Skip to main content

Advertisement

Log in

Fat Matters: Understanding the Role of Adipose Tissue in Health in HIV Infection

  • HIV Pathogenesis and Treatment (AL Landay, Section Editor)
  • Published:
Current HIV/AIDS Reports Aims and scope Submit manuscript

Abstract

More than one-third of adults in the USA are obese and obesity-related disease accounts for some of the leading causes of preventable death. Mid-life obesity may be a strong predictor of physical function impairment later in life regardless of body mass index (BMI) in older age, highlighting the benefits of obesity prevention on health throughout the lifespan. Adipose tissue disturbances including lipodystrophy and obesity are prevalent in the setting of treated and untreated HIV infection. This article will review current knowledge on fat disturbances in HIV-infected persons, including therapeutic options and future directions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Ogden CL, Carroll MD, Kit BK, Flegal KM. Prevalence of childhood and adult obesity in the United States, 2011–2012. JAMA. 2014;311:806–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Stenholm S, Strandberg TE, Pitkala K, Sainio P, Heliovaara M, Koskinen S. Midlife obesity and risk of frailty in old age during a 22-year follow-up in men and women: the Mini-Finland Follow-up Survey. J Gerontol A Biol Sci Med Sci. 2014;69:73–8.

    Article  PubMed  Google Scholar 

  3. Strandberg TE, Sirola J, Pitkala KH, Tilvis RS, Strandberg AY, Stenholm S. Association of midlife obesity and cardiovascular risk with old age frailty: a 26-year follow-up of initially healthy men. Int J Obes (Lond). 2012;36:1153–7.

    Article  CAS  Google Scholar 

  4. Crum-Cianflone N, Roediger MP, Eberly L, Headd M, Marconi V, Ganesan A, et al. Increasing rates of obesity among HIV-infected persons during the HIV epidemic. PLoS One. 2010;5:e10106.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Buchacz K, Baker RK, Palella Jr FJ, Shaw L, Patel P, Lichtenstein KA, et al. Disparities in prevalence of key chronic diseases by gender and race/ethnicity among antiretroviral-treated HIV-infected adults in the US. Antivir Ther. 2013;18:65–75.

    Article  PubMed  Google Scholar 

  6. Wand H, Ramjee G. High prevalence of obesity among women who enrolled in HIV prevention trials in KwaZulu-Natal, South Africa: healthy diet and life style messages should be integrated into HIV prevention programs. BMC Public Health. 2013;13:159.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Fontbonne A, Cournil A, Cames C, Mercier S, Coly AN, Lacroux A, et al. Anthropometric characteristics and cardiometabolic risk factors in a sample of urban-dwelling adults in Senegal. Diabetes Metab. 2011;37:52–8.

    Article  CAS  PubMed  Google Scholar 

  8. Wohl DA, Brown TT. Management of morphologic changes associated with antiretroviral use in HIV-infected patients. J Acquir Immune Defic Syndr. 2008;49 Suppl 2:S93–100.

    Article  CAS  PubMed  Google Scholar 

  9. Lakey W, Yang LY, Yancy W, Chow SC, Hicks C. Short communication: from wasting to obesity: initial antiretroviral therapy and weight gain in HIV-infected persons. AIDS Res Hum Retrovir. 2013;29:435–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Erlandson KM, Taejaroenkul S, Smeaton L, Gupta A, Singini IL, Lama JR, et al. A randomized comparison of anthropomorphic changes with preferred and alternative Efavirenz-based antiretroviral regimens in diverse multinational settings. Open Forum Infect Dis. 2015;2:ofv095.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Ali MK, Magee MJ, Dave JA, Ofotokun I, Tungsiripat M, Jones TK, et al. HIV and metabolic, body, and bone disorders: what we know from low- and middle-income countries. J Acquir Immune Defic Syndr. 2014;67 Suppl 1:S27–39. This supplement summarizes the existing knowledge and highlights important remaining research agenda questions specifically for low- and middle-income countries (LMICs).

