Skip to main content

Advertisement

Log in

Novel Imaging Methods for Analysis of Tissue Resident Cells in HIV/SIV

  • HIV Pathogenesis and Treatment (AL Landay, Section Editor)
  • Published:
Current HIV/AIDS Reports Aims and scope Submit manuscript

Abstract

The use of advanced tissue-imaging methodologies has greatly facilitated the study of molecular mechanisms and cellular interactions in humans and animal models of disease. Particularly, in HIV research, there is an ever-increasing demand for a comprehensive analysis of immune cell dynamics at tissue level stemming from the need to advance our understanding of those interactions that regulate the generation of adaptive antigen-specific immune responses. The latter is critical for the development of vaccines to elicit broadly neutralizing antibodies as well as for the discovery of novel targets for immuno-therapies to strengthen the cytolytic arm of the immune system at local level. In this review, we focus on current and emerging imaging technologies, discuss their strengths and limitations, and examine how such technologies can inform the development of new treatments and vaccination strategies. We also present some perspective on the future of the technology development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Titford M. A short history of histopathology technique. J Histotechnol. 2006;29(2):99–110.

    Article  Google Scholar 

  2. Wick MR. Histochemistry as a tool in morphological analysis: a historical review. Ann Diagn Pathol. 2012;16(1):71–8. doi:10.1016/j.anndiagpath.2011.10.010.

    Article  PubMed  Google Scholar 

  3. Streeck H, Jolin JS, Qi Y, Yassine-Diab B, Johnson RC, Kwon DS, et al. Human immunodeficiency virus type 1-specific CD8+ T-cell responses during primary infection are major determinants of the viral set point and loss of CD4+ T cells. J Virol. 2009;83(15):7641–8. doi:10.1128/JVI.00182-09.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Koup RA, Safrit JT, Cao Y, Andrews CA, McLeod G, Borkowsky W, et al. Temporal association of cellular immune responses with the initial control of viremia in primary human immunodeficiency virus type 1 syndrome. J Virol. 1994;68(7):4650–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Kiepiela P, Ngumbela K, Thobakgale C, Ramduth D, Honeyborne I, Moodley E, et al. CD8+ T-cell responses to different HIV proteins have discordant associations with viral load. Nat Med. 2007;13(1):46–53. doi:10.1038/nm1520.

    Article  CAS  PubMed  Google Scholar 

  6. Kaufmann DE, Bailey PM, Sidney J, Wagner B, Norris PJ, Johnston MN, et al. Comprehensive analysis of human immunodeficiency virus type 1-specific CD4 responses reveals marked immunodominance of gag and nef and the presence of broadly recognized peptides. J Virol. 2004;78(9):4463–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chouquet C, Autran B, Gomard E, Bouley JM, Calvez V, Katlama C, et al. Correlation between breadth of memory HIV-specific cytotoxic T cells, viral load and disease progression in HIV infection. AIDS. 2002;16(18):2399–407.

    Article  CAS  PubMed  Google Scholar 

  8. Betts MR, Ambrozak DR, Douek DC, Bonhoeffer S, Brenchley JM, Casazza JP, et al. Analysis of total human immunodeficiency virus (HIV)-specific CD4(+) and CD8(+) T-cell responses: relationship to viral load in untreated HIV infection. J Virol. 2001;75(24):11983–91. doi:10.1128/JVI.75.24.11983-11991.2001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Moir S, Malaspina A, Ogwaro KM, Donoghue ET, Hallahan CW, Ehler LA, et al. HIV-1 induces phenotypic and functional perturbations of B cells in chronically infected individuals. Proc Natl Acad Sci U S A. 2001;98(18):10362–7. doi:10.1073/pnas.181347898.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Champagne P, Ogg GS, King AS, Knabenhans C, Ellefsen K, Nobile M, et al. Skewed maturation of memory HIV-specific CD8 T lymphocytes. Nature. 2001;410(6824):106–11. doi:10.1038/35065118.

    Article  CAS  PubMed  Google Scholar 

  11. Appay V, Dunbar PR, Callan M, Klenerman P, Gillespie GM, Papagno L, et al. Memory CD8+ T cells vary in differentiation phenotype in different persistent virus infections. Nat Med. 2002;8(4):379–85. doi:10.1038/nm0402-379.

