Skip to main content

Advertisement

Log in

Recent Insights Into Cardiovascular Disease (CVD) Risk Among HIV-Infected Adults

  • HIV Pathogenesis and Treatment (AL Landay, Section Editor)
  • Published:
Current HIV/AIDS Reports Aims and scope Submit manuscript

Abstract

While mortality rates related to cardiovascular disease (CVD) have decreased over time among adults with HIV, excess risk of CVD in the HIV-infected population may persist despite highly active antiretroviral therapy (HAART) treatment and aggressive CVD risk factor control. Beyond atherosclerotic CVD, recent studies suggest that HIV infection may be associated with left ventricular systolic and diastolic function, interstitial myocardial fibrosis, and increased cardiac fat infiltration. Thus, with the increasing average age of the HIV-infected population, heart failure and arrhythmic disorders may soon rival coronary artery disease as the most prevalent forms of CVD. Finally, the question of whether HIV infection should be considered in clinical risk stratification has never been resolved, and this question has assumed new importance with recent changes to lipid treatment guidelines for prevention of CVD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Palella Jr FJ, Delaney KM, Moorman AC, et al. Declining morbidity and mortality among patients with advanced human immunodeficiency virus infection. HIV outpatient study investigators. N Engl J Med. 1998;338(13):853–60.

    Article  PubMed  Google Scholar 

  2. Wada N, Jacobson LP, Cohen M, et al. Cause-specific life expectancies after 35 years of age for human immunodeficiency syndrome-infected and human immunodeficiency syndrome-negative individuals followed simultaneously in long-term cohort studies, 1984–2008. Am J Epidemiol. 2013;177(2):116–25.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Samji H, Cescon A, Hogg RS, et al. Closing the gap: increases in life expectancy among treated HIV-positive individuals in the United States and Canada. PLoS One. 2013;8(12), e81355.

    Article  PubMed  PubMed Central  Google Scholar 

  4. INSIGHT START Study Group. Initiation of antiretroviral therapy in early asymptomatic HIV infection. N Engl J Med. 2015.

  5. Volberding PA, Deeks SG. Antiretroviral therapy and management of HIV infection. Lancet. 2010;376(9734):49–62.

    Article  PubMed  Google Scholar 

  6. Mdodo R, Frazier EL, Dube SR, et al. Cigarette smoking prevalence among adults with HIV compared with the general adult population in the United States: cross-sectional surveys. Ann Intern Med. 2015;162(5):335–44.

    Article  PubMed  Google Scholar 

  7. Stein JH, Hsue PY. Inflammation, immune activation, and CVD risk in individuals with HIV infection. JAMA. 2012;308(4):405–6.

    Article  CAS  PubMed  Google Scholar 

  8. Shrestha S, Irvin MR, Grunfeld C, et al. HIV, inflammation, and calcium in atherosclerosis. Arterioscler Thromb Vasc Biol. 2014;34(2):244–50.

    Article  CAS  PubMed  Google Scholar 

  9. Stein JH, Currier JS, Hsue PY. Arterial disease in patients with human immunodeficiency virus infection what has imaging taught Us? J Am Coll Cardiol Img. 2014;7(5):515–25.

    Article  Google Scholar 

  10. Ford ES, Capewell S. Proportion of the decline in cardiovascular mortality disease due to prevention versus treatment: public health versus clinical care. Annu Rev Public Health. 2011;32:5–22.

    Article  PubMed  Google Scholar 

  11. Ford ES, Ajani UA, Croft JB, et al. Explaining the decrease in U.S. deaths from coronary disease, 1980–2000. N Engl J Med. 2007;356(23):2388–98.

    Article  CAS  PubMed  Google Scholar 

  12. Helleberg M, Kronborg G, Larsen CS, et al. Causes of death among Danish HIV patients compared with population controls in the period 1995–2008. Infection. 2012;40(6):627–34.

    Article  CAS  PubMed  Google Scholar 

  13. Smith CJ, Ryom L, Weber R, et al. Trends in underlying causes of death in people with HIV from 1999 to 2011 (D:A:D): a multicohort collaboration. Lancet. 2014;384(9939):241–8. Among 49,731 HIV infected study participants seen at clinics in Europe, the U.S., and Australia, the age-standardized CVD mortality rate decreased from 2.0/1,000 person-years in 1999 to 0.7/1,000 person-years in 2011.

    Article  PubMed  Google Scholar 

  14. Hanna DB, Ramaswamy C, Kaplan RC, et al. Cardiovascular disease mortality among HIV-infected persons, New York City, 2001–2012 [abstract 729]. Seattle: Conference on Retroviruses and Opportunistic Infections; 2015.

