares no conflicts of interest relevant to this manuscript.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Preeclampsia

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Regal, J.F., Burwick, R.M. & Fleming, S.D. The Complement System and Preeclampsia. Curr Hypertens Rep 19, 87 (2017). https://doi.org/10.1007/s11906-017-0784-4

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11906-017-0784-4

Keywords

Navigation