Skip to main content

Advertisement

Log in

CNS-Targeted Antiretroviral Strategies: When Are They Needed and What to Choose

  • Central Nervous System and Cognition (SS Spudich, Section Editor)
  • Published:
Current HIV/AIDS Reports Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Purpose of Review

Neurocognitive disorders are not uncommon in HIV-positive patients but their pathogenesis is multifactorial and incompletely understood. After excluding contributing comorbidities, several factors may impair neurocognition including severe immune suppression, incomplete antiviral efficacy, drugs' persistent immune activation, vascular abnormalities, and drugs' neurotoxicity. The effectiveness of targeted antiretroviral strategies on these risk factors is unknown.

Recent Findings

Recent studies support the idea that residual cerebrospinal fluid HIV RNA in the setting of plasma viral suppression is associated with compartmental immune activation but the link to neuronal damage is debated. Some authors have reported an incomplete antiviral efficacy in macrophage-derived cells but targeted antiretroviral regimen switches have not been performed. Additionally, improvements in neurocognition using drugs with better central nervous system penetration or maraviroc (associated with favorable immunological properties) have been observed in pilot studies. Trials evaluating specific interventions for cardiovascular health (including brain white matter abnormalities) and neurotoxicity of antiretrovirals are warranted.

Summary

Central nervous system-targeted antiretroviral strategies are needed in patients with uncontrolled cerebrospinal HIV replication, and they may be suggested in subjects with low CD4 nadir, individuals carrying drug-resistant viruses, and those with compartmental immune activation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Hogg RS, Eyawo O, Collins AB, Zhang W, Jabbari S, Hull MW, et al. Health-adjusted life expectancy in HIV-positive and HIV-negative men and women in British Columbia, Canada: a population-based observational cohort study. Lancet HIV. 2017;2.

  2. Haddow LJ, Laverick R, Daskalopoulou M, McDonnell J, Lampe FC, Gilson R, et al. Multicenter European prevalence study of neurocognitive impairment and associated factors in HIV positive patients. AIDS Behav. 2017.

  3. •• Nightingale S, Winston A, Letendre S, Michael BD, McArthur JC, Khoo S, et al. Controversies in HIV-associated neurocognitive disorders. Lancet Neurol. 2014;13(11):1139–51. https://doi.org/10.1016/S1474-4422(14)70137-1. An in-depth and balanced review on the pathogenesis, risk factors and management of HIV-associated neurocognitive disorders.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Johnson TP, Patel K, Johnson KR, Maric D, Calabresi PA, Hasbun R, et al. Induction of IL-17 and nonclassical T-cell activation by HIV-Tat protein. Proc Natl Acad Sci U S A. 2013;110(33):13588–93. https://doi.org/10.1073/pnas.1308673110.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Heaton RK, Clifford DB, Franklin DR, Woods SP, Ake C, Vaida F, et al. HIV-associated neurocognitive disorders persist in the era of potent antiretroviral therapy: CHARTER Study. Neurology. 2010;75(23):2087–96. https://doi.org/10.1212/WNL.0b013e318200d727.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Curley P, Rajoli RKR, Moss DM, Liptrott NJ, Letendre S, Owen A, et al. Efavirenz is predicted to accumulate in brain tissue: an in silico, in vitro, and in vivo investigation. Antimicrob Agents Chemother. 2017;61(1).

  7. Mallard J, Rife B, Papazian E, Noggle A, Nolan DJ, Salemi M, et al. CNS parenchyma and choroid plexus, not CSF, are viral reservoirs in monkeys with aids. In the abstract book of the Conference on Retroviruses and Opportunistic Infections, Seattle, WA, USA; 2017.

  8. Motta I, Allice T, Romito A, Ferrara M, Ecclesia S, Imperiale D, et al. Cerebrospinal fluid viral load and neopterin in HIV-positive patients with undetectable viraemia. Antivir Ther. 2017.

  9. Edén A, Marcotte TD, Heaton RK, Nilsson S, Zetterberg H, Fuchs D, et al. Increased intrathecal immune activation in virally suppressed HIV-1 infected patients with neurocognitive impairment. PLoS One. 2016;11(6):e0157160. https://doi.org/10.1371/journal.pone.0157160.

    Article  PubMed Central  PubMed  Google Scholar 

  10. Bai F, Iannuzzi F, Merlini E, Borghi L, Tincati C, Trunfio M, et al. Clinical and viro-immunological correlates of HIV associated neurocognitive disorders (HAND) in a cohort of antiretroviral-naïve HIV-infected patients. AIDS Lond Engl. 2017;31(2):311–4. https://doi.org/10.1097/QAD.0000000000001346.