    Google Scholar 

  15. Adih WK, Selik RM, Hu X. Trends in diseases reported on US death certificates that mentioned HIV infection, 1996–2006. J Int Assoc Phys AIDS Care. 2011;10(1):5–11.

    Article  Google Scholar 

  16. Ingle SM, May MT, Gill MJ, et al. Impact of risk factors for specific causes of death in the first and subsequent years of antiretroviral therapy among HIV-infected patients. Clin Infect Dis. 2014;59(2):287–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Morlat P, Roussillon C, Henard S, et al. Causes of death among HIV-infected patients in France in 2010 (national survey): trends since 2000. AIDS. 2014;28(8):1181–91.

    Article  PubMed  Google Scholar 

  18. Schwarcz SK, Vu A, Hsu LC, et al. Changes in causes of death among persons with AIDS: San Francisco, California, 1996–2011. AIDS Patient Care STDS. 2014;28(10):517–23.

    Article  PubMed  Google Scholar 

  19. Rodger AJ, Lodwick R, Schechter M, et al. Mortality in well controlled HIV in the continuous antiretroviral therapy arms of the SMART and ESPRIT trials compared with the general population. AIDS. 2013;27(6):973–9. Adults with HIV infection who are well-controlled on ART have mortality rates close to that observed among the general population.

    Article  CAS  PubMed  Google Scholar 

  20. Lewden C, Bouteloup V, De Wit S, et al. All-cause mortality in treated HIV-infected adults with CD4 >/=500/mm3 compared with the general population: evidence from a large European observational cohort collaboration. Int J Epidemiol. 2012;41(2):433–45.

    Article  PubMed  Google Scholar 

  21. Freiberg MS, Chang CC, Kuller LH, et al. HIV infection and the risk of acute myocardial infarction. JAMA internal medicine. 2013;173(8):614–22. After adjusting for traditional CVD risk factors, comorbidities, and substance use, HIV-infected veterans had an increased risk of incident MI compared with uninfected veterans. This was a large population based study featuring medical records review to confirm incident myocardial infarction events.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Klein DB, Leyden WA, Xu LF, et al. Declining relative risk for myocardial infarction among HIV-positive compared with HIV-negative individuals with access to care. Clin Infect Dis. 2015;60(8):1278–80. In the Kaiser Permanente Northern California population, the adjusted relative risk (RR) of incident MI was 1.4 (95% CI, 1.2–1.6) comparing the HIV-infected group versus the HIV-uninfected group. The pattern of results over time suggested declining relative risk in the HIV-infected population as compared with HIV-uninfected comparators over time, which may reflect a high prevalence of statin use in the latter years of the study that might have diminished the HIV-related relative risk.

    Article  PubMed  Google Scholar 

  23. Silverberg MJ, Leyden WA, Xu LF, et al. Immunodeficiency and risk of myocardial infarction among HIV-positive individuals with access to care. J Acquir Immune Defic Syndr. 2014;65(2):160–6.

    Article  CAS  PubMed  Google Scholar 

  24. Crane HM, Heckbert SR, Drozd DR, et al. Lessons learned from the design and implementation of myocardial infarction adjudication tailored for HIV clinical cohorts. Am J Epidemiol. 2014;179(8):996–1005. Among HIV patients from eight U.S. clinical sites, approximately half of MI events were caused by atypical mechanisms such as vasospasm from use of cocaine or sepsis, which can precipitate an acute CVD event above and beyond traditional CVD risk factors.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sabin CA, Ryom L, De Wit S, et al. Associations between immune depression and cardiovascular events in HIV infection. AIDS. 2013;27(17):2735–48.

    Article  PubMed  Google Scholar 

  26. Lang S, Mary-Krause M, Simon A, et al. HIV replication and immune status are independent predictors of the risk of myocardial infarction in HIV-infected individuals. Clin Infect Dis. 2012;55(4):600–7.

    Article  CAS  PubMed  Google Scholar 

  27. Triant VA, Regan S, Lee H, et al. Association of immunologic and virologic factors with myocardial infarction rates in a US healthcare system. J Acquir Immune Defic Syndr. 2010;55(5):615–9.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Hanna DB, Post WS, Deal JA, et al. HIV infection is associated with progression of subclinical carotid atherosclerosis. Clin Infect Dis. 2015;61(4):640–50. Among 199 HIV-infected participants who were receiving ART and persistently virologically suppressed over 7 years, this study observed an increased risk of new focal carotid artery plaque formation compared with the HIV-uninfected group (adjusted RR = 1.77, 95% CI, 1.13 – 2.77). While limited to a measure of subclinical atherosclerosis, this report is notable for documenting increased CVD risk among individuals maintained long-term on suppressive ART therapy.

