Current HIV/AIDS Reports

, Volume 15, Issue 1, pp 60–71 | Cite as

HIV Persistence in Adipose Tissue Reservoirs

HIV Pathogenesis and Treatment (AL Landay and N Utay, Section Editors)
Part of the following topical collections:
  1. Topical Collection on HIV Pathogenesis and Treatment

Abstract

Purpose of Review

The purpose of this review is to examine the evidence describing adipose tissue as a reservoir for HIV-1 and how this often expansive anatomic compartment contributes to HIV persistence.

Recent Findings

Memory CD4 T cells and macrophages, the major host cells for HIV, accumulate in adipose tissue during HIV/SIV infection of humans and rhesus macaques. Whereas HIV and SIV proviral DNA is detectable in CD4 T cells of multiple fat depots in virtually all infected humans and monkeys examined, viral RNA is less frequently detected, and infected macrophages may be less prevalent in adipose tissue. However, based on viral outgrowth assays, adipose-resident CD4 T cells are latently infected with virus that is replication-competent and infectious. Additionally, adipocytes interact with CD4 T cells and macrophages to promote immune cell activation and inflammation which may be supportive for HIV persistence. Antiviral effector cells, such as CD8 T cells and NK/NKT cells, are abundant in adipose tissue during HIV/SIV infection and typically exceed CD4 T cells, whereas B cells are largely absent from adipose tissue of humans and monkeys. Additionally, CD8 T cells in adipose tissue of HIV patients are activated and have a late differentiated phenotype, with unique TCR clonotypes of less diversity relative to blood CD8 T cells. With respect to the distribution of antiretroviral drugs in adipose tissue, data is limited, but there may be class-specific penetration of fat depots.

Summary

The trafficking of infected immune cells within adipose tissues is a common event during HIV/SIV infection of humans and monkeys, but the virus may be mostly transcriptionally dormant. Viral replication may occur less in adipose tissue compared to other major reservoirs, such as lymphoid tissue, but replication competence and infectiousness of adipose latent virus are comparable to other tissues. Due to the ubiquitous nature of adipose tissue, inflammatory interactions among adipocytes and CD4 T cells and macrophages, and selective distribution of antiretroviral drugs, the sequestration of infected immune cells within fat depots likely represents a major challenge for cure efforts.

Keywords

Adipose tissue Antiretroviral therapy CD4 T cells HIV reservoir Immunometabolism Obesity 

