Advertisement

Current HIV/AIDS Reports

, Volume 16, Issue 4, pp 304–313 | Cite as

How to Evolve the Response to the Global HIV Epidemic With New Metrics and Targets Based on Pre-Treatment CD4 Counts

  • Denis NashEmail author
  • McKaylee Robertson
Implementation Science (E Geng, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Implementation Science

Abstract

Purpose of the Review

Early diagnosis and treatment of HIV following seroconversion improves individual and population health. Using published data on pre-treatment CD4 cell counts, we benchmarked the level of immunodeficiency at HIV diagnosis and ART initiation in the “real world” against those of the treatment and control arms of landmark controlled trials that successfully reduced HIV-related deaths (INSIGHT/START) and onward HIV transmission (HPTN 052).

Recent Findings

The median CD4 count in the treatment vs. control arms of the INSIGHT/START trial and HPTN 052 were 650 vs. 408 cells/μL and 442 vs. 221 cells/μL, respectively. In the real world, recent global estimates of the median CD4 count at start of ART range from 234 to 350 cells/μL, and only 25% of those initiating ART do so early (i.e., with CD4 > 500 cells/μL). Recent global data on trends in the median CD4 count at diagnosis and ART initiation are not encouraging.

Summary

We identify a critical need for new targets and metrics for persons newly diagnosed with HIV, newly enrolling in HIV care, and newly initiating ART, based on pre-treatment CD4 counts, to help increase the focus of implementation efforts on achieving earlier diagnosis, linkage to care, and ART initiation.

Keywords

Pre-treatment CD4 count Implementation science Metrics 90-90-90 targets Treatment as prevention 

Notes

Acknowledgments

The authors would like to acknowledge Rebecca Zimba and Julia A. Schillinger for their thoughts and comments on the drafts of our manuscript.

Funding Information

DN was supported by a funding from the US National Institutes of Health, including Central Africa IeDEA (U01AI096299), the Einstein, Rockefeller, CUNY Center for AIDS Research (ERC CFAR, P30 AI124414), and the HIV Center for Clinical and Behavioral Studies (P30 MH043520). DN and MR were both supported by the CUNY Institute for Implementation Science in Population Health.

Compliance with Ethical Standards

Conflict of Interest

Dr. Nash reports grants from NIH, during the conduct of the study. Ms. Robertson has nothing to disclose.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: •• Of major importance