    Article  PubMed  Google Scholar 

  29. Sani MU. Myocardial disease in human immunodeficiency virus (HIV) infection: a review. Wien Klin Wochenschr. 2008;120(3–4):77–87.

    Article  PubMed  Google Scholar 

  30. Thienemann F, Sliwa K, Rockstroh JK. HIV and the heart: the impact of antiretroviral therapy: a global perspective. Eur Heart J. 2013;34(46):3538–46.

    Article  CAS  PubMed  Google Scholar 

  31. Cerrato E, D'Ascenzo F, Biondi-Zoccai G, et al. Cardiac dysfunction in pauci symptomatic human immunodeficiency virus patients: a meta-analysis in the highly active antiretroviral therapy era. Eur Heart J. 2013;34(19):1432–6.

    Article  CAS  PubMed  Google Scholar 

  32. Redfield MM, Jacobsen SJ, Burnett Jr JC, et al. Burden of systolic and diastolic ventricular dysfunction in the community: appreciating the scope of the heart failure epidemic. JAMA. 2003;289(2):194–202.

    Article  PubMed  Google Scholar 

  33. Samdarshi TE, Taylor HA, Edwards DQ, et al. Distribution and determinants of doppler-derived diastolic flow indices in African Americans: the Jackson heart study (JHS). Am Heart J. 2009;158(2):209–16.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Blecker S, Matsushita K, Fox E, et al. Left ventricular dysfunction as a risk factor for cardiovascular and noncardiovascular hospitalizations in African Americans. Am Heart J. 2010;160(3):488–95.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Brooks JT, Buchacz K, Gebo KA, et al. HIV infection and older Americans: the public health perspective. Am J Public Health. 2012;102(8):1516–26.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Cade WT. Left ventricular dysfunction in human immunodeficiency virus infection. J Cardiometab Syndr. 2008;3(2):83–7.

    Article  PubMed  Google Scholar 

  37. Mentz RJ, Kelly JP, von Lueder TG, et al. Noncardiac comorbidities in heart failure with reduced versus preserved ejection fraction. J Am Coll Cardiol. 2014;64(21):2281–93.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Butt AA, Chang CC, Kuller L, et al. Risk of heart failure with human immunodeficiency virus in the absence of prior diagnosis of coronary heart disease. Arch Intern Med. 2011;171(8):737–43. A study of U.S. veterans showed HIV infection to be associated with an almost 2-fold risk of incident heart failure in the absence of previously documented coronary heart disease.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Hsu JC, Li Y, Marcus GM, Hsue PY, Scherzer R, Grunfeld C, et al. Atrial fibrillation and atrial flutter in human immunodeficiency virus-infected persons: incidence, risk factors, and association with markers of HIV disease severity. J Am Coll Cardiol. 2013;61(22):2288-95. doi: 10.1016/j.jacc.2013.03.022. Epub 2013 Apr 3.

  40. Tseng ZH, Secemsky EA, Dowdy D, et al. Sudden cardiac death in patients with human immunodeficiency virus infection. J Am Coll Cardiol. 2012;59(21):1891–6.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Ho JE, Hsue PY. Cardiovascular manifestations of HIV infection. Heart. 2009;95(14):1193–202.

    Article  PubMed  Google Scholar 

  42. Hsue PY, Deeks SG, Hunt PW. Immunologic basis of cardiovascular disease in HIV-infected adults. J Infect Dis. 2012;205 Suppl 3:S375–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Paulus WJ, Tschope C. A novel paradigm for heart failure with preserved ejection fraction: comorbidities drive myocardial dysfunction and remodeling through coronary microvascular endothelial inflammation. J Am Coll Cardiol. 2013;62(4):263–71.

    Article  PubMed  Google Scholar 

  44. Mosunjac MI, Sundstrom JB, Heninger M, et al. Combined pathological effects of cocaine abuse and HIV infection on the cardiovascular system: an autopsy study of 187 cases from the Fulton county medical Examiner's office. Am J Forensic Med Pathol. 2008;29(1):9–13.

    Article  PubMed  Google Scholar 

  45. Seltenhammer MH, Marchart K, Paula P, et al. Micromorphological changes in cardiac tissue of drug-related deaths with emphasis on chronic illicit opioid abuse. Addiction. 2013;108(7):1287–95.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Laonigro I, Correale M, Di Biase M, et al. Alcohol abuse and heart failure. Eur J Heart Fail. 2009;11(5):453–62.