    Article  CAS  PubMed  Google Scholar 

  12. Chomont N, El-Far M, Ancuta P, Trautmann L, Procopio FA, Yassine-Diab B, et al. HIV reservoir size and persistence are driven by T cell survival and homeostatic proliferation. Nat Med. 2009;15(8):893–900. doi:10.1038/nm.1972.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Finzi D, Blankson J, Siliciano JD, Margolick JB, Chadwick K, Pierson T, et al. Latent infection of CD4+ T cells provides a mechanism for lifelong persistence of HIV-1, even in patients on effective combination therapy. Nat Med. 1999;5(5):512–7. doi:10.1038/8394.

    Article  CAS  PubMed  Google Scholar 

  14. Leslie AJ, Pfafferott KJ, Chetty P, Draenert R, Addo MM, Feeney M, et al. HIV evolution: CTL escape mutation and reversion after transmission. Nat Med. 2004;10(3):282–9. doi:10.1038/nm992.

    Article  CAS  PubMed  Google Scholar 

  15. Carrington M, O'Brien SJ. The influence of HLA genotype on AIDS. Annu Rev Med. 2003;54:535–51. doi:10.1146/annurev.med.54.101601.152346.

    Article  CAS  PubMed  Google Scholar 

  16. Scherer A, Frater J, Oxenius A, Agudelo J, Price DA, Gunthard HF, et al. Quantifiable cytotoxic T lymphocyte responses and HLA-related risk of progression to AIDS. Proc Natl Acad Sci U S A. 2004;101(33):12266–70. doi:10.1073/pnas.0404091101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Pillai SK, Abdel-Mohsen M, Guatelli J, Skasko M, Monto A, Fujimoto K, et al. Role of retroviral restriction factors in the interferon-alpha-mediated suppression of HIV-1 in vivo. Proc Natl Acad Sci U S A. 2012;109(8):3035–40. doi:10.1073/pnas.1111573109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Pampaloni F, Reynaud EG, Stelzer EH. The third dimension bridges the gap between cell culture and live tissue. Nat Rev Mol Cell Biol. 2007;8(10):839–45. doi:10.1038/nrm2236.

    Article  CAS  PubMed  Google Scholar 

  19. Rehg JE, Bush D, Ward JM. The utility of immunohistochemistry for the identification of hematopoietic and lymphoid cells in normal tissues and interpretation of proliferative and inflammatory lesions of mice and rats. Toxicol Pathol. 2012;40(2):345–74. doi:10.1177/0192623311430695.

    Article  PubMed  Google Scholar 

  20. Stieh DJ, Maric D, Kelley ZL, Anderson MR, Hattaway HZ, Beilfuss BA, et al. Vaginal challenge with an SIV-based dual reporter system reveals that infection can occur throughout the upper and lower female reproductive tract. PLoS Pathog. 2014;10(10):e1004440. doi:10.1371/journal.ppat.1004440.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Haase AT. Targeting early infection to prevent HIV-1 mucosal transmission. Nature. 2010;464(7286):217–23. doi:10.1038/nature08757.

    Article  CAS  PubMed  Google Scholar 

  22. Muller B, Heilemann M. Shedding new light on viruses: super-resolution microscopy for studying human immunodeficiency virus. Trends Microbiol. 2013;21(10):522–33. doi:10.1016/j.tim.2013.06.010.

    Article  PubMed  Google Scholar 

  23. Hao XP, Lucero CM, Turkbey B, Bernardo ML, Morcock DR, Deleage C, et al. Experimental colitis in SIV-uninfected rhesus macaques recapitulates important features of pathogenic SIV infection. Nat Commun. 2015;6:8020. doi:10.1038/ncomms9020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Estes JD, Harris LD, Klatt NR, Tabb B, Pittaluga S, Paiardini M, et al. Damaged intestinal epithelial integrity linked to microbial translocation in pathogenic simian immunodeficiency virus infections. PLoS Pathog. 2010;6(8):e1001052. doi:10.1371/journal.ppat.1001052.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Estes JD, Gordon SN, Zeng M, Chahroudi AM, Dunham RM, Staprans SI, et al. Early resolution of acute immune activation and induction of PD-1 in SIV-infected sooty mangabeys distinguishes nonpathogenic from pathogenic infection in rhesus macaques. J Immunol. 2008;180(10):6798–807.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Brenchley JM, Vinton C, Tabb B, Hao XP, Connick E, Paiardini M, et al. Differential infection patterns of CD4+ T cells and lymphoid tissue viral burden distinguish progressive and nonprogressive lentiviral infections. Blood. 2012;120(20):4172–81. doi:10.1182/blood-2012-06-437608.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Li Q, Duan L, Estes JD, Ma ZM, Rourke T, Wang Y, et al. Peak SIV replication in resting memory CD4+ T cells depletes gut lamina propria CD4+ T cells. Nature. 2005;434(7037):1148–52. doi:10.1038/nature03513.