  1. 1.
    WHO. Guideline on when to start antiretroviral therapy and on pre-exposure prophylaxis for HIV (http://www.who.int/hiv/pub/guidelines/earlyrelease-arv/en/). In: HIV/AIDS, editor. Geneva ISBN: 978 92 4,150,956 52,015. Accessed 22 April 2019.
  2. 2.
    UNAIDS. UNAIDS Data Book Geneva: UNAIDS; 2018 [Available from: http://www.unaids.org/en/resources/documents/2018/unaids-data-2018. Accessed 22 April 2019.
  3. 3.
    Nash D, Yotebieng M, Sohn AH. Treating all people with HIV infection in sub-Saharan Africa: a new era calling for new approaches. J Viral Erad. 2018;4(Suppl 2):1–4.Google Scholar
  4. 4.
    Lange JM. Editorial commentary: Under the spell of the red queen. Clin Infect Dis. 2013;57(7):1048–50.CrossRefGoogle Scholar
  5. 5.
    •• IeDEA, Collaboration. Global trends in CD4 cell count at the start of antiretroviral therapy: collaborative study of treatment programs. Clin Infect Dis. 2018;66(6):893–903. This study generated global estimates of the trend in CD4 counts at ART initiation.Google Scholar
  6. 6.
    Lahuerta M, Ue F, Hoffman S, et al. The problem of late ART initiation in Sub-Saharan Africa: a transient aspect of HIV care and treatment scale-up or a long-term phenomenon? Journal of Health Care for the Poor and Underserved. 2013;24(1):359–83.CrossRefGoogle Scholar
  7. 7.
    Lahuerta M, Wu Y, Hoffman S, Elul B, Kulkarni SG, Remien RH, et al. Advanced HIV disease at entry into HIV care and initiation of antiretroviral therapy during 2006–2011: findings from four sub-saharan African countries. Clin Infect Dis. 2014;58(3):432–41.CrossRefGoogle Scholar
  8. 8.
    Lahuerta M, Ue F, Hoffman S, Elul B, Kulkarni SG, Wu Y, et al. The problem of late ART initiation in Sub-Saharan Africa: a transient aspect of scale-up or a long-term phenomenon? J Health Care Poor Underserved. 2013;24(1):359–83.CrossRefGoogle Scholar
  9. 9.
    Braunstein SL, Robertson MM, Myers J, Abraham B, Nash D. Increase in CD4+ T cell count at the time of HIV diagnosis and antiretroviral treatment initiation among persons with HIV in New York City. J Infect Dis. 2016;214(11):1682–6.CrossRefGoogle Scholar
  10. 10.
    Group ISS, Lundgren JD, Babiker AG, Gordin F, Emery S, Grund B, et al. Initiation of antiretroviral therapy in early asymptomatic HIV infection. N Engl J Med. 2015;373(9):795–807.CrossRefGoogle Scholar
  11. 11.
    Group TAS, Danel C, Moh R, Gabillard D, Badje A, Le Carrou J, et al. A trial of early antiretrovirals and isoniazid preventive therapy in Africa. N Engl J Med. 2015;373(9):808–22.CrossRefGoogle Scholar
  12. 12.
    Severe P, Juste MA, Ambroise A, Eliacin L, Marchand C, Apollon S, et al. Early versus standard antiretroviral therapy for HIV-infected adults in Haiti. N Engl J Med. 2010;363(3):257–65.CrossRefGoogle Scholar
  13. 13.
    Cohen MS, Chen YQ, McCauley M, Gamble T, Hosseinipour MC, Kumarasamy N, et al. Prevention of HIV-1 infection with early antiretroviral therapy. New England Journal of Medicine. 2011;365(6):493–505.CrossRefGoogle Scholar
  14. 14.
    Cohen MS, McCauley M, Sugarman J. Establishing HIV treatment as prevention in the HIV Prevention Trials Network 052 randomized trial: an ethical odyssey. Clin Trials. 2012;9(3):340–7.CrossRefGoogle Scholar
  15. 15.
    WHO. Consolidated guidelines on the use of antiretroviral drugs for treating and preventing HIV infection (http://www.who.int/hiv/pub/guidelines/arv2013/download/en/). Geneva 2013. Accessed 22 April 2019.
  16. 16.
    WHO. Antiretroviral therapy for HIV infection in adults and adolescents - Recommendations for a public health approach: 2010 revision (https://www.who.int/hiv/pub/arv/adult2010/en/). Geneva: World Health Organization; 2010. Accessed 22 April 2019.