Notes

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no competing interests.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante AW Jr. Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest. 2003;112(12):1796–808.  https://doi.org/10.1172/JCI19246.CrossRefPubMedCentralPubMedGoogle Scholar
  2. 2.
    Xu H, Barnes GT, Yang Q, Tan G, Yang D, Chou CJ, et al. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J Clin Invest. 2003;112(12):1821–30.  https://doi.org/10.1172/JCI19451.CrossRefPubMedCentralPubMedGoogle Scholar
  3. 3.
    Pond CM, Mattacks CA. The activation of the adipose tissue associated with lymph nodes during the early stages of an immune response. Cytokine. 2002;17(3):131–9.  https://doi.org/10.1006/cyto.2001.0999.CrossRefPubMedGoogle Scholar
  4. 4.
    Pond CM. Paracrine relationships between adipose and lymphoid tissues: implications for the mechanism of HIV-associated adipose redistribution syndrome. Trends Immunol. 2003;24(1):13–8.  https://doi.org/10.1016/S1471-4906(02)00004-2.CrossRefPubMedGoogle Scholar
  5. 5.
    •• Koethe JR, McDonnell W, Kennedy A, Abana CO, Pilkinton M, Setliff I, et al. Adipose tissue is enriched for activated and late-differentiated CD8+ T cells, and shows distinct CD8+ receptor usage, compared to blood in HIV-infected persons. J Acquir Immune Defic Syndr. 2018;77(2):e14–e21.  https://doi.org/10.1097/QAI.0000000000001573. This study demonstrated the presence of HIV-infected CD4 T cells in human adipose tissue and further characterized the TCR repertoire of adipose tissue CD8 T cells.
  6. 6.
    •• Hsu DC, Wegner MD, Sunyakumthorn P, Silsorn D, Tayamun S, Inthawong D, et al. CD4+ cell infiltration into subcutaneous adipose tissue is not indicative of productively infected cells during acute SHIV infection. J Med Primatol. 2017;46(4):154–7.  https://doi.org/10.1111/jmp.12298. This study demonstrated that SHIV-infected CD4 T cells can accumulate in adipose tissue of rhesus macaques after acute infection.CrossRefPubMedGoogle Scholar
  7. 7.
    •• Damouche A, Pourcher G, Pourcher V, Benoist S, Busson E, Lataillade JJ, et al. High proportion of PD-1-expressing CD4+ T cells in adipose tissue constitutes an immunomodulatory microenvironment that may support HIV persistence. Eur J Immunol. 2017;47(12):2113–23.  https://doi.org/10.1002/eji.201747060. This study extensively phenotyped T cells in adipose tissue of HIV patients and demonstrated that significant proportions of adipose CD4 T cells may persist in states of exhaustion and quiescence.CrossRefPubMedGoogle Scholar
  8. 8.
    •• Couturier J, Agarwal N, Nehete PN, Baze WB, Barry MA, Jagannadha Sastry K, et al. Infectious SIV resides in adipose tissue and induces metabolic defects in chronically infected rhesus macaques. Retrovirology. 2016;13(1):30.  https://doi.org/10.1186/s12977-016-0260-2. This study was one of the initial reports demonstrating rhesus macaque adipose tissue to be a reservoir for SIV-infected immune cells.CrossRefPubMedCentralPubMedGoogle Scholar
  9. 9.
    •• Damouche A, Lazure T, Avettand-Fènoël V, Huot N, Dejucq-Rainsford N, Satie AP, et al. Adipose tissue is a neglected viral reservoir and an inflammatory site during chronic HIV and SIV infection. PLoS Pathog. 2015;11(9):e1005153.  https://doi.org/10.1371/journal.ppat.1005153. This study was one of the initial reports demonstrating that human and non-human primate adipose tissue are reservoirs for HIV/SIV-infected CD4 T cells and macrophages.CrossRefPubMedCentralPubMedGoogle Scholar
  10. 10.
    •• Couturier J, Suliburk JW, Brown JM, Luke DJ, Agarwal N, Yu X, et al. Human adipose tissue as a reservoir for memory CD4+ T cells and HIV. AIDS. 2015;29(6):667–74.  https://doi.org/10.1097/QAD.0000000000000599. This study was one of the initial reports demonstrating human adipose tissue to be a reservoir for HIV-infected immune cells.CrossRefPubMedCentralPubMedGoogle Scholar
  11. 11.
    • Dupin N, Buffet M, Marcelin AG, Lamotte C, Gorin I, Ait-Arkoub Z, et al. HIV and antiretroviral drug distribution in plasma and fat tissue of HIV-infected patients with lipodystrophy. AIDS. 2002;16(18):2419–24. This was the first study to investigate the presence of HIV and antiretroviral penetration in adipose tissue.  https://doi.org/10.1097/00002030-200212060-00006.CrossRefPubMedGoogle Scholar
  12. 12.
    Franke-Fayard B, Fonager J, Braks A, Khan SM, Janse CJ. Sequestration and tissue accumulation of human malaria parasites: can we learn anything from rodent models of malaria? PLoS Pathog. 2010;6(9):e1001032.  https://doi.org/10.1371/journal.ppat.1001032.CrossRefPubMedCentralPubMedGoogle Scholar
  13. 13.
    Tanowitz HB, Scherer PE, Mota MM, Figueiredo LM. Adipose tissue: a safe haven for parasites? Trends Parasitol. 2017;33(4):276–84.  https://doi.org/10.1016/j.pt.2016.11.008.CrossRefPubMedGoogle Scholar
  14. 14.
    Neyrolles O, Hernández-Pando R, Pietri-Rouxel F, Fornès P, Tailleux L, Barrios Payán JA, et al. Is adipose tissue a place for Mycobacterium tuberculosis persistence? PLoS One. 2006;1(1):e43.  https://doi.org/10.1371/journal.pone.0000043.CrossRefPubMedCentralPubMedGoogle Scholar
  15. 15.
    Bechah Y, Paddock CD, Capo C, Mege JL, Raoult D. Adipose tissue serves as a reservoir for recrudescent Rickettsia prowazekii infection in a mouse model. PLoS One. 2010;5(1):e8547.  https://doi.org/10.1371/journal.pone.0008547.CrossRefPubMedCentralPubMedGoogle Scholar
