Current HIV/AIDS Reports

, Volume 15, Issue 2, pp 147–154 | Cite as

Quarter Century of Anti-HIV CAR T Cells

HIV Pathogenesis and Treatment (AL Landay and N Utay, Section Editors)
  • 268 Downloads
Part of the following topical collections:
  1. Topical Collection on HIV Pathogenesis and Treatment

Abstract

Purpose of Review

A therapy that might cure HIV is a very important goal for the 30–40 million people living with HIV. Chimeric antigen receptor T cells have recently had remarkable success against certain leukemias, and there are reasons to believe they could be successful for HIV. This manuscript summarizes the published research on HIV CAR T cells and reviews the current anti-HIV chimeric antigen receptor strategies.

Recent Findings

Research on anti-HIV chimeric antigen receptor T cells has been going on for at least the last 25 years. First- and second-generation anti-HIV chimeric antigen receptors have been developed. First-generation anti-HIV chimeric antigen receptors were studied in clinical trials more than 15 years ago, but did not have meaningful clinical efficacy.

Summary

There are some reasons to be optimistic about second-generation anti-HIV chimeric antigen receptor T cells, but they have not yet been tested in vivo.

Keywords

HIV Therapy T cell therapy Chimeric antigen receptor (CAR) HIV cure Review 

Notes

Acknowledgments

Dr. Wagner's work on anti-HIV CAR T cells is support by R01 AI118500 and UM1 AI126623.

Compliance with Ethical Standards

Conflict of Interest

Thor A. Wagner declares a patent PCT/US2015/024876 pending to Seattle Children’s Hospital.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