  17. 17.
    Quinn TC, Wawer MJ, Sewankambo N, Serwadda D, Li C, Wabwire-Mangen F, et al. Viral load and heterosexual transmission of human immunodeficiency virus type 1. Rakai Project Study Group. N Engl J Med. 2000;342(13):921–9.CrossRefGoogle Scholar
  18. 18.
    Tanser F, Barnighausen T, Grapsa E, Zaidi J, Newell ML. High coverage of ART associated with decline in risk of HIV acquisition in rural KwaZulu-Natal, South Africa. Science. 2013;339(6122):966–71.CrossRefGoogle Scholar
  19. 19.
    Granich RM, Gilks CF, Dye C, De Cock KM, Williams BG. Universal voluntary HIV testing with immediate antiretroviral therapy as a strategy for elimination of HIV transmission: a mathematical model. Lancet. 2009;373(9657):48–57.CrossRefGoogle Scholar
  20. 20.
    Joint United Nations Program on HIV/AIDS (UNAIDS). 90-90-90: an ambitious treatment target to help end the AIDS epidemic 2017.Google Scholar
  21. 21.
    New York State Department of Health, Ending the Epidemic Task Force. Blueprint to end AIDS 2015 [cited 2015 Oct 1]. https://www.health.ny.gov/diseases/aids/ending_the_epidemic/docs/blueprint.pdf. Accessed 20 April 2019.
  22. 22.
    New York City Department of Health and Mental Hygiene. Recommendation to expand antiretroviral therapy to all persons living with HIV frequently asked questions (FAQ) for healthcare providers 2011 [updated December 11, 2011. Available from: http://www.nyc.gov/html/doh/downloads/pdf/ah/nyc-hivart-faq-provider.pdf.
  23. 23.
    •• Yotebieng M, Brazier E, Addison D, Kimmel AD, Cornell M, Keiser O, et al. Research priorities to inform ‘Treat All’ policy implementation for people living with HIV in sub-Saharan Africa: a consensus statement from the international epidemiology databases to evaluate AIDS (IeDEA). JIAS. 2019;22(1):1–16.  https://doi.org/10.1002/jia2.25218. This consensus statement highlights the need to identify effective strategies for earlier diagnosis and ART initiation, and identifies key areas for further research aimed at informing implementation.
  24. 24.
    Brazier E, Maruri F, Duda SN, Tymejczyk O, Wester CW, Somi G, et al. Implementation of ‘Treat-all’ at adult HIV care and treatment sites in the Global IeDEA Consortium: results from the Site Assessment Survey. 2018. J Int AIDS Soc (in press).Google Scholar
  25. 25.
    Tymejczyk O, Brazier B, C T Yiannoutsos, Vinikoor M, van Lettow M, Nalugoda F, et al. Rapid HIV treatment initiation after national “treat all” policy adoption in 6 sub- Saharan African countries: Regression discontinuity analysis. PLoS Med 16(6): e1002822.Google Scholar
  26. 26.
    Young B, Zuniga JM, Montaner J, Mayer KH. Controlling the HIV epidemic with antiretrovirals: moving from consensus to implementation. Clin Infect Dis. 2014;59(Suppl 1):S1–2.CrossRefGoogle Scholar
  27. 27.
    Song R, Hall HI, Green TA, Szwarcwald CL, Pantazis N. Using CD4 data to estimate HIV incidence, prevalence, and percent of undiagnosed infections in the United States. J Acquir Immune Defic Syndr. 2017;74(1):3–9.CrossRefGoogle Scholar
  28. 28.
    Prejean J, Song R, Hernandez A, Ziebell R, Green T, Walker F, et al. Estimated HIV Incidence in the United States, 2006–2009. PLoS One. 6(8):e17502.Google Scholar
  29. 29.
    Hall HI, Song R, Rhodes P, Prejean J, An Q, Lee LM, et al. Estimation of HIV incidence in the United States. JAMA. 2008;300(5):520–9.CrossRefGoogle Scholar
  30. 30.
    CDC. Diagnoses of HIV Infection in the United States and Dependent Areas, 2017 (http://www.cdc.gov/hiv/library/reports/hiv-surveillance.html; Accessed December 11, 2018). Atlanta: CDC; 2018.
  31. 31.