    Article  CAS  Google Scholar 

  11. Ferretti F, Gisslen M, Cinque P, Price RW. Cerebrospinal fluid HIV escape from antiretroviral therapy. Curr HIV/AIDS Rep. 2015;12(2):280–8. https://doi.org/10.1007/s11904-015-0267-7.

    Article  PubMed  Google Scholar 

  12. •• Edén A, Nilsson S, Hagberg L, Fuchs D, Zetterberg H, Svennerholm B, et al. Asymptomatic cerebrospinal fluid HIV-1 viral blips and viral escape during antiretroviral therapy: a longitudinal study. J Infect Dis. 2016. A longitudinal study assessing the outcome of detectable CSF HIV RNA: the results support the concept of CSF blips whose clinical relevance is still debated.

  13. Anderson AM, Muñoz-Moreno JA, McClernon DR, Ellis RJ, Cookson D, Clifford DB, et al. Prevalence and correlates of persistent HIV-1 RNA in cerebrospinal fluid during antiretroviral therapy. J Infect Dis. 2017;215(1):105–13. https://doi.org/10.1093/infdis/jiw505.

    Article  PubMed  Google Scholar 

  14. Yilmaz A, Verhofstede C, D’Avolio A, Watson V, Hagberg L, Fuchs D, et al. Treatment intensification has no effect on the HIV-1 central nervous system infection in patients on suppressive antiretroviral therapy. J Acquir Immune Defic Syndr 1999. 2010;55(5):590–6. https://doi.org/10.1097/QAI.0b013e3181f5b3d1.

    Article  CAS  Google Scholar 

  15. Canestri A, Lescure F-X, Jaureguiberry S, Moulignier A, Amiel C, Marcelin AG, et al. Discordance between cerebral spinal fluid and plasma HIV replication in patients with neurological symptoms who are receiving suppressive antiretroviral therapy. Clin Infect Dis Off Publ Infect Dis Soc Am. 2010;50(5):773–8. https://doi.org/10.1086/650538.

    Article  Google Scholar 

  16. Peluso MJ, Ferretti F, Peterson J, Lee E, Fuchs D, Boschini A, et al. Cerebrospinal fluid HIV escape associated with progressive neurologic dysfunction in patients on antiretroviral therapy with well controlled plasma viral load. AIDS Lond Engl. 2012;26(14):1765–74. https://doi.org/10.1097/QAD.0b013e328355e6b2.

    Article  CAS  Google Scholar 

  17. Garvey LJ, Pavese N, Politis M, Ramlackhansingh A, Brooks DJ, Taylor-Robinson SD, et al. Increased microglia activation in neurologically asymptomatic HIV-infected patients receiving effective ART. AIDS Lond Engl. 2014;28(1):67–72. https://doi.org/10.1097/01.aids.0000432467.54003.f7.

    Article  CAS  Google Scholar 

  18. Gavegnano C, Schinazi RF. Antiretroviral therapy in macrophages: implication for HIV eradication. Antivir Chem Chemother. 2009;20(2):63–78. https://doi.org/10.3851/IMP1374.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Shikuma CM, Nakamoto B, Shiramizu B, Liang C-Y, DeGruttola V, Bennett K, et al. Antiretroviral monocyte efficacy score linked to cognitive impairment in HIV. Antivir Ther. 2012;17(7):1233–42. https://doi.org/10.3851/IMP2411.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Mora-Peris B, Winston A, Garvey L, Else LJ, Shattock RJ, Herrera C. HIV-1 CNS in vitro infectivity models based on clinical CSF samples. J Antimicrob Chemother. 2016;71(1):235–43. https://doi.org/10.1093/jac/dkv326.

    Article  CAS  PubMed  Google Scholar 

  21. Bryant AK, Moore DJ, Burdo TH, Lakritz JR, Gouaux B, Soontornniyomkij V, et al. Plasma soluble CD163 is associated with postmortem brain pathology in human immunodeficiency virus infection. AIDS Lond Engl. 2017;31(7):973–9. https://doi.org/10.1097/QAD.0000000000001425.

    Article  CAS  Google Scholar 

  22. Schrier RD, Hong S, Crescini M, Ellis R, Pérez-Santiago J, Spina C, et al. Cerebrospinal fluid (CSF) CD8+ T-cells that express interferon-gamma contribute to HIV associated neurocognitive disorders (HAND). PLoS One. 2015;10(2):e0116526. https://doi.org/10.1371/journal.pone.0116526.