    CAS  PubMed  Google Scholar 

  28. Li Q, Skinner PJ, Ha SJ, Duan L, Mattila TL, Hage A, et al. Visualizing antigen-specific and infected cells in situ predicts outcomes in early viral infection. Science. 2009;323(5922):1726–9. doi:10.1126/science.1168676.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Perreau M, Savoye AL, De Crignis E, Corpataux JM, Cubas R, Haddad EK, et al. Follicular helper T cells serve as the major CD4 T cell compartment for HIV-1 infection, replication, and production. J Exp Med. 2013;210(1):143–56. doi:10.1084/jem.20121932.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Xu Y, Weatherall C, Bailey M, Alcantara S, De Rose R, Estaquier J, et al. Simian immunodeficiency virus infects follicular helper CD4 T cells in lymphoid tissues during pathogenic infection of pigtail macaques. J Virol. 2013;87(7):3760–73. doi:10.1128/JVI.02497-12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Fukazawa Y, Lum R, Okoye AA, Park H, Matsuda K, Bae JY, et al. B cell follicle sanctuary permits persistent productive simian immunodeficiency virus infection in elite controllers. Nat Med. 2015. doi:10.1038/nm.3781.

    PubMed  PubMed Central  Google Scholar 

  32. Connick E, Mattila T, Folkvord JM, Schlichtemeier R, Meditz AL, Ray MG, et al. CTL fail to accumulate at sites of HIV-1 replication in lymphoid tissue. J Immunol. 2007;178(11):6975–83.

    Article  CAS  PubMed  Google Scholar 

  33. Estes JD, Wietgrefe S, Schacker T, Southern P, Beilman G, Reilly C, et al. Simian immunodeficiency virus-induced lymphatic tissue fibrosis is mediated by transforming growth factor beta 1-positive regulatory T cells and begins in early infection. J Infect Dis. 2007;195(4):551–61. doi:10.1086/510852.

    Article  CAS  PubMed  Google Scholar 

  34. Zeng M, Smith AJ, Wietgrefe SW, Southern PJ, Schacker TW, Reilly CS, et al. Cumulative mechanisms of lymphoid tissue fibrosis and T cell depletion in HIV-1 and SIV infections. J Clin Invest. 2011;121(3):998–1008. doi:10.1172/JCI45157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zeng M, Haase AT, Schacker TW. Lymphoid tissue structure and HIV-1 infection: life or death for T cells. Trends Immunol. 2012;33(6):306–14. doi:10.1016/j.it.2012.04.002.

    Article  CAS  PubMed  Google Scholar 

  36. Estes JD, Haase AT, Schacker TW. The role of collagen deposition in depleting CD4+ T cells and limiting reconstitution in HIV-1 and SIV infections through damage to the secondary lymphoid organ niche. Semin Immunol. 2008;20(3):181–6. doi:10.1016/j.smim.2008.04.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bickle M. The beautiful cell: high-content screening in drug discovery. Anal Bioanal Chem. 2010;398(1):219–26. doi:10.1007/s00216-010-3788-3.

    Article  CAS  PubMed  Google Scholar 

  38. Lehmann M, Lichtner G, Klenz H, Schmoranzer J. Novel organic dyes for multicolor localization-based super-resolution microscopy. J Biophotonics. 2015. doi:10.1002/jbio.201500119.

    Google Scholar 

  39. Sun C, Cai J, Chen J, Wu Y, Wang P, Zhou G, et al. The synthesis of a novel near-infrared fluorescent probe and its application in imaging of living cells. Appl Biochem Biotechnol. 2015;175(3):1644–50. doi:10.1007/s12010-014-1398-9.

    Article  CAS  PubMed  Google Scholar 

  40. Beier HT, Ibey BL. Experimental comparison of the high-speed imaging performance of an EM-CCD and sCMOS camera in a dynamic live-cell imaging test case. PLoS One. 2014;9(1):e84614. doi:10.1371/journal.pone.0084614.

    Article  PubMed  PubMed Central  Google Scholar 

  41. St Croix CM, Shand SH, Watkins SC. Confocal microscopy: comparisons, applications, and problems. BioTechniques. 2005;39(6 Suppl):S2–5. doi:10.2144/000112089.

