Skip to main content

Advertisement

Log in

ACE Overexpression in Myelomonocytic Cells: Effect on a Mouse Model of Alzheimer’s Disease

  • Hypertension and the Kidney (R Carey, Section Editor)
  • Published:
Current Hypertension Reports Aims and scope Submit manuscript

Abstract

While it is well known that angiotensin converting enzyme (ACE) plays an important role in blood pressure control, ACE also has effects on renal function, hematopoiesis, reproduction, and aspects of the immune response. ACE 10/10 mice overexpress ACE in myelomonocytic cells. Macrophages from these mice have an increased polarization towards a pro-inflammatory phenotype that results in a very effective immune response to challenge by tumors or bacterial infection. In a mouse model of Alzheimer’s disease (AD), the ACE 10/10 phenotype provides significant protection against AD pathology, including reduced inflammation, reduced burden of the neurotoxic amyloid-β protein and preserved cognitive function. Taken together, these studies show that increased myelomonocytic ACE expression in mice alters the immune response to better defend against many different types of pathologic insult, including the cognitive decline observed in an animal model of AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Skeggs Jr LT. Discovery of the two angiotensin peptides and the angiotensin converting enzyme. Hypertension. 1993;21:259–60.

    Article  PubMed  Google Scholar 

  2. Skeggs Jr LT, Kahn JR, Shumway NP. The preparation and function of the hypertensin-converting enzyme. J Exp Med. 1956;103:295–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Bernstein KE, Ong FS, Blackwell W-LB, Shah KH, Giani JF, Gonzalez-Villalobos RA, et al. A modern understanding of the traditional and non-traditional biological functions of angiotensin converting enzyme (ACE). Pharmacol Rev. 2013;65:1–46. This is a very complete review of the physiology and biochemistry of ACE.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Krege JH, John SW, Langenbach LL, Hodgin JB, Hagaman JR, Bachman ES, et al. Male-female differences in fertility and blood pressure in ACE deficient mice. Nature. 1995;375:146–8.

    Article  CAS  PubMed  Google Scholar 

  5. Esther Jr CR, Howard TE, Marino EM, Goddard JM, Capecchi MR, Bernstein KE. Mice lacking angiotensin-converting enzyme have low blood pressure, renal pathology, and reduced male fertility. Lab Investig. 1996;74:953–65.

    CAS  PubMed  Google Scholar 

  6. Miyazaki Y, Tsuchida S, Nishimura H, Pope 4th JC, Harris RC, McKanna JM, et al. Angiotensin induces the urinary peristaltic machinery during the perinatal period. J Clin Invest. 1998;102:1489–97. This seminal study demonstrates a critical role of angiotensin II in peristaltic movement of urine by the ureter. In the absence of angiotensin II, pressure within the ureter increases and causes kidney damage.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Esther Jr CR, Marino EM, Howard TE, Corvol P, Capecchi MR, Bernstein KE. The critical role of tissue angiotensin converting enzyme (ACE) as revealed by gene targeting in mice. J Clin Invest. 1997;99:2375–85.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Hashimoto S, Adams JW, Bernstein KE, Schnermann J. Micropuncture determination of nephron function in mice without tissue angiotensin-converting enzyme. Am J Physiol Ren Physiol. 2005;288:F445–52.

    Article  CAS  Google Scholar 

  9. Cole J, Ertoy D, Lin H, Sutliff RL, Ezan E, Guyene TT, et al. Lack of angiotensin II-facilitated erythropoiesis causes anemia in angiotensin-converting enzyme-deficient mice. J Clin Invest. 2000;106:1391–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Lin C, Datta V, Okwan-Duodu D, Chen X, Fuchs S, Alsabeh R, et al. Angiotensin-converting enzyme is required for normal myelopoiesis. FASEB J. 2011;25:1145–55. A study showing that the lack of ACE is associated with developmental defects in myelopoiesis.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Shen XZ, Billet S, Lin C, Okwan-Duodu D, Chen X, Lukacher AE, et al. The carboxypeptidase ACE shapes the MHC class I peptide repertoire. Nat Immunol. 2011;12:1078–85. The first study showing that ACE plays a role in generating the MHC class I peptide repertoire.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Eisenlohr LC, Bacik I, Bennink JR, Bernstein K, Yewdell JW. Expression of a membrane protease enhances presentation of endogenous antigens to MHC class I-restricted T lymphocytes. Cell. 1992;71(6):963–72.