    Article  PubMed Central  PubMed  Google Scholar 

  23. Calcagno A, Romito A, Atzori C, Ghisetti V, Cardellino C, Audagnotto S, et al. Blood brain barrier impairment in HIV-positive naïve and effectively treated patients: immune activation versus astrocytosis. J Neuroimmune Pharmacol Off J Soc NeuroImmune Pharmacol. 2017;12(1):187–93. https://doi.org/10.1007/s11481-016-9717-2.

    Article  CAS  Google Scholar 

  24. Martin-Blondel G, Brassat D, Bauer J, Lassmann H, Liblau RS. CCR5 blockade for neuroinflammatory diseases—beyond control of HIV. Nat Rev Neurol. 2016;12(2):95–105. https://doi.org/10.1038/nrneurol.2015.248.

    Article  CAS  PubMed  Google Scholar 

  25. Thompson M, Saag M, DeJesus E, Gathe J, Lalezari J, Landay AL, et al. A 48-week randomized phase 2b study evaluating cenicriviroc versus efavirenz in treatment-naive HIV-infected adults with C-C chemokine receptor type 5-tropic virus. AIDS Lond Engl. 2016;30(6):869–78. https://doi.org/10.1097/QAD.0000000000000988.

    Article  CAS  Google Scholar 

  26. Underwood J, Robertson KR, Winston A. Could antiretroviral neurotoxicity play a role in the pathogenesis of cognitive impairment in treated HIV disease? AIDS Lond Engl. 2015;29(3):253–61. https://doi.org/10.1097/QAD.0000000000000538.

    Article  CAS  Google Scholar 

  27. Robertson K, Liner J, Meeker RB. Antiretroviral neurotoxicity. J Neuro-Oncol. 2012;18(5):388–99.

    CAS  Google Scholar 

  28. Soontornniyomkij V, Umlauf A, Chung SA, Cochran ML, Soontornniyomkij B, Gouaux B, et al. HIV protease inhibitor exposure predicts cerebral small vessel disease. AIDS Lond Engl. 2014;28(9):1297–306. https://doi.org/10.1097/QAD.0000000000000262.

    Article  CAS  Google Scholar 

  29. Su T, Wit FWNM, Caan MWA, Schouten J, Prins M, Geurtsen GJ, et al. White matter hyperintensities in relation to cognition in HIV-infected men with sustained suppressed viral load on combination antiretroviral therapy. AIDS Lond Engl. 2016;30(15):2329–39. https://doi.org/10.1097/QAD.0000000000001133.

    Article  CAS  Google Scholar 

  30. Hammond ER, Crum RM, Treisman GJ, Mehta SH, Marra CM, Clifford DB, et al. The cerebrospinal fluid HIV risk score for assessing central nervous system activity in persons with HIV. Am J Epidemiol. 2014;180(3):297–307. https://doi.org/10.1093/aje/kwu098.

    Article  PubMed Central  PubMed  Google Scholar 

  31. Hammond ER, Crum RM, Treisman GJ, Mehta SH, Clifford DB, Ellis RJ, et al. Persistent CSF but not plasma HIV RNA is associated with increased risk of new-onset moderate-to-severe depressive symptoms; a prospective cohort study. J Neuro-Oncol. 2016 Aug;22(4):479–87.

    CAS  Google Scholar 

  32. Ellis RJ, Letendre S, Vaida F, Haubrich R, Heaton RK, Sacktor N, et al. Randomized trial of central nervous system-targeted antiretrovirals for HIV-associated neurocognitive disorder. Clin Infect Dis Off Publ Infect Dis Soc Am. 2014;58(7):1015–22. https://doi.org/10.1093/cid/cit921.

    Article  CAS  Google Scholar 

  33. Vassallo M, Durant J, Biscay V, Lebrun-Frenay C, Dunais B, Laffon M, et al. Can high central nervous system penetrating antiretroviral regimens protect against the onset of HIV-associated neurocognitive disorders? AIDS Lond Engl. 2014;28(4):493–501. https://doi.org/10.1097/QAD.0000000000000096.

    Article  CAS  Google Scholar 

  34. Cross HM, Combrinck MI, Joska JA. HIV-associated neurocognitive disorders: antiretroviral regimen, central nervous system penetration effectiveness, and cognitive outcomes. South Afr Med J Suid-Afr Tydskr Vir Geneeskd. 2013;103(10):758–62.