  16. 16.
    Hanses F, Kopp A, Bala M, Buechler C, Falk W, Salzberger B, et al. Intracellular survival of Staphylococcus aureus in adipocyte-like differentiated 3T3-L1 cells is glucose dependent and alters cytokine, chemokine, and adipokine secretion. Endocrinology. 2011;152(11):4148–57.  https://doi.org/10.1210/en.2011-0103.CrossRefPubMedGoogle Scholar
  17. 17.
    Zulian A, Cancello R, Ruocco C, Gentilini D, Di Blasio AM, Danelli P, et al. Differences in visceral fat and fat bacterial colonization between ulcerative colitis and Crohn’s disease. An in vivo and in vitro study. PLoS One. 2013;8(10):e78495.  https://doi.org/10.1371/journal.pone.0078495.CrossRefPubMedCentralPubMedGoogle Scholar
  18. 18.
    Agarwal P, Khan SR, Verma SC, Beg M, Singh K, Mitra K, et al. Mycobacterium tuberculosis persistence in various adipose depots of infected mice and the effect of anti-tubercular therapy. Microbes Infect. 2014;16(7):571–80.  https://doi.org/10.1016/j.micinf.2014.04.006.CrossRefPubMedGoogle Scholar
  19. 19.
    Beigier-Bompadre M, Montagna GN, Kühl AA, Lozza L, Weiner J 3rd, Kupz A, et al. Mycobacterium tuberculosis infection modulates adipose tissue biology. PLoS Pathog. 2017;13(10):e1006676.  https://doi.org/10.1371/journal.ppat.1006676.CrossRefPubMedCentralPubMedGoogle Scholar
  20. 20.
    Dhurandhar NV, Whigham LD, Abbott DH, Schultz-Darken NJ, Israel BA, Bradley SM, et al. Human adenovirus Ad-36 promotes weight gain in male rhesus and marmoset monkeys. J Nutr. 2002;132(10):3155–60.CrossRefPubMedGoogle Scholar
  21. 21.
    Vangipuram SD, Yu M, Tian J, Stanhope KL, Pasarica M, Havel PJ, et al. Adipogenic human adenovirus-36 reduces leptin expression and secretion and increases glucose uptake by fat cells. Int J Obes. 2007;31(1):87–96.  https://doi.org/10.1038/sj.ijo.0803366.CrossRefGoogle Scholar
  22. 22.
    Rogers PM, Mashtalir N, Rathod MA, Dubuisson O, Wang Z, Dasuri K, et al. Metabolically favorable remodeling of human adipose tissue by human adenovirus type 36. Diabetes. 2008;57(9):2321–31.  https://doi.org/10.2337/db07-1311.CrossRefPubMedCentralPubMedGoogle Scholar
  23. 23.
    Bouwman JJ, Diepersloot RJ, Visseren FL. Intracellular infections enhance interleukin-6 and plasminogen activator inhibitor 1 production by cocultivated human adipocytes and THP-1 monocytes. Clin Vaccine Immunol. 2009;16(8):1222–7.  https://doi.org/10.1128/CVI.00166-09.CrossRefPubMedCentralPubMedGoogle Scholar
  24. 24.
    Salehian B, Forman SJ, Kandeel FR, Bruner DE, He J, Atkinson RL. Adenovirus 36 DNA in adipose tissue of patient with unusual visceral obesity. Emerg Infect Dis. 2010;16(5):850–2.  https://doi.org/10.3201/eid1605.091271.CrossRefPubMedCentralPubMedGoogle Scholar
  25. 25.
    Lin WY, Dubuisson O, Rubicz R, Liu N, Allison DB, Curran JE, et al. Long-term changes in adiposity and glycemic control are associated with past adenovirus infection. Diabetes Care. 2013;36(3):701–7.  https://doi.org/10.2337/dc12-1089.CrossRefPubMedCentralPubMedGoogle Scholar
  26. 26.
    Zwezdaryk KJ, Ferris MB, Strong AL, Morris CA, Bunnell BA, Dhurandhar NV, et al. Human cytomegalovirus infection of human adipose-derived stromal/stem cells restricts differentiation along the adipogenic lineage. Adipocyte. 2015;5(1):53–64.  https://doi.org/10.1080/21623945.2015.1119957.CrossRefPubMedCentralPubMedGoogle Scholar
  27. 27.
    Amar J, Chabo C, Waget A, Klopp P, Vachoux C, Bermúdez-Humarán LG, et al. Intestinal mucosal adherence and translocation of commensal bacteria at the early onset of type 2 diabetes: molecular mechanisms and probiotic treatment. EMBO Mol Med. 2011;3(9):559–72.  https://doi.org/10.1002/emmm.201100159.CrossRefPubMedCentralPubMedGoogle Scholar
  28. 28.
    Kruis T, Batra A, Siegmund B. Bacterial translocation—impact on the adipocyte compartment. Front Immunol. 2014;4:510.  https://doi.org/10.3389/fimmu.2013.00510.CrossRefPubMedCentralPubMedGoogle Scholar
  29. 29.
    Karrasch T, Schaeffler A. Adipokines and the role of visceral adipose tissue in inflammatory bowel disease. Ann Gastroenterol. 2016;29:424–38.  https://doi.org/10.20524/aog.2016.0077.PubMedCentralPubMedGoogle Scholar
  30. 30.
    Schipper HS, Prakken B, Kalkhoven E, Boes M. Adipose tissue-resident immune cells: key players in immunometabolism. Trends Endocrinol Metab. 2012;23(8):407–15.  https://doi.org/10.1016/j.tem.2012.05.011.CrossRefPubMedGoogle Scholar
  31. 31.
    Koethe JR, Hulgan T, Niswender K. Adipose tissue and immune function: a review of evidence relevant to HIV infection. J Infect Dis. 2013;208(8):1194–201.  https://doi.org/10.1093/infdis/jit324.CrossRefPubMedCentralPubMedGoogle Scholar
  32. 32.
    Mathis D. Immunological goings-on in visceral adipose tissue. Cell Metab. 201(17):851–9.  https://doi.org/10.1016/j.cmet.2013.05.008.
  33. 33.
    Guzik TJ, Skiba DS, Touyz RM, Harrison DG. The role of infiltrating immune cells in dysfunctional adipose tissue. Cardiovasc Res. 2017;113(9):1009–23.  https://doi.org/10.1093/cvr/cvx108.CrossRefPubMedCentralPubMedGoogle Scholar
  34. 34.
    Balasubramanyam A, Mersmann H, Jahoor F, Phillips TM, Sekhar RV, Schubert U, et al. Effects of transgenic expression of HIV-1 Vpr on lipid and energy metabolism in mice. Am J Physiol Endocrinol Metab. 2007;292(1):E40–8.  https://doi.org/10.1152/ajpendo.00163.2006.CrossRefPubMedGoogle Scholar
  35. 35.