    Article  CAS  PubMed  Google Scholar 

  13. Shen XZ, Li P, Weiss D, Fuchs S, Xiao HD, Adams JW, et al. Mice with enhanced macrophage angiotensin converting enzyme are resistant to melanoma. Am J Pathol. 2007;170:2122–34. The original publication describing the ACE 10/10 mice.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Mantovani A, Sica A, Sozzani S, Allavena P, Vecchi A, Locati M. The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol. 2004;25:677–86.

    Article  CAS  PubMed  Google Scholar 

  15. Gordon S, Taylor PR. Monocyte and macrophage heterogeneity. Nat Rev Immunol. 2005;5:953–64.

    Article  CAS  PubMed  Google Scholar 

  16. Qian BZ, Pollard JW. Macrophage diversity enhances tumor progression and metastasis. Cell. 2010;141:39–51.

    Article  CAS  PubMed  Google Scholar 

  17. Shen XZ, Okwan-Duodu D, Billet S, Lin C, Ong FS, Bernstein E, et al. Over-expression of angiotensin converting enzyme in myelomonocytic cells alters tumor-induced myeloid-mediated immunosuppression. Lab Investig. 2014. doi:10.1038/labinvest.2014.41.

    PubMed Central  Google Scholar 

  18. Okwan-Duodu D, Datta V, Shen XZ, Goodridge HS, Bernstein EA, Fuchs S, et al. Angiotensin-converting enzyme overexpression in mouse myelomonocytic cells augments resistance to Listeria and methicillin-resistant Staphylococcus aureus. J Biol Chem. 2010;285:39051–60.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. McLaren JE, Michael DR, Ashlin TG, Ramji DP. Cytokines, macrophage lipid metabolism and foam cells: implications for cardiovascular disease therapy. Prog Lipid Res. 2011;50:331–47.

    Article  CAS  PubMed  Google Scholar 

  20. 2013 Alzheimer's disease facts and figures. http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&ved=0CD4QFjAB&url=http%3A%2F%2Fwww.alz.org%2Fdownloads%2Ffacts_figures_2013.pdf&ei=5yEVU5GlOdTsoATTnYLwBQ&usg=AFQjCNGgHwQODpp8E9COQkN1aoqhqye8YQ&sig2=BfCoPWHQtTctw7CHyI9nnA&bvm=bv.62333050,d.cGU

  21. Hebert LE, Weuve J, Scherr PA, Evans DA. Alzheimer disease in the United States (2010-2050) estimated using the 2010 census. Neurology. 2013;80:1778–83.

    Article  PubMed Central  PubMed  Google Scholar 

  22. Selkoe DJ. Soluble oligomers of the amyloid beta-protein impair synaptic plasticity and behavior. Behav Brain Res. 2008;192:106–13.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Beyreuther K, Masters CL. Alzheimer's disease. The ins and outs of amyloid-beta. Nature. 1997;389(6652):677–8.

    Article  CAS  PubMed  Google Scholar 

  24. Armstrong RA. Beta-amyloid plaques: stages in life history or independent origin? Dement Geriatr Cogn Disord. 1998;9(4):227–38.

    Article  CAS  PubMed  Google Scholar 

  25. Zhang H, Ma Q, Zhang YW, Xu H. Proteolytic processing of Alzheimer's β-amyloid precursor protein. J Neurochem. 2012;120 suppl 1:9–21.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Saido TC. Alzheimer's disease as proteolytic disorders: anabolism and catabolism of beta-amyloid. Neurobiol Aging. 1998;19(1 Suppl):S69–75.

    Article  CAS  PubMed  Google Scholar 

  27. Potter R, Patterson BW, Elbert DL, Ovod V, Kasten T, Sigurdson W, et al. Increased in vivo amyloid-beta42 production, exchange, and loss in presenilin mutation carriers. Sci Transl Med. 2013;5(189):189ra77.