    Short Fabic M, Choi Y, Bird S. A systematic review of Demographic and Health Surveys: data availability and utilization for research. Bull World Health Organ. 2012;90(8):604–12.CrossRefGoogle Scholar
  32. 32.
    USAID. The Demographic and Health Survey Program (https://dhsprogram.com/data/;Accessed on December 11, 2018) 2018.
  33. 33.
    Kim AA, Parekh BS, Umuro M, Galgalo T, Bunnell R, Makokha E, et al. Identifying Risk Factors for Recent HIV Infection in Kenya Using a Recent Infection Testing Algorithm: Results from a Nationally Representative Population-Based Survey. PLoS One. 2016;11(5):e0155498.CrossRefGoogle Scholar
  34. 34.
    Justman J, Reed JB, Bicego G, Donnell D, Li K, Bock N, et al. Swaziland HIV Incidence Measurement Survey (SHIMS): a prospective national cohort study. Lancet HIV. 2017;4(2):e83–92.CrossRefGoogle Scholar
  35. 35.
    PEFPAR. PEPFAR 2018 Annual Report to Congress (https://www.pepfar.gov/documents/organization/279889.pdf;accessed December 11, 2018). In: State UDo, editor. Washington, DC 2018.
  36. 36.
    amfAR. PEFPAR monitoring, evaluation, and reporting database (http://mer.amfar.org; Accessed on December 11, 2018) 2018.
  37. 37.
    Gardner EM, McLees MP, Steiner JF, Del Rio C, Burman WJ. The spectrum of engagement in HIV care and its relevance to test-and-treat strategies for prevention of HIV infection. Clin Infect Dis. 2011;52(6):793–800.CrossRefGoogle Scholar
  38. 38.
    Perlman DC, Jordan AE, Nash D. Conceptualizing care continua: lessons from HIV, hepatitis C virus, tuberculosis and implications for the development of improved care and prevention continua. Front Public Health. 2016;4:296.Google Scholar
  39. 39.
    Horn T, Sherwood J, Remien RH, Nash D, Auerbach JD, Treatment Action G, et al. Towards an integrated primary and secondary HIV prevention continuum for the United States: a cyclical process model. J Int AIDS Soc. 2016;19(1):21263.CrossRefGoogle Scholar
  40. 40.
    UNAIDS. 90–90-90: An ambitious treatment target to help end the AIDS epidemic. Geneva: UNAIDS; 2014.Google Scholar
  41. 41.
    Mukui IN, Ng’ang’a L, Williamson J, Wamicwe JN, Vakil S, Katana A, et al. Rates and predictors of non-adherence to antiretroviral therapy among HIV-positive individuals in Kenya: results from the second Kenya aids indicator survey, 2012. PLoS One. 2016;11(12):e0167465.CrossRefGoogle Scholar
  42. 42.
    Justman JE, Mugurungi O, El-Sadr WM. HIV Population surveys - bringing precision to the global response. N Engl J Med. 2018;378(20):1859–61.CrossRefGoogle Scholar
  43. 43.
    Wang S, Hottz P, Schechter M, Rong L. Modeling the slow CD4+ T cell decline in hiv-infected individuals. PLoS Comput Biol. 2015;11(12):e1004665.CrossRefGoogle Scholar
  44. 44.
    Okoye AA, Picker LJ. CD4(+) T cell depletion in HIV infection: mechanisms of immunological failure. Immunol Rev. 2013;254(1):54–64.CrossRefGoogle Scholar
  45. 45.
    Hellerstein M, Hanley MB, Cesar D, Siler S, Papageorgopoulos C, Wieder E, et al. Directly measured kinetics of circulating T lymphocytes in normal and HIV-1-infected humans. Nat Med. 1999;5(1):83–9.CrossRefGoogle Scholar
  46. 46.
    Touloumi G, Pantazis N, Pillay D, Paraskevis D, Chaix ML, Bucher HC, et al. Impact of HIV-1 subtype on CD4 count at HIV seroconversion, rate of decline, and viral load set point in European seroconverter cohorts. Clin Infect Dis. 2013;56(6):888–97.CrossRefGoogle Scholar
  47. 47.
    Lodi S, Phillips A, Touloumi G, Geskus R, Meyer L, Thiebaut R, et al. Time from human immunodeficiency virus seroconversion to reaching CD4+ cell count thresholds <200, <350, and < 500 Cells/mm(3): assessment of need following changes in treatment guidelines. Clin Infect Dis. 2011;53(8):817–25.CrossRefGoogle Scholar
  48. 48.