    Otake K, Omoto S, Yamamoto T, Okuyama H, Okada H, Okada N, et al. HIV-1 Nef protein in the nucleus influences adipogenesis as well as viral transcription through the peroxisome proliferator-activated receptors. AIDS. 2004;18(2):189–98.  https://doi.org/10.1097/00002030-200401230-00007.CrossRefPubMedGoogle Scholar
  36. 36.
    Asztalos BF, Mujawar Z, Morrow MP, Grant A, Pushkarsky T, Wanke C, et al. Circulating Nef induces dyslipidemia in simian immunodeficiency virus-infected macaques by suppressing cholesterol efflux. J Infect Dis. 2010;202(4):614–23.  https://doi.org/10.1086/654817.CrossRefPubMedCentralPubMedGoogle Scholar
  37. 37.
    Cheney L, Hou JC, Morrison S, Pessin J, Steigbigel RT. Nef inhibits glucose uptake in adipocytes and contributes to insulin resistance in human immunodeficiency virus type I infection. J Infect Dis. 2011;203(12):1824–31.  https://doi.org/10.1093/infdis/jir170.CrossRefPubMedCentralPubMedGoogle Scholar
  38. 38.
    Díaz-Delfín J, Domingo P, Wabitsch M, Giralt M, Villarroya F. HIV-1 Tat protein impairs adipogenesis and induces the expression and secretion of proinflammatory cytokines in human SGBS adipocytes. Antivir Ther. 2012;17(3):529–40.  https://doi.org/10.3851/IMP2021.CrossRefPubMedGoogle Scholar
  39. 39.
    Agarwal N, Iyer D, Patel SG, Sekhar RV, Phillips TM, Schubert U, et al. HIV-1 Vpr induces adipose dysfunction in vivo through reciprocal effects on PPAR/GR co-regulation. Sci Transl Med. 2013;5(213):213ra164.  https://doi.org/10.1126/scitranslmed.3007148.CrossRefPubMedCentralPubMedGoogle Scholar
  40. 40.
    Agarwal N, Iyer D, Gabbi C, Saha P, Patel SG, Mo Q, et al. HIV-1 viral protein R (Vpr) induces fatty liver in mice via LXRα and PPARα dysregulation: implications for HIV-specific pathogenesis of NAFLD. Sci Rep. 2017;7(1):13362.  https://doi.org/10.1038/s41598-017-13835-w.CrossRefPubMedCentralPubMedGoogle Scholar
  41. 41.
    Koethe JR. Adipose tissue in HIV infection. Compr Physiol. 2017;7:1339–57.  https://doi.org/10.1002/cphy.c160028.CrossRefPubMedGoogle Scholar
  42. 42.
    Munier S, Borjabad A, Lemaire M, Mariot V, Hazan U. In vitro infection of human primary adipose cells with HIV-1: a reassessment. AIDS. 2003;17(17):2537–9.  https://doi.org/10.1097/00002030-200311210-00019.CrossRefPubMedGoogle Scholar
  43. 43.
    Nazari-Shafti TZ, Freisinger E, Roy U, Bulot CT, Senst C, Dupin CL, et al. Mesenchymal stem cell derived hematopoietic cells are permissive to HIV-1 infection. Retrovirology. 2011;8(1):3.  https://doi.org/10.1186/1742-4690-8-3.CrossRefPubMedCentralPubMedGoogle Scholar
  44. 44.
    Nishimura S, Manabe I, Takaki S, Nagasaki M, Otsu M, Yamashita H, et al. Adipose natural regulatory B cells negatively control adipose tissue inflammation. Cell Metab. 2013;18(5):759–66.  https://doi.org/10.1016/j.cmet.2013.09.017.CrossRefGoogle Scholar
  45. 45.
    Frasca D, Blomberg BB. Adipose tissue inflammation induces B cell inflammation and decreases B cell function in aging. Front Immunol. 2017;8:1003.  https://doi.org/10.3389/fimmu.2017.01003.CrossRefPubMedCentralPubMedGoogle Scholar
  46. 46.
    Ying W, Wollam J, Ofrecio JM, Bandyopadhyay G, El Ouarrat D, Lee YS, et al. Adipose tissue B2 cells promote insulin resistance through leukotriene LTB4/LTB4R1 signaling. J Clin Invest. 2017;127(3):1019–30.  https://doi.org/10.1172/JCI90350.CrossRefPubMedCentralPubMedGoogle Scholar
  47. 47.
    Wu D, Molofsky AB, Liang HE, Ricardo-Gonzalez RR, Jouihan HA, Bando JK, et al. Eosinophils sustain adipose alternatively activated macrophages associated with glucose homeostasis. Science. 2011;332(6026):243–7.  https://doi.org/10.1126/science.1201475.CrossRefPubMedCentralPubMedGoogle Scholar
  48. 48.
    Bertola A, Ciucci T, Rousseau D, Bourlier V, Duffaut C, Bonnafous S, et al. Identification of adipose tissue dendritic cells correlated with obesity-associated insulin-resistance and inducing Th17 responses in mice and patients. Diabetes. 2012;61(9):2238–47.  https://doi.org/10.2337/db11-1274.CrossRefPubMedCentralPubMedGoogle Scholar
  49. 49.
    Divoux A, Moutel S, Poitou C, Lacasa D, Veyrie N, Aissat A, et al. Mast cells in human adipose tissue: link with morbid obesity, inflammatory status, and diabetes. J Clin Endocrinol Metab. 2012;97(9):E1677–85.  https://doi.org/10.1210/jc.2012-1532.CrossRefPubMedGoogle Scholar
  50. 50.
    Talukdar S, Oh DY, Bandyopadhyay G, Li D, Xu J, McNelis J, et al. Neutrophils mediate insulin resistance in mice fed a high-fat diet through secreted elastase. Nat Med. 2012;18(9):1407–12.  https://doi.org/10.1038/nm.2885.CrossRefPubMedCentralPubMedGoogle Scholar
  51. 51.
    Cho KW, Zamarron BF, Muir LA, Singer K, Porsche CE, DelProposto JB, et al. Adipose tissue dendritic cells are independent contributors to obesity-induced inflammation and insulin resistance. J Immunol. 2016;197(9):3650–61.  https://doi.org/10.4049/jimmunol.1600820.CrossRefPubMedCentralPubMedGoogle Scholar
  52. 52.
    Sundara Rajan S, Longhi MP. Dendritic cells and adipose tissue. Immunology. 2016;149(4):353–61.  https://doi.org/10.1111/imm.12653.CrossRefPubMedCentralPubMedGoogle Scholar
  53. 53.
    Weisberg SP, Hunter D, Huber R, Lemieux J, Slaymaker S, Vaddi K, et al. CCR2 modulates inflammatory and metabolic effects of high-fat feeding. J Clin Invest. 2006;116(1):115–24.  https://doi.org/10.1172/JCI24335.CrossRefPubMedGoogle Scholar
  54. 54.