    Article  PubMed  Google Scholar 

  47. Remick J, Georgiopoulou V, Marti C, et al. Heart failure in patients with human immunodeficiency virus infection: epidemiology, pathophysiology, treatment, and future research. Circulation. 2014;129(17):1781–9.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Group DADS, Sabin CA, Worm SW, et al. Use of nucleoside reverse transcriptase inhibitors and risk of myocardial infarction in HIV-infected patients enrolled in the D:A:D study: a multi-cohort collaboration. Lancet. 2008;371(9622):1417–26.

    Article  Google Scholar 

  49. Choi AI, Vittinghoff E, Deeks SG, et al. Cardiovascular risks associated with abacavir and tenofovir exposure in HIV-infected persons. AIDS. 2011;25(10):1289–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ding X, Andraca-Carrera E, Cooper C, et al. No association of abacavir use with myocardial infarction: findings of an FDA meta-analysis. J Acquir Immune Defic Syndr. 2012;61(4):441–7.

    Article  CAS  PubMed  Google Scholar 

  51. Strategies for Management of Antiretroviral Therapy Study G, El-Sadr WM, Lundgren J, et al. CD4+ count-guided interruption of antiretroviral treatment. N Engl J Med. 2006;355(22):2283–96.

    Article  Google Scholar 

  52. Group DADS, Friis-Moller N, Reiss P, et al. Class of antiretroviral drugs and the risk of myocardial infarction. N Engl J Med. 2007;356(17):1723–35.

    Article  Google Scholar 

  53. Lang S, Mary-Krause M, Cotte L, et al. Impact of individual antiretroviral drugs on the risk of myocardial infarction in human immunodeficiency virus-infected patients: a case–control study nested within the French Hospital Database on HIV ANRS cohort CO4. Arch Intern Med. 2010;170(14):1228–38.

    Article  CAS  PubMed  Google Scholar 

  54. Kaplan RC, Kingsley LA, Sharrett AR, et al. Ten-year predicted coronary heart disease risk in HIV-infected men and women. Clin Infect Dis. 2007;45(8):1074–81.

    Article  PubMed  Google Scholar 

  55. Monforte A, Reiss P, Ryom L, et al. Atazanavir is not associated with an increased risk of cardio- or cerebrovascular disease events. AIDS. 2013;27(3):407–15.

    Article  CAS  PubMed  Google Scholar 

  56. Gazoti Debessa CR, Mesiano Maifrino LB, de Souza Rodrigues R. Age related changes of the collagen network of the human heart. Mech Ageing Dev. 2001;122(10):1049–58.

    Article  CAS  PubMed  Google Scholar 

  57. Borlaug BA, Paulus WJ. Heart failure with preserved ejection fraction: pathophysiology, diagnosis, and treatment. Eur Heart J. 2011;32(6):670–9.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Mewton N, Liu CY, Croisille P, et al. Assessment of myocardial fibrosis with cardiovascular magnetic resonance. J Am Coll Cardiol. 2011;57(8):891–903.

    Article  PubMed  Google Scholar 

  59. Ambale-Venkatesh B, Lima JA. Cardiac MRI: a central prognostic tool in myocardial fibrosis. Nat Rev Cardiol. 2015;12(1):18–29.

    Article  CAS  PubMed  Google Scholar 

  60. Liu CY, Liu YC, Wu C, et al. Evaluation of age-related interstitial myocardial fibrosis with cardiac magnetic resonance contrast-enhanced T1 mapping: MESA (Multi-Ethnic Study of Atherosclerosis). J Am Coll Cardiol. 2013;62(14):1280–7.

    Article  PubMed  Google Scholar 

  61. Ambale Venkatesh B, Volpe GJ, Donekal S, et al. Association of longitudinal changes in left ventricular structure and function with myocardial fibrosis: the multi-ethnic study of atherosclerosis study. Hypertension. 2014;64(3):508–15.

    Article  CAS  PubMed  Google Scholar 

  62. Lopaschuk GD, Ussher JR, Folmes CD, et al. Myocardial fatty acid metabolism in health and disease. Physiol Rev. 2010;90(1):207–58.

    Article  CAS  PubMed  Google Scholar 

  63. Goldberg IJ, Trent CM, Schulze PC. Lipid metabolism and toxicity in the heart. Cell Metab. 2012;15(6):805–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Rajabi M, Kassiotis C, Razeghi P, et al. Return to the fetal gene program protects the stressed heart: a strong hypothesis. Heart Fail Rev. 2007;12(3–4):331–43.