    Lodi S, Phillips A, Touloumi G, Pantazis N, Bucher HC, Babiker A, et al. CD4 decline in seroconverter and seroprevalent individuals in the precombination of antiretroviral therapy era. AIDS. 2010;24(17):2697–704.CrossRefGoogle Scholar
  49. 49.
    CDC. Diagnoses of HIV Infection in the United States and Dependent Areas, 2012 (https://www.cdc.gov/hiv/pdf/statistics_2012_HIV_Surveillance_Report_vol_24.pdf; Accessed December 11, 2018). Atlanta: CDC; 2012.
  50. 50.
    Hall HI, Song R, Szwarcwald CL, Green T. Brief report: Time from infection with the human immunodeficiency virus to diagnosis, United States. Journal of Acquired Immune Deficiency Syndromes. 2015;69(2):248–51.CrossRefGoogle Scholar
  51. 51.
    Supervie V, Marty L, Lacombe JM, Dray-Spira R, Costagliola D, Group F-ACs. Looking beyond the cascade of HIV care to end the AIDS epidemic: estimation of the time interval from HIV infection to viral suppression. J Acquir Immune Defic Syndr. 2016. Nov 1;73(3):348–55.Google Scholar
  52. 52.
    Korenromp EL, Williams BG, Schmid GP, Dye C. Clinical prognostic value of RNA viral load and CD4 cell counts during untreated HIV-1 infection--a quantitative review. PLoS One. 2009;4(6):e5950.CrossRefGoogle Scholar
  53. 53.
    Jansson J, Kerr CC, Mallitt KA, Wu J, Gray RT, Wilson DP. Inferring HIV incidence from case surveillance with CD4+ cell counts. AIDS. 2015;29(12):1517–25.CrossRefGoogle Scholar
  54. 54.
    Lesko CR, Cole SR, Zinski A, Poole C, Mugavero MJ. A systematic review and meta-regression of temporal trends in adult CD4(+) cell count at presentation to HIV care, 1992–2011. Clin Infect Dis. 2013;57(7):1027–37.CrossRefGoogle Scholar
  55. 55.
    Robertson MM, Braunstein SL, Hoover DR, Li S, Nash D. Timeliness of HIV diagnosis and antiretroviral treatment initiation in the era of universal test and treat. J Infect Dis 2019.  https://doi.org/10.1093/infdis/jiz148.
  56. 56.
    ETEDashboard. Trends in the CD4 count at diagnosis among persons with newly diagnosed HIV infection in New York City, 2006–2017 2018 [Available from: http://etedashboardny.org/data/new-diagnoses-and-linkage/new-diagnoses-trends-nyc/.
  57. 57.
    Siedner MJ, Ng CK, Bassett IV, Katz IT, Bangsberg DR, Tsai AC. Trends in CD4 count at presentation to care and treatment initiation in sub-Saharan Africa, 2002–2013: a meta-analysis. Clin Infect Dis. 2015;60(7):1120–7.Google Scholar
  58. 58.
    Fordyce J, Forlenza S, Makki M, Mojica B, Nash D, Peters V, et al. 25 years of HIV in New York City: lessons from surveillance. J Urban Health. 2001;78(4):669–78.CrossRefGoogle Scholar
  59. 59.
    Nash D, Ramaswamy C, Manning S. Implementation of named HIV reporting--New York City, 2001. MMWR Morb Mortal Wkly Rep. 2004;52(51–52):1248–52.Google Scholar
  60. 60.
    New York City Department of Health and Mental Hygiene. HIV Surveillance Annual Report, 2016 2017 [Available from: https://www1.nyc.gov/assets/doh/downloads/pdf/dires/hiv-surveillance-annualreport-2016.pdf.
  61. 61.
    Hoffman S, Wu Y, Lahuerta M, Kulkarni SG, Nuwagaba-Biribonwoha H, Sadr WE, et al. Advanced disease at enrollment in HIV care in four sub-Saharan African countries: change from 2006 to 2011 and multilevel predictors in 2011. AIDS. 2014;28(16):2429–38.CrossRefGoogle Scholar
  62. 62.
    Lahuerta M, Nash D. Reply to Pattern et al. “Advanced HIV disease at ART initiation despite implementation of expanded ART eligibility guidelines during 2007-2012 in Khayelitsha, South Africa”. Clin Infect Dis. 2014. 1;59(3):457–8Google Scholar
  63. 63.
    Braunstein S, Robertson M, Myers J, Abraham B, Nash D. Reductions in the time from HIV infection to initiation of antiretroviral therapy among persons with HIV in New York City. J Infect Dis. 2016.  https://doi.org/10.1093/infdis/jiw438.