    Wu H, Ghosh S, Perrard XD, Feng L, Garcia GE, Perrard JL, et al. T-cell accumulation and regulated on activation, normal T cell expressed and secreted upregulation in adipose tissue in obesity. Circulation. 2007;115(8):1029–38.  https://doi.org/10.1161/CIRCULATIONAHA.106.638379.CrossRefPubMedGoogle Scholar
  55. 55.
    Duffaut C, Zakaroff-Girard A, Bourlier V, Decaunes P, Maumus M, Chiotasso P, et al. Interplay between human adipocytes and T lymphocytes in obesity: CCL20 as an adipochemokine and T lymphocytes as lipogenic modulators. Arterioscler Thromb Vasc Biol. 2009;29(10):1608–14.  https://doi.org/10.1161/ATVBAHA.109.192583.CrossRefPubMedGoogle Scholar
  56. 56.
    Kitade H, Sawamoto K, Nagashimada M, Inoue H, Yamamoto Y, Sai Y, et al. CCR5 plays a critical role in obesity-induced adipose tissue inflammation and insulin resistance by regulating both macrophage recruitment and M1/M2 status. Diabetes. 2012;61(7):1680–90.  https://doi.org/10.2337/db11-1506.CrossRefPubMedCentralPubMedGoogle Scholar
  57. 57.
    Deiuliis JA, Oghumu S, Duggineni D, Zhong J, Rutsky J, Banerjee A, et al. CXCR3 modulates obesity-induced visceral adipose inflammation and systemic insulin resistance. Obesity (Silver Spring). 2014;22(5):1264–74.  https://doi.org/10.1002/oby.20642.CrossRefGoogle Scholar
  58. 58.
    Rocha VZ, Folco EJ, Ozdemir C, Sheikine Y, Christen T, Sukhova GK, et al. CXCR3 controls T-cell accumulation in fat inflammation. Arterioscler Thromb Vasc Biol. 2014;34(7):1374–81.  https://doi.org/10.1161/ATVBAHA.113.303133.CrossRefPubMedCentralPubMedGoogle Scholar
  59. 59.
    Conroy MJ, Galvin KC, Kavanagh ME, Mongan AM, Doyle SL, Gilmartin N, et al. CCR1 antagonism attenuates T cell trafficking to omentum and liver in obesity-associated cancer. Immunol Cell Biol. 2016;94(6):531–7.  https://doi.org/10.1038/icb.2016.26.CrossRefPubMedGoogle Scholar
  60. 60.
    Hellmann J, Sansbury BE, Holden CR, Tang Y, Wong B, Wysoczynski M, et al. CCR7 maintains nonresolving lymph node and adipose inflammation in obesity. Diabetes. 2016;65(8):2268–81.  https://doi.org/10.2337/db15-1689.CrossRefPubMedCentralPubMedGoogle Scholar
  61. 61.
    Orr JS, Kennedy AJ, Hill AA, Anderson-Baucum EK, Hubler MJ, Hasty AH. CC-chemokine receptor 7 (CCR7) deficiency alters adipose tissue leukocyte populations in mice. Physiol Rep. 2016;4(18):e12971.  https://doi.org/10.14814/phy2.12971.CrossRefPubMedCentralPubMedGoogle Scholar
  62. 62.
    Deiuliis J, Shah Z, Shah N, Needleman B, Mikami D, Narula V, et al. Visceral adipose inflammation in obesity is associated with critical alterations in tregulatory cell numbers. PLoS One. 2011;6(1):e16376.  https://doi.org/10.1371/journal.pone.0016376.CrossRefPubMedCentralPubMedGoogle Scholar
  63. 63.
    Cipolletta D. Adipose tissue-resident regulatory T cells: phenotypic specialization, functions and therapeutic potential. Immunology. 2014;142(4):517–25.  https://doi.org/10.1111/imm.12262.CrossRefPubMedCentralPubMedGoogle Scholar
  64. 64.
    Deng T, Liu J, Deng Y, Minze L, Xiao X, Wright V, et al. Adipocyte adaptive immunity mediates diet-induced adipose inflammation and insulin resistance by decreasing adipose Treg cells. Nat Commun. 2017;8:15725.  https://doi.org/10.1038/ncomms15725.CrossRefPubMedCentralGoogle Scholar
  65. 65.
    Shirakawa K, Yan X, Shinmura K, Endo J, Kataoka M, Katsumata Y, et al. Obesity accelerates T cell senescence in murine visceral adipose tissue. J Clin Invest. 2016;126(12):4626–39.  https://doi.org/10.1172/JCI88606.CrossRefPubMedCentralPubMedGoogle Scholar
  66. 66.
    Yang H, Youm YH, Vandanmagsar B, Ravussin A, Gimble JM, Greenway F, et al. Obesity increases the production of proinflammatory mediators from adipose tissue T cells and compromises TCR repertoire diversity: implications for systemic inflammation and insulin resistance. J Immunol. 2010;185(3):1836–45.  https://doi.org/10.4049/jimmunol.1000021.CrossRefPubMedCentralPubMedGoogle Scholar
  67. 67.
    O'Sullivan TE, Rapp M, Fan X, Weizman OE, Bhardwaj P, Adams NM, et al. Adipose-resident group 1 innate lymphoid cells promote obesity-associated insulin resistance. Immunity. 2016;45(2):428–41.  https://doi.org/10.1016/j.immuni.2016.06.016.CrossRefPubMedCentralPubMedGoogle Scholar
  68. 68.
    Boulenouar S, Michelet X, Duquette D, Alvarez D, Hogan AE, Dold C, et al. Adipose type one innate lymphoid cells regulate macrophage homeostasis through targeted cytotoxicity. Immunity. 2017;46(2):273–86.  https://doi.org/10.1016/j.immuni.2017.01.008.CrossRefPubMedGoogle Scholar
  69. 69.
    Newland SA, Mohanta S, Clément M, Taleb S, Walker JA, Nus M, et al. Type-2 innate lymphoid cells control the development of atherosclerosis in mice. Nat Commun. 2017;8:15781.  https://doi.org/10.1038/ncomms15781.CrossRefPubMedCentralPubMedGoogle Scholar
  70. 70.
    Li H, Richert-Spuhler LE, Evans TI, Gillis J, Connole M, Estes JD, et al. Hypercytotoxicity and rapid loss of NKp44+ innate lymphoid cells during acute SIV infection. PLoS Pathog. 2014;10(12):e1004551.  https://doi.org/10.1371/journal.ppat.1004551.CrossRefPubMedCentralPubMedGoogle Scholar
  71. 71.
    Kløverpris HN, Kazer SW, Mjösberg J, Mabuka JM, Wellmann A, Ndhlovu Z, et al. Innate lymphoid cells are depleted irreversibly during acute HIV-1 infection in the absence of viral suppression. Immunity. 2016;44(2):391–405.  https://doi.org/10.1016/j.immuni.2016.01.006.CrossRefPubMedGoogle Scholar