  1. 1.
    Leibman RS, Riley JL. Engineering T cells to functionally cure HIV-1 infection. Mol Ther. 2015;23(7):1149–59.  https://doi.org/10.1038/mt.2015.70.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Tran AC, Zhang D, Byrn R, Roberts MR. Chimeric zeta-receptors direct human natural killer (NK) effector function to permit killing of NK-resistant tumor cells and HIV-infected T lymphocytes. J Immunol. 1995;155(2):1000–9.PubMedGoogle Scholar
  3. 3.
    Ni Z, Knorr DA, Bendzick L, Allred J, Kaufman DS. Expression of chimeric receptor CD4zeta by natural killer cells derived from human pluripotent stem cells improves in vitro activity but does not enhance suppression of HIV infection in vivo. Stem Cells. 2014;32(4):1021–31.  https://doi.org/10.1002/stem.1611.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Global report: UNAIDS report on the global AIDS epidemic 2012. Joint United Nations Programme on HIV/AIDS (UNAIDS) 2012.Google Scholar
  5. 5.
    Ortblad KF, Lozano R, Murray CJ. The burden of HIV: insights from the GBD 2010. AIDS. 2013;27:2003–17.  https://doi.org/10.1097/QAD.0b013e328362ba67.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Palella FJ Jr, Baker RK, Moorman AC, Chmiel JS, Wood KC, Brooks JT, et al. Mortality in the highly active antiretroviral therapy era: changing causes of death and disease in the HIV outpatient study. J Acquir Immune Defic Syndr. 2006;43(1):27–34.  https://doi.org/10.1097/01.qai.0000233310.90484.16.CrossRefPubMedGoogle Scholar
  7. 7.
    Deeken JF, Tjen ALA, Rudek MA, Okuliar C, Young M, Little RF, et al. The rising challenge of non-AIDS-defining cancers in HIV-infected patients. Clin Infect Dis. 2012;55:1228–35.  https://doi.org/10.1093/cid/cis613.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Triant VA, Josephson F, Rochester CG, Althoff KN, Marcus K, Munk R, et al. Adverse outcome analyses of observational data: assessing cardiovascular risk in HIV disease. Clin Infect Dis. 2012;54(3):408–13.  https://doi.org/10.1093/cid/cir829.CrossRefPubMedGoogle Scholar
  9. 9.
    Mothobi NZ, Brew BJ. Neurocognitive dysfunction in the highly active antiretroviral therapy era. Curr Opin Infect Dis. 2012;25(1):4–9.  https://doi.org/10.1097/QCO.0b013e32834ef586.CrossRefPubMedGoogle Scholar
  10. 10.
    Harrison KM, Song R, Zhang X. Life expectancy after HIV diagnosis based on national HIV surveillance data from 25 states, United States. J Acquir Immune Defic Syndr. 2010;53(1):124–30.  https://doi.org/10.1097/QAI.0b013e3181b563e7.CrossRefPubMedGoogle Scholar
  11. 11.
    Dombrowski JC, Kitahata MM, Van Rompaey SE, Crane HM, Mugavero MJ, Eron JJ, et al. High levels of antiretroviral use and viral suppression among persons in HIV care in the United States, 2010. J Acquir Immune Defic Syndr. 2013;63(3):299–306.  https://doi.org/10.1097/QAI.0b013e3182945bc7.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Cartellieri M, Bachmann M, Feldmann A, Bippes C, Stamova S, Wehner R, et al. Chimeric antigen receptor-engineered T cells for immunotherapy of cancer. J Biomed Biotechnol. 2010;2010:956304–13.  https://doi.org/10.1155/2010/956304.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Sadelain M, Brentjens R, Riviere I. The promise and potential pitfalls of chimeric antigen receptors. Curr Opin Immunol. 2009;21(2):215–23.  https://doi.org/10.1016/j.coi.2009.02.009.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Lipowska-Bhalla G, Gilham DE, Hawkins RE, Rothwell DG. Targeted immunotherapy of cancer with CAR T cells: achievements and challenges. Cancer Immunol Immunother. 2012;61(7):953–62.  https://doi.org/10.1007/s00262-012-1254-0.CrossRefPubMedGoogle Scholar
  15. 15.
    Maher J. Immunotherapy of malignant disease using chimeric antigen receptor engrafted T cells. ISRN oncology. 2012;2012:278093–23.  https://doi.org/10.5402/2012/278093.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Gilham DE, Debets R, Pule M, Hawkins RE, Abken H. CAR-T cells and solid tumors: tuning T cells to challenge an inveterate foe. Trends Mol Med. 2012;18(7):377–84.  https://doi.org/10.1016/j.molmed.2012.04.009.CrossRefPubMedGoogle Scholar
  17. 17.
    Turtle CJ, Hudecek M, Jensen MC, Riddell SR. Engineered T cells for anti-cancer therapy. Curr Opin Immunol. 2012;24(5):633–9.  https://doi.org/10.1016/j.coi.2012.06.004.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Maude SL, Frey N, Shaw PA, Aplenc R, Barrett DM, Bunin NJ, et al. Chimeric antigen receptor T cells for sustained remissions in leukemia. N Engl J Med. 2014;371(16):1507–17.  https://doi.org/10.1056/NEJMoa1407222.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Kochenderfer JN, Wilson WH, Janik JE, Dudley ME, Stetler-Stevenson M, Feldman SA, et al. Eradication of B-lineage cells and regression of lymphoma in a patient treated with autologous T cells genetically engineered to recognize CD19. Blood. 2010;116(20):4099–102.  https://doi.org/10.1182/blood-2010-04-281931.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Porter DL, Levine BL, Kalos M, Bagg A, June CH. Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N Engl J Med. 2011;365(8):725–33.  