    Article  PubMed  Google Scholar 

  42. Gerner MY, Kastenmuller W, Ifrim I, Kabat J, Germain RN. Histo-cytometry: a method for highly multiplex quantitative tissue imaging analysis applied to dendritic cell subset microanatomy in lymph nodes. Immunity. 2012;37(2):364–76. doi:10.1016/j.immuni.2012.07.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Buckers J, Wildanger D, Vicidomini G, Kastrup L, Hell SW. Simultaneous multi-lifetime multi-color STED imaging for colocalization analyses. Opt Express. 2011;19(4):3130–43. doi:10.1364/OE.19.003130.

    Article  PubMed  Google Scholar 

  44. Wang F, Flanagan J, Su N, Wang LC, Bui S, Nielson A, et al. RNAscope: a novel in situ RNA analysis platform for formalin-fixed, paraffin-embedded tissues. J Mol Diagn. 2012;14(1):22–9. doi:10.1016/j.jmoldx.2011.08.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Cherry SR, Gambhir SS. Use of positron emission tomography in animal research. ILAR J Nat Res Council Inst Lab Anim Res. 2001;42(3):219–32.

    CAS  Google Scholar 

  46. Chatziioannou A, Tai YC, Doshi N, Cherry SR. Detector development for microPET II: a 1 microl resolution PET scanner for small animal imaging. Phys Med Biol. 2001;46(11):2899–910.

    Article  CAS  PubMed  Google Scholar 

  47. Chatziioannou AF. Molecular imaging of small animals with dedicated PET tomographs. Eur J Nucl Med Mol Imaging. 2002;29(1):98–114. doi:10.1007/s00259-001-0683-3.

    Article  PubMed  Google Scholar 

  48. Weissleder R, Mahmood U. Molecular imaging. Radiology. 2001;219(2):316–33. doi:10.1148/radiology.219.2.r01ma19316.

    Article  CAS  PubMed  Google Scholar 

  49. Santangelo PJ, Rogers KA, Zurla C, Blanchard EL, Gumber S, Strait K, et al. Whole-body immunoPET reveals active SIV dynamics in viremic and antiretroviral therapy-treated macaques. Nat Methods. 2015;12(5):427–32. doi:10.1038/nmeth.3320.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Aichler M, Walch A. MALDI Imaging mass spectrometry: current frontiers and perspectives in pathology research and practice. Lab Investig J Tech Methods Pathol. 2015;95(4):422–31. doi:10.1038/labinvest.2014.156.

    Article  CAS  Google Scholar 

  51. Barry JA, Robichaud G, Bokhart MT, Thompson C, Sykes C, Kashuba AD, et al. Mapping antiretroviral drugs in tissue by IR-MALDESI MSI coupled to the Q Exactive and comparison with LC-MS/MS SRM assay. J Am Soc Mass Spectrom. 2014;25(12):2038–47. doi:10.1007/s13361-014-0884-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Angelo M, Bendall SC, Finck R, Hale MB, Hitzman C, Borowsky AD, et al. Multiplexed ion beam imaging of human breast tumors. Nat Med. 2014;20(4):436–42. doi:10.1038/nm.3488.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Bossaller L, Burger J, Draeger R, Grimbacher B, Knoth R, Plebani A, et al. ICOS deficiency is associated with a severe reduction of CXCR5 + CD4 germinal center Th cells. J Immunol. 2006;177(7):4927–32.

    Article  CAS  PubMed  Google Scholar 

  54. Tangye SG, Deenick EK, Palendira U, Ma CS. T cell-B cell interactions in primary immunodeficiencies. Ann N Y Acad Sci. 2012;1250:1–13. doi:10.1111/j.1749-6632.2011.06361.x.

    Article  CAS  PubMed  Google Scholar 

  55. Arakelyan A, Fitzgerald W, Grivel JC, Vanpouille C, Margolis L. Histocultures (tissue explants) in human retrovirology. Methods Mol Biol. 2014;1087:233–48. doi:10.1007/978-1-62703-670-2_19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This research was supported by the Intramural Research Program of the Vaccine Research Center, National Institutes of Allergy and Infectious Diseases, National Institutes of Health.

The authors would like to acknowledge the Miami Center for AIDS Research (CFAR) Laboratory Core at the University of Miami for partially supporting under award number P30AI073961.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Constantinos Petrovas.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on HIV Pathogenesis and Treatment

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moysi, E., Estes, J.D. & Petrovas, C. Novel Imaging Methods for Analysis of Tissue Resident Cells in HIV/SIV. Curr HIV/AIDS Rep 13, 38–43 (2016). https://doi.org/10.1007/s11904-016-0300-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11904-016-0300-5

Keywords

Navigation