  72. 72.
    Krämer B, Goeser F, Lutz P, Glässner A, Boesecke C, Schwarze-Zander C, et al. Compartment-specific distribution of human intestinal innate lymphoid cells is altered in HIV patients under effective therapy. PLoS Pathog. 2017;13(5):e1006373.  https://doi.org/10.1371/journal.ppat.1006373.CrossRefPubMedCentralPubMedGoogle Scholar
  73. 73.
    Jan V, Cervera P, Maachi M, Baudrimont M, Kim M, Vidal H, et al. Altered fat differentiation and adipocytokine expression are inter-related and linked to morphological changes and insulin resistance in HIV-1-infected lipodystrophic patients. Antivir Ther. 2004;9(4):555–64.PubMedGoogle Scholar
  74. 74.
    Sievers M, Walker UA, Sevastianova K, Setzer B, Wågsäter D, Eriksson P, et al. Gene expression and immunohistochemistry in adipose tissue of HIV type 1-infected patients with nucleoside analogue reverse-transcriptase inhibitor-associated lipoatrophy. J Infect Dis. 2009;200(2):252–62.  https://doi.org/10.1086/599986.CrossRefPubMedGoogle Scholar
  75. 75.
    Shikuma CM, Gangcuangco LM, Killebrew DA, Libutti DE, Chow DC, Nakamoto BK, et al. The role of HIV and monocytes/macrophages in adipose tissue biology. J Acquir Immune Defic Syndr. 2014;65(2):151–9.  https://doi.org/10.1097/01.qai.0000435599.27727.6c.CrossRefPubMedCentralPubMedGoogle Scholar
  76. 76.
    Deng T, Lyon CJ, Minze LJ, Lin J, Zou J, Liu JZ, et al. Class II major histocompatibility complex plays an essential role in obesity-induced adipose inflammation. Cell Metab. 2013;17(3):411–22.  https://doi.org/10.1016/j.cmet.2013.02.009.CrossRefPubMedCentralPubMedGoogle Scholar
  77. 77.
    Morris DL, Cho KW, Delproposto JL, Oatmen KE, Geletka LM, Martinez-Santibanez G, et al. Adipose tissue macrophages function as antigen-presenting cells and regulate adipose tissue CD4+ T cells in mice. Diabetes. 2013;62(8):2762–72.  https://doi.org/10.2337/db12-1404.CrossRefPubMedCentralPubMedGoogle Scholar
  78. 78.
    Cho KW, Morris DL, DelProposto JL, Geletka L, Zamarron B, Martinez-Santibanez G, et al. An MHC II-dependent activation loop between adipose tissue macrophages and CD4+ T cells controls obesity-induced inflammation. Cell Rep. 2014;9(2):605–17.  https://doi.org/10.1016/j.celrep.2014.09.004.CrossRefPubMedCentralPubMedGoogle Scholar
  79. 79.
    Xiao L, Yang X, Lin Y, Li S, Jiang J, Qian S, et al. Large adipocytes function as antigen-presenting cells to activate CD4(+) T cells via upregulating MHCII in obesity. Int J Obes. 2016;40(1):112–20.  https://doi.org/10.1038/ijo.2015.145.CrossRefGoogle Scholar
  80. 80.
    Ioan-Facsinay A, Kwekkeboom JC, Westhoff S, Giera M, Rombouts Y, van Harmelen V, et al. Adipocyte-derived lipids modulate CD4+ T-cell function. Eur J Immunol. 2013;43(6):1578–87.  https://doi.org/10.1002/eji.201243096.CrossRefPubMedGoogle Scholar
  81. 81.
    Poloni A, Maurizi G, Ciarlantini M, Medici M, Mattiucci D, Mancini S, et al. Interaction between human mature adipocytes and lymphocytes induces T-cell proliferation. Cytotherapy. 2015;17(9):1292–301.  https://doi.org/10.1016/j.jcyt.2015.06.007.CrossRefPubMedGoogle Scholar
  82. 82.
    Arenaccio C, Anticoli S, Manfredi F, Chiozzini C, Olivetta E, Federico M. Latent HIV-1 is activated by exosomes from cells infected with either replication-competent or defective HIV-1. Retrovirology. 2015;12(1):87.  https://doi.org/10.1186/s12977-015-0216-y.CrossRefPubMedCentralPubMedGoogle Scholar
  83. 83.
    Lazar I, Clement E, Dauvillier S, Milhas D, Ducoux-Petit M, LeGonidec S, et al. Adipocyte exosomes promote melanoma aggressiveness through fatty acid oxidation: a novel mechanism linking obesity and cancer. Cancer Res. 2016;76(14):4051–7.  https://doi.org/10.1158/0008-5472.CAN-16-0651.CrossRefPubMedGoogle Scholar
  84. 84.
    Zhang Y, Yu M, Tian W. Physiological and pathological impact of exosomes of adipose tissue. Cell Prolif. 2016;49(1):3–13.  https://doi.org/10.1111/cpr.12233.CrossRefPubMedGoogle Scholar
  85. 85.
    Barclay RA, Schwab A, DeMarino C, Akpamagbo Y, Lepene B, Kassaye S, et al. Exosomes from uninfected cells activate transcription of latent HIV-1. J Biol Chem. 2017;292(36):14764.  https://doi.org/10.1074/jbc.A117.793521.CrossRefPubMedCentralPubMedGoogle Scholar
  86. 86.
    Huang-Doran I, Zhang CY, Vidal-Puig A. Extracellular vesicles: novel mediators of cell communication in metabolic disease. Trends Endocrinol Metab. 2017;28(1):3–18.  https://doi.org/10.1016/j.tem.2016.10.003.CrossRefPubMedGoogle Scholar
  87. 87.
    Hong X, Schouest B, Xu H. Effects of exosome on the activation of CD4+ T cells in rhesus macaques: a potential application for HIV latency reactivation. Sci Rep. 2017;7(1):15611.  https://doi.org/10.1038/s41598-017-15961-x.CrossRefPubMedCentralPubMedGoogle Scholar
  88. 88.
    Shrivastav S, Kino T, Cunningham T, Ichijo T, Schubert U, Heinklein P, et al. Human immunodeficiency virus (HIV)-1 viral protein R suppresses transcriptional activity of peroxisome proliferator-activated receptor {gamma} and inhibits adipocyte differentiation: implications for HIV-associated lipodystrophy. Mol Endocrinol. 2008;22(2):234–47.  https://doi.org/10.1210/me.2007-0124.CrossRefPubMedGoogle Scholar
  89. 89.
    Levy DN, Refaeli Y, MacGregor RR, Weiner DB. Serum Vpr regulates productive infection and latency of human immunodeficiency virus type 1. Proc Natl Acad Sci U S A. 1994;91(23):10873–7.  https://doi.org/10.1073/pnas.91.23.10873.CrossRefPubMedCentralPubMedGoogle Scholar