  64. 64.
    Ransome Y, Terzian A, Addison D, Braunstein S, Myers J, Abraham B, et al. Expanded HIV testing coverage is associated with decreases in late HIV diagnoses. AIDS. 2015;29(11):1369–78.CrossRefGoogle Scholar
  65. 65.
    Braunstein SL, Robertson MM, Myers J, Abraham B, Nash D. Increase in CD4+ T cell count at the time of HIV diagnosis and antiretroviral treatment initiation among persons With HIV in New York City. J Infect Dis. 2016; 1;214(11):1682–1686.Google Scholar
  66. 66.
    Althoff KN, Gange SJ, Klein MB, Brooks JT, Hogg RS, Bosch RJ, et al. Late presentation for human immunodeficiency virus care in the United States and Canada. Clin Infect Dis. 2010;50(11):1512–20.CrossRefGoogle Scholar
  67. 67.
    Kiertiburanakul S, Boettiger D, Lee MP, Omar SF, Tanuma J, Ng OT, et al. Trends of CD4 cell count levels at the initiation of antiretroviral therapy over time and factors associated with late initiation of antiretroviral therapy among Asian HIV-positive patients. J Int AIDS Soc. 2014;17:18804.CrossRefGoogle Scholar
  68. 68.
    IeDEA, Collaborations ARTC, Avila D, Althoff KN, Mugglin C, Wools-Kaloustian K, et al. Immunodeficiency at the start of combination antiretroviral therapy in low-, middle-, and high-income countries. J Acquir Immune Defic Syndr. 2014;65(1):e8–16.Google Scholar
  69. 69.
    Hanna DB, Buchacz K, Gebo KA, Hessol NA, Horberg MA, Jacobson LP, et al. Trends and disparities in antiretroviral therapy initiation and virologic suppression among newly treatment-eligible HIV-infected individuals in North America, 2001–2009. Clin Infect Dis. 2013;56(8):1174–82.CrossRefGoogle Scholar
  70. 70.
    Auld AF, Shiraishi RW, Oboho I, Ross C, Bateganya M, Pelletier V, et al. Trends in prevalence of advanced HIV disease at antiretroviral therapy enrollment - 10 countries, 2004–2015. MMWR Morb Mortal Wkly Rep. 2017;66(21):558–63.CrossRefGoogle Scholar
  71. 71.
    Nash D, Katyal M, Brinkhof MW, Keiser O, May M, Hughes R, et al. Long-term immunologic response to antiretroviral therapy in low-income countries: a collaborative analysis of prospective studies. AIDS. 2008;22(17):2291–302.CrossRefGoogle Scholar
  72. 72.
    M.J. Makhema KW, M. Pretorius Holme, T. Gaolathe, M. Mmalane, E. Kadima, U. Chakalisa, K. Manyake, A. Mbikiwa, S. Simon, R. Letlhogile, K. Mukokomani, E. van Widenfelt, S. Moyo, K. Bennett, J. Leidner, R. Lebelonyane, M.G. Alwano, K. Powis, S. Dryden-Peterson, C. Kgathi, V. Novitsky, J. Moore, P. Bachanas, W. Abrams, L. Block, S. El-Halabi, T. Marukutira, L.A. Mills, H. Bussmann, L. Okui, O. John, R. Shapiro, V. DeGruttola, Q. Lei, R. Wang, E. Tchetgen Tchetgen,10, M. Essex, S. Lockman. Impact of prevention and treatment interventions on population HIV incidence: primary results of the community-randomized Ya Tsie Botswana prevention project (http://programme.aids2018.org/Abstract/Abstract/13216). AIDS 2018; Amsterdam: IAS; 2018. Accessed 22 April 2019.
  73. 73.
    HPTN. HPTN 071 (https://www.hptn.org/research/studies/hptn071; Accessed 12/16/18) 2018.
  74. 74.
    Iwuji CC, Orne-Gliemann J, Larmarange J, Balestre E, Thiebaut R, Tanser F, et al. Universal test and treat and the HIV epidemic in rural South Africa: a phase 4, open-label, community cluster randomised trial. The Lancet HIV, 5(3), e116–e125.  https://doi.org/10.1016/S2352-3018(17)30205-9.
  75. 75.