https://doi.org/10.1056/NEJMoa1103849.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Grupp SA, Kalos M, Barrett D, Aplenc R, Porter DL, Rheingold SR, et al. Chimeric antigen receptor-modified T cells for acute lymphoid leukemia. N Engl J Med. 2013;368(16):1509–18.  https://doi.org/10.1056/NEJMoa1215134.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Brentjens RJ, Davila ML, Riviere I, Park J, Wang X, Cowell LG, et al. CD19-targeted T cells rapidly induce molecular remissions in adults with chemotherapy-refractory acute lymphoblastic leukemia. Sci Transl Med. 2013;5(177):177ra38.  https://doi.org/10.1126/scitranslmed.3005930.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Liu Y, McNevin JP, Holte S, McElrath MJ, Mullins JI. Dynamics of viral evolution and CTL responses in HIV-1 infection. PLoS One. 2011;6(1):e15639.  https://doi.org/10.1371/journal.pone.0015639.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Brumme ZL, John M, Carlson JM, Brumme CJ, Chan D, Brockman MA, et al. HLA-associated immune escape pathways in HIV-1 subtype B Gag Pol and Nef proteins. PLoS ONE. 2009;4(8):e6687.  https://doi.org/10.1371/journal.pone.0006687.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Moore CB, John M, James IR, Christiansen FT, Witt CS, Mallal SA. Evidence of HIV-1 adaptation to HLA-restricted immune responses at a population level. Science. 2002;296(5572):1439–43.  https://doi.org/10.1126/science.1069660.CrossRefPubMedGoogle Scholar
  26. 26.
    Schwartz O, Marechal V, Le Gall S, Lemonnier F, Heard JM. Endocytosis of major histocompatibility complex class I molecules is induced by the HIV-1 Nef protein. Nat Med. 1996;2(3):338–42.CrossRefPubMedGoogle Scholar
  27. 27.
    Collins KL, Chen BK, Kalams SA, Walker BD, Baltimore D. HIV-1 Nef protein protects infected primary cells against killing by cytotoxic T lymphocytes. Nature. 1998;391(6665):397–401.CrossRefPubMedGoogle Scholar
  28. 28.
    Minang JT, Trivett MT, Coren LV, Barsov EV, Piatak M Jr, Ott DE, et al. Nef-mediated MHC class I down-regulation unmasks clonal differences in virus suppression by SIV-specific CD8(+) T cells independent of IFN-gamma and CD107a responses. Virology. 2009;391(1):130–9.  https://doi.org/10.1016/j.virol.2009.06.008.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Mueller YM, De Rosa SC, Hutton JA, Witek J, Roederer M, Altman JD, et al. Increased CD95/Fas-induced apoptosis of HIV-specific CD8(+) T cells. Immunity. 2001;15(6):871–82.CrossRefPubMedGoogle Scholar
  30. 30.
    Petrovas C, Chaon B, Ambrozak DR, Price DA, Melenhorst JJ, Hill BJ, et al. Differential association of programmed death-1 and CD57 with ex vivo survival of CD8+ T cells in HIV infection. J Immunol. 2009;183(2):1120–32.  https://doi.org/10.4049/jimmunol.0900182.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Elahi S, Dinges WL, Lejarcegui N, Laing KJ, Collier AC, Koelle DM, et al. Protective HIV-specific CD8+ T cells evade Treg cell suppression. Nat Med. 2011;17(8):989–95.  https://doi.org/10.1038/nm.2422.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Kolte L, Gaardbo JC, Skogstrand K, Ryder LP, Ersboll AK, Nielsen SD. Increased levels of regulatory T cells (Tregs) in human immunodeficiency virus-infected patients after 5 years of highly active anti-retroviral therapy may be due to increased thymic production of naive Tregs. Clin Exp Immunol. 2009;155(1):44–52.  https://doi.org/10.1111/j.1365-2249.2008.03803.x.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Kalos M, Levine BL, Porter DL, Katz S, Grupp SA, Bagg A, et al. T cells with chimeric antigen receptors have potent antitumor effects and can establish memory in patients with advanced leukemia. Sci Transl Med. 2011;3(95):95ra73.  https://doi.org/10.1126/scitranslmed.3002842.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Kochenderfer JN, Dudley ME, Feldman SA, Wilson WH, Spaner DE, Maric I, et al. B-cell depletion and remissions of malignancy along with cytokine-associated toxicity in a clinical trial of anti-CD19 chimeric-antigen-receptor-transduced T cells. Blood. 2012;119(12):2709–20.  https://doi.org/10.1182/blood-2011-10-384388.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Scholler J, Brady TL, Binder-Scholl G, Hwang WT, Plesa G, Hege KM, et al. Decade-long safety and function of retroviral-modified chimeric antigen receptor T cells. Sci Transl Med. 2012;4(132):132ra53.  https://doi.org/10.1126/scitranslmed.3003761.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Bitton N, Gorochov G, Debre P, Eshhar Z. Gene therapy approaches to HIV-infection: immunological strategies: use of T bodies and universal receptors to redirect cytolytic T-cells. Front Biosci. 1999;4:D386–93.CrossRefPubMedGoogle Scholar
  37. 37.
    Bitton N, Debre P, Eshhar Z, Gorochov G. T-bodies as antiviral agents. Curr Top Microbiol Immunol. 2001;260:271–300.PubMedGoogle Scholar
  38. 38.
    Lam S, Bollard C. T-cell therapies for HIV. Immunotherapy. 2013;5(4):407–14.  https://doi.org/10.2217/imt.13.23.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Romeo C, Seed B. Cellular immunity to HIV activated by CD4 fused to T cell or Fc receptor polypeptides. Cell. 1991;64(5):1037–46.CrossRefPubMedGoogle Scholar