  90. 90.
    Romani B, Kamali Jamil R, Hamidi-Fard M, Rahimi P, Momen SB, Aghasadeghi MR, et al. HIV-1 Vpr reactivates latent HIV-1 provirus by inducing depletion of class I HDACs on chromatin. Sci Rep. 2016;6(1):31924.  https://doi.org/10.1038/srep31924.CrossRefPubMedCentralPubMedGoogle Scholar
  91. 91.
    Fletcher CV, Staskus K, Wietgrefe SW, Rothenberger M, Reilly C, Chipman JG, et al. Persistent HIV-1 replication is associated with lower antiretroviral drug concentrations in lymphatic tissues. Proc Natl Acad Sci U S A. 2014;111(6):2307–12.  https://doi.org/10.1073/pnas.1318249111.CrossRefPubMedCentralPubMedGoogle Scholar
  92. 92.
    Janneh O, Hoggard PG, Tjia JF, Jones SP, Khoo SH, Maher B, et al. Intracellular disposition and metabolic effects of zidovudine, stavudine and four protease inhibitors in cultured adipocytes. Antivir Ther. 2003;8(5):417–26.PubMedGoogle Scholar
  93. 93.
    Vernochet C, Azoulay S, Duval D, Guedj R, Cottrez F, Vidal H, et al. Human immunodeficiency virus protease inhibitors accumulate into cultured human adipocytes and alter expression of adipocytokines. J Biol Chem. 2005;280(3):2238–43.  https://doi.org/10.1074/jbc.M408687200.CrossRefPubMedGoogle Scholar
  94. 94.
    Guallar JP, Cano-Soldado P, Aymerich I, Domingo JC, Alegre M, Domingo P, et al. Altered expression of nucleoside transporter genes (SLC28 and SLC29) in adipose tissue from HIV-1-infected patients. Antivir Ther. 2007;12(6):853–63.PubMedGoogle Scholar
  95. 95.
    Janneh O, Owen A, Bray PG, Back DJ, Pirmohamed M. The accumulation and metabolism of zidovudine in 3T3-F442A pre-adipocytes. Br J Pharmacol. 2010;159(2):484–93.  https://doi.org/10.1111/j.1476-5381.2009.00552.x.CrossRefPubMedGoogle Scholar
  96. 96.
    Dankers AC, Sweep FC, Pertijs JC, Verweij V, van den Heuvel JJ, Koenderink JB, et al. Localization of breast cancer resistance protein (Bcrp) in endocrine organs and inhibition of its transport activity by steroid hormones. Cell Tissue Res. 2012;349(2):551–63.  https://doi.org/10.1007/s00441-012-1417-5.CrossRefPubMedCentralPubMedGoogle Scholar
  97. 97.
    van Dijk A, Naaijkens BA, Jurgens WJ, Oerlemans R, Scheffer GL, Kassies J, et al. The multidrug resistance protein breast cancer resistance protein (BCRP) protects adipose-derived stem cells against ischemic damage. Cell Biol Toxicol. 2012;28(5):303–15.  https://doi.org/10.1007/s10565-012-9225-y.CrossRefPubMedGoogle Scholar
  98. 98.
    Francisco AF, Lewis MD, Jayawardhana S, Taylor MC, Chatelain E, Kelly JM. Limited ability of posaconazole to cure both acute and chronic Trypanosoma cruzi infections revealed by highly sensitive in vivo imaging. Antimicrob Agents Chemother. 2015;59(8):4653–61.  https://doi.org/10.1128/AAC.00520-15.CrossRefPubMedCentralPubMedGoogle Scholar
  99. 99.
    Deng T, Lyon CJ, Bergin S, Caligiuri MA, Hsueh WA. Obesity, inflammation, and cancer. Annu Rev Pathol. 2016;11(1):421–49.  https://doi.org/10.1146/annurev-pathol-012615-044359.CrossRefPubMedGoogle Scholar
  100. 100.
    Himbert C, Delphan M, Scherer D, Bowers LW, Hursting S, Ulrich CM. Signals from the adipose microenvironment and the obesity–cancer link—a systematic review. Cancer Prev Res (Phila). 2017;10(9):494–506.  https://doi.org/10.1158/1940-6207.CAPR-16-0322.CrossRefGoogle Scholar
  101. 101.
    Hoy AJ, Balaban S, Saunders DN. Adipocyte–tumor cell metabolic crosstalk in breast cancer. Trends Mol Med. 2017;23(5):381–92.  https://doi.org/10.1016/j.molmed.2017.02.009.CrossRefPubMedGoogle Scholar
  102. 102.
    Duong MN, Cleret A, Matera EL, Chettab K, Mathé D, Valsesia-Wittmann S, et al. Adipose cells promote resistance of breast cancer cells to trastuzumab-mediated antibody-dependent cellular cytotoxicity. Breast Cancer Res. 2015;17(1):57.  https://doi.org/10.1186/s13058-015-0569-0.CrossRefPubMedCentralPubMedGoogle Scholar
  103. 103.
    Sheng X, Tucci J, Parmentier JH, Ji L, Behan JW, Heisterkamp N, et al. Adipocytes cause leukemia cell resistance to daunorubicin via oxidative stress response. Oncotarget. 2016;7:73147–59.  https://doi.org/10.18632/oncotarget.12246.PubMedCentralPubMedGoogle Scholar
  104. 104.
    Sheng X, Parmentier JH, Tucci J, Pei H, Cortez-Toledo O, Dieli-Conwright CM, et al. Adipocytes sequester and metabolize the chemotherapeutic daunorubicin. Mol Cancer Res. 2017;15(12):1704–13.  https://doi.org/10.1158/1541-7786.MCR-17-0338.CrossRefPubMedGoogle Scholar
  105. 105.
    Cahu X, Calvo J, Poglio S, Prade N, Colsch B, Arcangeli ML, et al. Bone marrow sites differently imprint dormancy and chemoresistance to T-cell acute lymphoblastic leukemia. Blood Adv. 2017;1(20):1760–72.  https://doi.org/10.1182/bloodadvances.2017004960.PubMedCentralPubMedGoogle Scholar
  106. 106.
    Buck MD, O'Sullivan D, Pearce EL. T cell metabolism drives immunity. J Exp Med. 2015;212(9):1345–60.  https://doi.org/10.1084/jem.20151159.CrossRefPubMedCentralPubMedGoogle Scholar
  107. 107.
    Norata GD, Caligiuri G, Chavakis T, Matarese G, Netea MG, Nicoletti A, et al. The cellular and molecular basis of translational immunometabolism. Immunity. 2015;43(3):421–34.  https://doi.org/10.1016/j.immuni.2015.08.023.CrossRefPubMedGoogle Scholar
  108. 108.
    O'Neill LA, Kishton RJ, Rathmell J. A guide to immunometabolism for immunologists. Nat Rev Immunol. 2016;16(9):553–65.  https://doi.org/10.1038/nri.2016.70.CrossRefPubMedCentralPubMedGoogle Scholar