    Article  CAS  PubMed  Google Scholar 

  65. McGavock JM, Lingvay I, Zib I, et al. Cardiac steatosis in diabetes mellitus: a 1H-magnetic resonance spectroscopy study. Circulation. 2007;116(10):1170–5.

    Article  PubMed  Google Scholar 

  66. Utz W, Engeli S, Haufe S, et al. Myocardial steatosis, cardiac remodelling and fitness in insulin-sensitive and insulin-resistant obese women. Heart. 2011;97(19):1585–9.

    Article  CAS  PubMed  Google Scholar 

  67. van der Meer RW, Rijzewijk LJ, Diamant M, et al. The ageing male heart: myocardial triglyceride content as independent predictor of diastolic function. Eur Heart J. 2008;29(12):1516–22.

    Article  PubMed  Google Scholar 

  68. Mahmod M, Bull S, Suttie JJ, et al. Myocardial steatosis and left ventricular contractile dysfunction in patients with severe aortic stenosis. Circ Cardiovasc Imaging. 2013;6(5):808–16.

    Article  PubMed  Google Scholar 

  69. Rijzewijk LJ, van der Meer RW, Smit JW, et al. Myocardial steatosis is an independent predictor of diastolic dysfunction in type 2 diabetes mellitus. J Am Coll Cardiol. 2008;52(22):1793–9.

    Article  PubMed  Google Scholar 

  70. Ng AC, Delgado V, Bertini M, et al. Myocardial steatosis and biventricular strain and strain rate imaging in patients with type 2 diabetes mellitus. Circulation. 2010;122(24):2538–44.

    Article  PubMed  Google Scholar 

  71. Korosoglou G, Humpert PM, Ahrens J, et al. Left ventricular diastolic function in type 2 diabetes mellitus is associated with myocardial triglyceride content but not with impaired myocardial perfusion reserve. J Magn Reson Imaging. 2012;35(4):804–11.

    Article  PubMed  Google Scholar 

  72. Holloway CJ, Ntusi N, Suttie J, et al. Comprehensive cardiac magnetic resonance imaging and spectroscopy reveal a high burden of myocardial disease in HIV patients. Circulation. 2013;128(8):814–22. A cardiac magnetic resonance imaging study in HIV infected patients receiving combination ART found increased left ventricular patchy fibrosis by late gadolinium enhancement and fat content by MRS, along with depressed measures of myocardial deformation.

    Article  PubMed  Google Scholar 

  73. Thiara DK, Liu CY, Raman F, et al. Abnormal myocardial function is related to myocardial steatosis and diffuse myocardial fibrosis in HIV-infected adults. J Infect Dis. 2015;212(10):1544–51.

    Article  PubMed  Google Scholar 

  74. Nelson MD, Szczepaniak LS, LaBounty TM, et al. Cardiac steatosis and left ventricular dysfunction in HIV-infected patients treated with highly active antiretroviral therapy. J Am Coll Cardiol Img. 2014;7(11):1175–7.

    Article  Google Scholar 

  75. Stone NJ, Robinson JG, Lichtenstein AH, et al. 2013 ACC/AHA guideline on the treatment of blood cholesterol to reduce atherosclerotic cardiovascular risk in adults a report of the American College of Cardiology/American Heart Association task force on practice guidelines. Circulation. 2014;129(25):S1–S45.

    Article  PubMed  Google Scholar 

  76. Yeboah J, Polonsky TS, Young R, et al. Utility of nontraditional risk markers in individuals ineligible for statin therapy according to the 2013 American College of Cardiology/American Heart Association cholesterol guidelines. Circulation. 2015;132(10):916–22.

    Article  CAS  PubMed  Google Scholar 

  77. Mitka M. Exploring statins to decrease HIV-related heart disease risk. J Am Med Assoc. 2015;314(7):657–9. The ACTG REPRIEVE trial (A5332, Randomized Trial to Prevent Vascular Events in HIV) will for the first time address the efficacy of a HMG coenzyme A reductase inhibitor therapy (pitavastatin) versus placebo on major CVD events among 6500 subjects with chronic HIV infection over 72 months follow-up.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert C. Kaplan.

Ethics declarations

Conflict of Interest

Robert C. Kaplan, David B. Hanna, and Jorge R. Kizer declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on HIV Pathogenesis and Treatment

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaplan, R.C., Hanna, D.B. & Kizer, J.R. Recent Insights Into Cardiovascular Disease (CVD) Risk Among HIV-Infected Adults. Curr HIV/AIDS Rep 13, 44–52 (2016). https://doi.org/10.1007/s11904-016-0301-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11904-016-0301-4

Keywords

Navigation