  40. 40.
    Roberts MR, Qin L, Zhang D, Smith DH, Tran AC, Dull TJ, et al. Targeting of human immunodeficiency virus-infected cells by CD8+ T lymphocytes armed with universal T-cell receptors. Blood. 1994;84(9):2878–89.PubMedGoogle Scholar
  41. 41.
    Hege KM, Cooke KS, Finer MH, Zsebo KM, Roberts MR. Systemic T cell-independent tumor immunity after transplantation of universal receptor-modified bone marrow into SCID mice. J Exp Med. 1996;184(6):2261–9.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Yang OO, Tran AC, Kalams SA, Johnson RP, Roberts MR, Walker BD. Lysis of HIV-1-infected cells and inhibition of viral replication by universal receptor T cells. Proc Natl Acad Sci U S A. 1997;94(21):11478–83.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Bitton N, Verrier F, Debre P, Gorochov G. Characterization of T cell-expressed chimeric receptors with antibody-type specificity for the CD4 binding site of HIV-1 gp120. Eur J Immunol. 1998;28(12):4177–87. https://doi.org/10.1002/(SICI)1521-4141(199812)28:12<4177::AID-IMMU4177>3.0.CO;2-J.Google Scholar
  44. 44.
    Patel SD, Moskalenko M, Smith D, Maske B, Finer MH, McArthur JG. Impact of chimeric immune receptor extracellular protein domains on T cell function. Gene Ther. 1999;6(3):412–9.  https://doi.org/10.1038/sj.gt.3300831.CrossRefPubMedGoogle Scholar
  45. 45.
    Patel SD, Moskalenko M, Tian T, Smith D, McGuinness R, Chen L, et al. T-cell killing of heterogenous tumor or viral targets with bispecific chimeric immune receptors. Cancer Gene Ther. 2000;7(8):1127–34.  https://doi.org/10.1038/sj.cgt.7700213.CrossRefPubMedGoogle Scholar
  46. 46.
    Masiero S, Del Vecchio C, Gavioli R, Mattiuzzo G, Cusi MG, Micheli L, et al. T-cell engineering by a chimeric T-cell receptor with antibody-type specificity for the HIV-1 gp120. Gene Ther. 2005;12(4):299–310.  https://doi.org/10.1038/sj.gt.3302413.CrossRefPubMedGoogle Scholar
  47. 47.
    Zhen A, Kamata M, Rezek V, Rick J, Levin B, Kasparian S, et al. HIV-specific immunity derived from chimeric antigen receptor-engineered stem cells. Mol Ther. 2015;23(8):1358–67.  https://doi.org/10.1038/mt.2015.102.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Liu L, Patel B, Ghanem MH, Bundoc V, Zheng Z, Morgan RA, et al. Novel CD4-based bispecific chimeric antigen receptor designed for enhanced anti-HIV potency and absence of HIV entry receptor activity. J Virol. 2015;89(13):6685–94.  https://doi.org/10.1128/JVI.00474-15.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    MacLean AG, Walker E, Sahu GK, Skowron G, Marx P, von Laer D, et al. A novel real-time CTL assay to measure designer T-cell function against HIV Env(+) cells. J Med Primatol. 2014;43(5):341–8.  https://doi.org/10.1111/jmp.12137.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Hale M, Mesojednik T, Romano Ibarra GS, Sahni J, Bernard A, Sommer K, et al. Engineering HIV-resistant, anti-HIV chimeric antigen receptor T cells. Mol Ther. 2017;25(3):570–9.  https://doi.org/10.1016/j.ymthe.2016.12.023.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Walker RE, Bechtel CM, Natarajan V, Baseler M, Hege KM, Metcalf JA, et al. Long-term in vivo survival of receptor-modified syngeneic T cells in patients with human immunodeficiency virus infection. Blood. 2000;96(2):467–74.PubMedGoogle Scholar
  52. 52.
    Mitsuyasu RT, Anton PA, Deeks SG, Scadden DT, Connick E, Downs MT, et al. Prolonged survival and tissue trafficking following adoptive transfer of CD4zeta gene-modified autologous CD4(+) and CD8(+) T cells in human immunodeficiency virus-infected subjects. Blood. 2000;96(3):785–93.PubMedGoogle Scholar
  53. 53.
    Deeks SG, Wagner B, Anton PA, Mitsuyasu RT, Scadden DT, Huang C, et al. A phase II randomized study of HIV-specific T-cell gene therapy in subjects with undetectable plasma viremia on combination antiretroviral therapy. Mol Ther. 2002;5(6):788–97.  https://doi.org/10.1006/mthe.2002.0611.CrossRefPubMedGoogle Scholar
  54. 54.
    Maus MV, Fraietta JA, Levine BL, Kalos M, Zhao Y, June CH. Adoptive immunotherapy for cancer or viruses. Annu Rev Immunol. 2014;32:189–225.  https://doi.org/10.1146/annurev-immunol-032713-120136.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Sahu GK, Sango K, Selliah N, Ma Q, Skowron G, Junghans RP. Anti-HIV designer T cells progressively eradicate a latently infected cell line by sequentially inducing HIV reactivation then killing the newly gp120-positive cells. Virology. 2013;446(1–2):268–75.  https://doi.org/10.1016/j.virol.2013.08.002.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Ali A, Kitchen SG, Chen IS, Ng HL, Zack JA, Yang OO. HIV-1-specific chimeric antigen receptors based on broadly neutralizing antibodies. J Virol. 2016;90(15):6999–7006.  https://doi.org/10.1128/JVI.00805-16.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Seattle Children’s Research InstituteSeattleUSA
  2. 2.University of WashingtonSeattleUSA

Personalised recommendations