  109. 109.
    Buck MD, Sowell RT, Kaech SM, Pearce EL. Metabolic instruction of immunity. Cell. 2017;169(4):570–86.  https://doi.org/10.1016/j.cell.2017.04.004.CrossRefPubMedGoogle Scholar
  110. 110.
    Gaber T, Strehl C, Buttgereit F. Metabolic regulation of inflammation. Nat Rev Rheumatol. 2017;13(5):267–79.  https://doi.org/10.1038/nrrheum.2017.37.CrossRefPubMedGoogle Scholar
  111. 111.
    Man K, Kutyavin VI, Chawla A. Tissue immunometabolism: development, physiology, and pathobiology. Cell Metab. 2017;25(1):11–26.  https://doi.org/10.1016/j.cmet.2016.08.016.CrossRefPubMedGoogle Scholar
  112. 112.
    Puleston DJ, Villa M, Pearce EL. Ancillary activity: beyond core metabolism in immune cells. Cell Metab. 2017;26(1):131–41.  https://doi.org/10.1016/j.cmet.2017.06.019.CrossRefPubMedGoogle Scholar
  113. 113.
    Shehata HM, Murphy AJ, Lee MKS, Gardiner CM, Crowe SM, Sanjabi S, et al. Sugar or fat?—metabolic requirements for immunity to viral infections. Front Immunol. 2017;8:1311.  https://doi.org/10.3389/fimmu.2017.01311.CrossRefPubMedCentralPubMedGoogle Scholar
  114. 114.
    Hegedus A, Kavanagh Williamson M, Huthoff H. HIV-1 pathogenicity and virion production are dependent on the metabolic phenotype of activated CD4+ T cells. Retrovirology. 2014;11(1):98.  https://doi.org/10.1186/s12977-014-0098-4.CrossRefPubMedCentralPubMedGoogle Scholar
  115. 115.
    Palmer CS, Ostrowski M, Gouillou M, Tsai L, Yu D, Zhou J, et al. Increased glucose metabolic activity is associated with CD4+ T-cell activation and depletion during chronic HIV infection. AIDS. 2014;28(3):297–309.  https://doi.org/10.1097/QAD.0000000000000128.CrossRefPubMedCentralPubMedGoogle Scholar
  116. 116.
    Palmer CS, Ostrowski M, Balderson B, Christian N, Crowe SM. Glucose metabolism regulates T cell activation, differentiation, and functions. Front Immunol. 2015;6:1.  https://doi.org/10.3389/fimmu.2015.00001.CrossRefPubMedCentralPubMedGoogle Scholar
  117. 117.
    Palmer CS, Cherry CL, Sada-Ovalle I, Singh A, Crowe SM. Glucose metabolism in T cells and monocytes: new perspectives in HIV pathogenesis. EBioMedicine. 2016;6:31–41.  https://doi.org/10.1016/j.ebiom.2016.02.012.CrossRefPubMedCentralPubMedGoogle Scholar
  118. 118.
    Masson JJR, Murphy AJ, Lee MKS, Ostrowski M, Crowe SM, Palmer CS. Assessment of metabolic and mitochondrial dynamics in CD4+ and CD8+ T cells in virologically suppressed HIV-positive individuals on combination antiretroviral therapy. PLoS One. 2017;12(8):e0183931.  https://doi.org/10.1371/journal.pone.0183931.CrossRefPubMedCentralPubMedGoogle Scholar
  119. 119.
    Palmer CS, Duette GA, Wagner MCE, Henstridge DC, Saleh S, Pereira C, et al. Metabolically active CD4+ T cells expressing Glut1 and OX40 preferentially harbor HIV during in vitro infection. FEBS Lett. 2017;591(20):3319–32.  https://doi.org/10.1002/1873-3468.12843.CrossRefPubMedCentralPubMedGoogle Scholar
  120. 120.
    Besnard E, Hakre S, Kampmann M, Lim HW, Hosmane NN, Martin A, et al. The mTOR complex controls HIV latency. Cell Host Microbe. 2016;20(6):785–97.  https://doi.org/10.1016/j.chom.2016.11.001.CrossRefPubMedCentralPubMedGoogle Scholar
  121. 121.
    Rasheed S, Yan JS, Lau A, Chan AS. HIV replication enhances production of free fatty acids, low density lipoproteins and many key proteins involved in lipid metabolism: a proteomics study. PLoS One. 2008;3(8):e3003.  https://doi.org/10.1371/journal.pone.0003003.CrossRefPubMedCentralPubMedGoogle Scholar
  122. 122.
    Angela M, Endo Y, Asou HK, Yamamoto T, Tumes DJ, Tokuyama H, et al. Fatty acid metabolic reprogramming via mTOR-mediated inductions of PPARγ directs early activation of T cells. Nat Commun. 2016;7:13683.  https://doi.org/10.1038/ncomms13683.CrossRefPubMedCentralPubMedGoogle Scholar
  123. 123.
    Simonetta F, Bourgeois C. CD4+FOXP3+ regulatory T-cell subsets in human immunodeficiency virus infection. Front Immunol. 2013;4:215.  https://doi.org/10.3389/fimmu.2013.00215.CrossRefPubMedCentralPubMedGoogle Scholar
  124. 124.
    Chachage M, Pollakis G, Kuffour EO, Haase K, Bauer A, Nadai Y, et al. CD25+ FoxP3+ memory CD4 T cells are frequent targets of HIV infection in vivo. J Virol. 2016;90(20):8954–67.  https://doi.org/10.1128/JVI.00612-16.CrossRefPubMedCentralPubMedGoogle Scholar
  125. 125.
    Angelin A, Gil-de-Gómez L, Dahiya S, Jiao J, Guo L, Levine MH, et al. Foxp3 reprograms T cell metabolism to function in low-glucose, high-lactate environments. Cell Metab. 2017;25(6):1282–93.e7.  https://doi.org/10.1016/j.cmet.2016.12.018.CrossRefPubMedGoogle Scholar
  126. 126.
    Howie D, Cobbold SP, Adams E, Ten Bokum A, Necula AS, Zhang W, et al. Foxp3 drives oxidative phosphorylation and protection from lipotoxicity. JCI Insight. 2017;2(3):e89160.  https://doi.org/10.1172/jci.insight.89160.CrossRefPubMedCentralPubMedGoogle Scholar
  127. 127.
    Mansfield KG, Carville A, Wachtman L, Goldin BR, Yearley J, Li W, et al. A diet high in saturated fat and cholesterol accelerates simian immunodeficiency virus disease progression. J Infect Dis. 2007;196(8):1202–10.  https://doi.org/10.1086/521680.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Division of Infectious Diseases, Department of Internal MedicineThe University of Texas Health Science Center at HoustonHoustonUSA

Personalised recommendations