    D. Havlir EC, L. Balzer, T. Clark, D. Kwarisiima, J. Ayieko, J. Kabami, N. Sang, T. Liegler, G. Chamie, C. Camlin, K. Kadede, A. Mucunguzi, V. Jain, T. Ruel, S. Shade, E. Ssemondo, D. Byonanebye, F. Mwangwa, A. Owaraganise, W. Olilo, D. Black, K. Snyman, R. Burger, M. Getahun, J. Achando, B. Awuonda, H. Nakato, J. Kironde, H. Thirumurthy, C. Koss, L. Brown, C. Marquez, J. Schwab, G. Lavoy, A. Plenty, E. Mugoma Wafula, P.- Omanya, J. Rooney, M. Bacon, M. van der Laan, C. Cohen, E. Bukusi, M. Petersen, M. Kamya. SEARCH community cluster randomized study of HIV “test and treat” using multi- disease approach and streamlined care in rural Uganda and Kenya (http://programme.aids2018.org/Abstract/Abstract/13469). AIDS 2018; Amsterdam: IAS; 2018. Accessed 22 April 2019.
  76. 76.
    UNAIDS. Miles to go—closing gaps, breaking barriers, righting injustices (http://www.unaids.org/en/resources/documents/2018/global-aids-update). Geneva; 2018. Accessed 22 April 2019.
  77. 77.
    Ford N, Meintjes G, Pozniak A, Bygrave H, Hill A, Peter T, et al. The future role of CD4 cell count for monitoring antiretroviral therapy. Lancet Infect Dis. 2015;15(2):241–7.CrossRefGoogle Scholar
  78. 78.
    Teasdale CA, Yuengling K, Preko P, Syowai M, Ndagije F, Rabkin M, et al. Persons living with HIV with advanced HIV disease: need for novel care models. J Int AIDS Soc. 2018;21(12):e25210.CrossRefGoogle Scholar
  79. 79.
    Tymejczyk O, Brazier E, Yiannoutsos C, Wools-Kaloustian K, Althoff K, Crabtree-Ramirez B, et al. HIV treatment eligibility expansion and timely antiretroviral treatment initiation following enrollment in HIV care: a metaregression analysis of programmatic data from 22 countries. PLoS Med. 2018;15(3):e1002534.CrossRefGoogle Scholar
  80. 80.
    Zaniewski E, Ostinelli C, Maxwell N, Davies MA, Euvrard J, Van Dijk J, et al. Trends in CD4 and viral load testing in southern Africa: analysis of 6 countries (Abstract number 150). Seattle: CROI; 2019.Google Scholar
  81. 81.
    Ehrenkranz PD, Baptiste SL, Bygrave H, Ellman T, Doi N, Grimsrud A, et al. The missed potential of CD4 and viral load testing to improve clinical outcomes for people living with HIV in lower-resource settings. PLoS Medicine. 2019.  https://doi.org/10.1371/journal.pmed.1002820
  82. 82.
    Hakim J, Musiime V, Szubert AJ, Mallewa J, Siika A, Agutu C, et al. Enhanced prophylaxis plus antiretroviral therapy for advanced HIV infection in Africa. N Engl J Med. 2017;377(3):233–45.  https://doi.org/10.1371/journal
  83. 83.
    World Health Organization. Guidelines for managing advanced HIV disease and rapid initiation of antiretroviral therapy. 2017 July 2017. https://www.who.int/hiv/pub/guidelines/advanced-HIV-disease/en/. Accessed 20 April 2019.
  84. 84.
    Phillips A, Shroufi A, Vojnov L, Cohn J, Roberts T, Ellman T, et al. Sustainable HIV treatment in Africa through viral-load-informed differentiated care. Nature. 2015;528(7580):S68–76.CrossRefGoogle Scholar
  85. 85.
    PEPFAR. PEPFAR 2018 Country operational plan guidance for standard process countries (https://www.pepfar.gov/documents/organization/276459.pdf). In: State UDo, editor: OGAC; 2018. p. 240. Accessed 22 April 2019.
  86. 86.
    Ford N BA, Baggaley R, Vitoria M, Low-Beer D, Penazzato M, Vojnov L, Bertagnolio S, Habiyambere V, Doherty M, Hirnschall G. The WHO public health approach to HIV treatment and care: looking back and looking ahead. Lancet Infect Dis. 2018;18(3):e76-e86.  https://doi.org/10.1016/S1473-3099(17)30482-6.
  87. 87.
    Carroll L. Through the looking glass (https://en.wikipedia.org/wiki/Through_the_Looking-Glass) 1871. Accessed 22 April 2019.

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute for Implementation Science in Population Health (ISPH)City University of New York (CUNY)New YorkUSA
  2. 2.Department of Epidemiology and BiostatisticsCUNY School of Public HealthNew YorkUSA
  3. 3.CUNY Institute for Implementation Science in Population HealthNew YorkUSA

Personalised recommendations