    CAS  Google Scholar 

  35. Force G, Hahn V, Defferriere H, Darchy N, Ropers J, Aegerter P, et al. Week48 cognitive improvement in HAND after switch to HAART based on CHARTER score +3. In the abstract book of the Conference on Retroviruses and Opportunistic Infections, Boston, MA, USA; 2016.

  36. Calcagno A, Simiele M, Alberione MC, Bracchi M, Marinaro L, Ecclesia S, et al. Cerebrospinal fluid inhibitory quotients of antiretroviral drugs in HIV-infected patients are associated with compartmental viral control. Clin Infect Dis Off Publ Infect Dis Soc Am. 2015;60(2):311–7. https://doi.org/10.1093/cid/ciu773.

    Article  CAS  Google Scholar 

  37. Aquaro S, Svicher V, Schols D, Pollicita M, Antinori A, Balzarini J, et al. Mechanisms underlying activity of antiretroviral drugs in HIV-1-infected macrophages: new therapeutic strategies. J Leukoc Biol. 2006;80(5):1103–10. https://doi.org/10.1189/jlb.0606376.

    Article  CAS  PubMed  Google Scholar 

  38. Winston A, Puls R, Kerr SJ, Duncombe C, Li P, Gill JM, et al. Differences in the direction of change of cerebral function parameters are evident over three years in HIV-infected individuals electively commencing initial cART. PLoS One. 2015;10(2):e0118608. https://doi.org/10.1371/journal.pone.0118608.

    Article  PubMed Central  PubMed  Google Scholar 

  39. Zhang F, Heaton R, Wu H, Jin H, Zhao H, Yu X, Franklin D, Mu W, Vaida F, Letendre S. Randomized clinical trial of antiretroviral therapy for prevention of HAND. In the abstract book of the Conference on Retroviruses and Opportunistic Infections, Seattle, WA, USA; 2015.

  40. Robertson KR, Su Z, Margolis DM, Krambrink A, Havlir DV, Evans S, et al. Neurocognitive effects of treatment interruption in stable HIV-positive patients in an observational cohort. Neurology. 2010;74(16):1260–6. https://doi.org/10.1212/WNL.0b013e3181d9ed09.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Letendre SL, Mills AM, Tashima KT, Thomas DA, Min SS, Chen S, et al. ING116070: a study of the pharmacokinetics and antiviral activity of dolutegravir in cerebrospinal fluid in HIV-1-infected, antiretroviral therapy-naive subjects. Clin Infect Dis Off Publ Infect Dis Soc Am. 2014;59(7):1032–7. https://doi.org/10.1093/cid/ciu477.

    Article  CAS  Google Scholar 

  42. Canducci F, Ceresola ER, Saita D, Castagna A, Gianotti N, Underwood M, et al. In vitro phenotypes to elvitegravir and dolutegravir in primary macrophages and lymphocytes of clonal recombinant viral variants selected in patients failing raltegravir. J Antimicrob Chemother. 2013;68(11):2525–32. https://doi.org/10.1093/jac/dkt220.

    Article  CAS  PubMed  Google Scholar 

  43. Hinckley S, Sherman S, Best BM, Momper J, Ma Q, Letendre SR, et al. Neurotoxicity screening of antiretroviral drugs with human iPSC-derived neurons. In the abstract book of the Conference on Retroviruses and Opportunistic Infections, Boston, MA, USA; 2016.

  44. Akay-Espinoza C, Stern AL, Nara RL, Panvelker N, Li J, Jordan-Sciutto KL. Differential in vitro neurotoxicity of antiretroviral drugs. In the abstract book of the Conference on Retroviruses and Opportunistic Infections, Seattle, WA, USA; 2017.

  45. Hoffmann C, Welz T, Sabranski M, Kolb M, Wolf E, Stellbrink H-J, et al. Higher rates of neuropsychiatric adverse events leading to dolutegravir discontinuation in women and older patients. HIV Med. 2017;18(1):56–63. https://doi.org/10.1111/hiv.12468.

    Article  CAS  PubMed  Google Scholar 

  46. Fettiplace A, Stainsby C, Winston A, Givens N, Puccini S, Vannappagari V, et al. Psychiatric symptoms in patients receiving dolutegravir. J Acquir Immune Defic Syndr 1999. 2017;74(4):423–31. https://doi.org/10.1097/QAI.0000000000001269.