    Article  PubMed  Google Scholar 

  28. Mawuenyega KG, Sigurdson W, Ovod V, Munsell L, Kasten T, Morris JC, et al. Decreased clearance of CNS beta-amyloid in Alzheimer's disease. Science (New York, NY). 2010;330(6012):1774.

    Article  CAS  Google Scholar 

  29. Koronyo-Hamaoui M, Ko MK, Koronyo Y, Azoulay D, Seksenyan A, Kunis G, et al. Attenuation of AD-like neuropathology by harnessing peripheral immune cells: local elevation of IL-10 and MMP-9. J Neurochem. 2009;111(6):1409–24. First demonstration of increased natural migration of blood-borne macrophages into the brain of mouse models of AD following MOG45D immunization. The macrophages in the immunized mice were observed to accumulate surrounding the plaque and to phagocytose Aβ. This was associated with lower TNF-α, and increased IL-10 and MMP-9 levels in the brain.

    Article  CAS  PubMed  Google Scholar 

  30. Rezai-Zadeh K, Gate D, Gowing G, Town T. How to get from here to there: macrophage recruitment in Alzheimer's disease. Curr Alzheimers Res. 2011;8(2):156–63.

    Article  CAS  Google Scholar 

  31. Hemming ML, Selkoe DJ. Amyloid β-protein is degraded by cellular angiotensin-converting enzyme (ACE) and elevated by an ACE inhibitor. J Biol Chem. 2005;280(45):37644–50.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Zou K, Yamaguchi H, Akatsu H, Sakamoto T, Ko M, Mizoguchi K, et al. Angiotensin-converting enzyme converts amyloid β-protein 1-42 (Aβ(1-42)) to Aβ(1-40), and its inhibition enhances brain Aβ deposition. J Neurosci. 2007;27:8628–35.

    Article  CAS  PubMed  Google Scholar 

  33. Sun X, Becker M, Pankow K, Krause E, Ringling M, Beyermann M, et al. Catabolic attacks of membrane-bound angiotensin-converting enzyme on the N-terminal part of species-specific amyloid-β peptides. Eur J Pharmacol. 2008;588(1):18–25.

    Article  CAS  PubMed  Google Scholar 

  34. Zou K, Maeda T, Watanabe A, Liu J, Liu S, Oba R, et al. Aβ42-to-Aβ40- and angiotensin-converting activities in different domains of angiotensin-converting enzyme. J Biol Chem. 2009;284(46):31914–20.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Bernstein KE, Koronyo Y, Salumbides BC, Sheyn J, Pelissier L, Lopes DH, et al. Angiotensin-converting enzyme overexpression in myelomonocytes prevents Alzheimer's-like cognitive decline. J Clin Invest. 2014;124:1000–12. A detailed study examining ACE 10/10 mice crossed with mice genetically predisposed to Alzheimer's-like disease. The ACE 10/10 phenotype markedly ameliorates the AD-like pathology and maintains cognition at wild type levels.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Akiyama H, Barger S, Barnum S, Bradt B, Bauer J, Cole GM, et al. Inflammation and Alzheimer's disease. Neurobiol Aging. 2000;21(3):383–421.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Wyss-Coray T. Inflammation in Alzheimer disease: driving force, bystander or beneficial response? Nat Med. 2006;12(9):1005–15.

    CAS  PubMed  Google Scholar 

  38. Das P, Golde T. Dysfunction of TGF-beta signaling in Alzheimer's disease. J Clin Invest. 2006;116(11):2855–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Zhang YY, Fan YC, Wang M, Wang D, Li XH. Atorvastatin attenuates the production of IL-1β, IL-6, and TNF-α in the hippocampus of an amyloid β1-42-induced rat model of Alzheimer's disease. Clin Interv Aging. 2013;8:103–10.

    CAS  PubMed Central  PubMed  Google Scholar 

  40. Weller RO, Nicoll JA. Cerebral amyloid angiopathy: pathogenesis and effects on the ageing and Alzheimer brain. Neurol Res. 2003;25(6):611–6.