    Article  CAS  Google Scholar 

  47. Gates TM, Cysique LA, Siefried KJ, Chaganti J, Moffat KJ, Brew BJ. Maraviroc-intensified combined antiretroviral therapy improves cognition in virally suppressed HIV-associated neurocognitive disorder. AIDS Lond Engl. 2016 Feb 20;30(4):591–600. https://doi.org/10.1097/QAD.0000000000000951.

    Article  CAS  Google Scholar 

  48. • Nightingale S, Geretti AM, Beloukas A, Fisher M, Winston A, Else L, et al. Discordant CSF/plasma HIV-1 RNA in patients with unexplained low-level viraemia. J Neurovirol. 2016. A relevant cross-sectional study showing the prevalence of CSF escape in patients with low level viremia in the past 12 months (18%) versus those with durable virological suppression (0%).

  49. Ritola K, Robertson K, Fiscus SA, Hall C, Swanstrom R. Increased human immunodeficiency virus type 1 (HIV-1) env compartmentalization in the presence of HIV-1-associated dementia. J Virol. 2005;79(16):10830–4. https://doi.org/10.1128/JVI.79.16.10830-10834.2005.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Clarke A, Johanssen V, Gerstoft J, Clotet B, Ripamonti D, Murungi A, et al. Analysis of neurocognitive function and CNS endpoints in the PROTEA trial: darunavir/ritonavir with or without nucleoside analogues. J Int AIDS Soc. 2014;17(4 Suppl 3):19526. https://doi.org/10.7448/IAS.17.4.19526.

    Article  PubMed Central  PubMed  Google Scholar 

  51. Fabbiani M, Grima P, Milanini B, Mondi A, Baldonero E, Ciccarelli N, et al. Antiretroviral neuropenetration scores better correlate with cognitive performance of HIV-infected patients after accounting for drug susceptibility. Antivir Ther. 2015;20(4):441–7. https://doi.org/10.3851/IMP2926.

    Article  CAS  PubMed  Google Scholar 

  52. Ameet D, et al. Cerebrospinal fluid (CSF) HIV escape is associated with progressive neurologic deterioration in patients on virologically suppressive antiretroviral therapy (ART) in Western India. In the Abstract book of the European AIDS Conference, Barcelona, Spain; 2015.

  53. Ciccarelli N, Fabbiani M, Di Giambenedetto S, Fanti I, Baldonero E, Bracciale L, et al. Efavirenz associated with cognitive disorders in otherwise asymptomatic HIV-infected patients. Neurology. 2011 Apr 19;76(16):1403–9. https://doi.org/10.1212/WNL.0b013e31821670fb.

    Article  CAS  PubMed  Google Scholar 

  54. Hammarlund GO, Edén A, Mellgren Å, Fuchs D, Zetterberg H, Hagberg L, et al. CNS inflammation still present after >10 years of effective antiretroviral therapy. In the abstract book of the Conference on Retroviruses and Opportunistic Infections, Seattle, WA, USA; 2017.

  55. •• Kugathasan R, Collier DA, Haddow LJ, El Bouzidi K, Edwards SG, Cartledge JD, et al. Diffuse white matter signal abnormalities on magnetic resonance imaging are associated with human immunodeficiency virus type 1 viral escape in the central nervous system among patients with neurological symptoms. Clin Infect Dis Off Publ Infect Dis Soc Am. 2017;64(8):1059–65. https://doi.org/10.1093/cid/cix035. An interesting study on brain White Matter Abnormalities showing an association with CSF discordance/escape: these data may support a role for HIV replication and inflammation in the pathogenesis of white matter injury.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Calcagno.

Ethics declarations

Conflict of Interest

Andrea Calcagno received research grants from Gilead, BMS, and Viiv and has received payment for lectures from Abbvie, BMS, Gilead, Janssen-Cilag, MSD, and Viiv.

Stefano Bonora received research grants from Gilead, BMS, and Viiv and has received payment for lectures from Abbvie, BMS, Gilead, Janssen-Cilag, MSD, and Viiv.

Ambra Barco and Mattia Trunfio have no conflict of interest to declare.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Central Nervous System and Cognition

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Calcagno, A., Barco, A., Trunfio, M. et al. CNS-Targeted Antiretroviral Strategies: When Are They Needed and What to Choose. Curr HIV/AIDS Rep 15, 84–91 (2018). https://doi.org/10.1007/s11904-018-0375-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11904-018-0375-2

Keywords

Navigation