    Article  PubMed  Google Scholar 

  41. Attems J, Quass M, Jellinger KA, Lintner F. Topographical distribution of cerebral amyloid angiopathy and its effect on cognitive decline are influenced by Alzheimer disease pathology. J Neurol Sci. 2007;257(1–2):49–55.

    Article  PubMed  Google Scholar 

  42. De Reuck J, Deramecourt V, Cordonnier C, Leys D, Maurage CA, Pasquier F. The impact of cerebral amyloid angiopathy on the occurrence of cerebrovascular lesions in demented patients with Alzheimer features: a neuropathological study. Eur J Neurol. 2011;18(6):913–8.

    Article  PubMed  Google Scholar 

  43. Holland CM, Smith EE, Csapo I, Gurol ME, Brylka DA, Killiany RJ, et al. Spatial distribution of white-matter hyperintensities in Alzheimer disease, cerebral amyloid angiopathy, and healthy aging. Stroke J Cereb Circ. 2008;39(4):1127–33.

    Article  Google Scholar 

  44. Miao J, Vitek MP, Xu F, Previti ML, Davis J, Van Nostrand WE. Reducing cerebral microvascular amyloid-beta protein deposition diminishes regional neuroinflammation in vasculotropic mutant amyloid precursor protein transgenic mice. J Neurosci. 2005;25(27):6271–7.

    Article  CAS  PubMed  Google Scholar 

  45. Kehoe PG, Miners S, Love S. Angiotensins in Alzheimer's disease - friend or foe? Trends Neurosci. 2009;32:619–28.

    Article  CAS  PubMed  Google Scholar 

  46. Kehoe PG, Passmore PA. The renin-angiotensin system and antihypertensive drugs in Alzheimer's disease: current standing of the angiotensin hypothesis? J Alzheimers Dis. 2012;30:S251–68. An excellent review discussing the relationship of hypertension and anti-hypertensive medications to the risk of developing Alzheimer's disease.

    PubMed  Google Scholar 

Download references

Acknowledgment

The authors acknowledge the tireless support of Mr. Brian Taylor. This study was supported by the National Institute of Health grants R01 HL110353 (KEB) and R00 HL088000 (RAG-V); Beginning Grant-in-Aid 13BGIA14680069 (XZS) and Scientist Development Grant 11SDG6770006 (PDS) from the American Heart Association; the Coins for Alzheimer's Research Trust (C.A.R.T) Fund (MK-H); the BrightFocus Foundation (MK-H), the Maurice Marciano Family Foundation (MK-H), and by the National Center for Advancing Translational Sciences through CTSI Grant UL1TR000124 (MK-H).

Compliance with Ethics Guidelines

Conflict of Interest

Yosef Koronyo, Ellen Bernstein, Jorge F. Giani, Tea Janjulia, Keith L. Black, and Sebastien Fuchs declare that they have no conflict of interest.

Maya Koronyo-Hamaoui has received grants from the Coins for Alzheimer's Research Trust (C.A.R.T) Fund, The BrightFocus Foundation, and The Maurice Marciano Family Foundation, along with travel support from The Coins for Alzheimer's Research Trust (C.A.R.T) Fund. She also has pending grants from The Coins for Alzheimer's Research Trust (C.A.R.T) Fund, The BrightFocus Foundation, and The Maurice Marciano Family Foundation.

Kandarp Shah has received a grant from the NIH.

Peng D. Shi has received a grant from the American Heart Association.

Romer A. Gonzalez-Villalobos has received a grant from the NIH.

Xiao Z. Shen has received a grant from the American Heart Association.

Kenneth E. Bernstein has received a grant from the NIH.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth E. Bernstein.

Additional information

This article is part of the Topical Collection on Hypertension and the Kidney

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koronyo-Hamaoui, M., Shah, K., Koronyo, Y. et al. ACE Overexpression in Myelomonocytic Cells: Effect on a Mouse Model of Alzheimer’s Disease. Curr Hypertens Rep 16, 444 (2014). https://doi.org/10.1007/s11906-014-0444-x

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11906-014-0444-x

Keywords

Navigation