    Article  PubMed  Google Scholar 

  12. Tate T, Willig AL, Willig JH, Raper JL, Moneyham L, Kempf MC, et al. HIV infection and obesity: where did all the wasting go? Antivir Ther. 2012;17:1281–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Maia Leite LH, De Mattos Marinho Sampaio AB. Progression to overweight, obesity and associated factors after antiretroviral therapy initiation among Brazilian persons with HIV/AIDS. Nutr Hosp. 2010;25:635–40.

    CAS  PubMed  Google Scholar 

  14. Yuh B, Tate J, Butt AA, Crothers K, Freiberg M, Leaf D, et al. Weight change after antiretroviral therapy and mortality. Clin Infect Dis. 2015;60:1852–9. From the Veterans Aging Cohort Study, this is one of the first publications in the current ART era to show the potential consequences of weight gain after ART initiation.

    Article  PubMed  Google Scholar 

  15. Kim DJ, Westfall AO, Chamot E, Willig AL, Mugavero MJ, Ritchie C, et al. Multimorbidity patterns in HIV-infected patients: the role of obesity in chronic disease clustering. J Acquir Immune Defic Syndr. 2012;61:600–5.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Sudfeld CR, Isanaka S, Mugusi FM, Aboud S, Wang M, Chalamilla GE, et al. Weight change at 1 mo of antiretroviral therapy and its association with subsequent mortality, morbidity, and CD4 T cell reconstitution in a Tanzanian HIV-infected adult cohort. Am J Clin Nutr. 2013;97:1278–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Menucci MB, Burman KD. Endocrine changes in obesity. In: De Groot LJ, Beck-Peccoz P, Chrousos G, editors. Endotext. South Dartmouth: MDText.com, Inc; 2000.

    Google Scholar 

  18. Koster A, Ding J, Stenholm S, Caserotti P, Houston DK, Nicklas BJ, et al. Does the amount of fat mass predict age-related loss of lean mass, muscle strength, and muscle quality in older adults? J Gerontol A Biol Sci Med Sci. 2011;66:888–95.

    Article  PubMed  Google Scholar 

  19. Bauer LO, Wu Z, Wolfson LI. An obese body mass increases the adverse effects of HIV/AIDS on balance and gait. Phys Ther. 2011;91:1063–71.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Shah K, Hilton TN, Myers L, Pinto JF, Luque AE, Hall WJ. A new frailty syndrome: central obesity and frailty in older adults with the human immunodeficiency virus. J Am Geriatr Soc. 2012;60:545–9.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Erlandson KM, Allshouse AA, Jankowski CM, Duong S, Mawhinney S, Kohrt WM, et al. Comparison of functional status instruments in HIV-infected adults on effective antiretroviral therapy. HIV Clin Trials. 2012;13:324–34.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Freitas P, Carvalho D, Santos AC, Madureira AJ, Martinez E, Pereira J, et al. Carotid intima media thickness is associated with body fat abnormalities in HIV-infected patients. BMC Infect Dis. 2014;14:348.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Haubrich RH, Riddler SA, DiRienzo AG, Komarow L, Powderly WG, Klingman K, et al. Metabolic outcomes in a randomized trial of nucleoside, nonnucleoside and protease inhibitor-sparing regimens for initial HIV treatment. AIDS. 2009;23:1109–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Dube MP, Komarow L, Mulligan K, Grinspoon SK, Parker RA, Robbins GK, et al. Long-term body fat outcomes in antiretroviral-naive participants randomized to nelfinavir or efavirenz or both plus dual nucleosides. Dual X-ray absorptiometry results from A5005s, a substudy of Adult Clinical Trials Group 384. J Acquir Immune Defic Syndr. 2007;45:508–14.

    Article  CAS  PubMed  Google Scholar 

  25. Mutimura E, Stewart A, Rheeder P, Crowther NJ. Metabolic function and the prevalence of lipodystrophy in a population of HIV-infected African subjects receiving highly active antiretroviral therapy. J Acquir Immune Defic Syndr. 2007;46:451–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. McComsey GA, Moser C, Currier J, Ribaudo HJ, Paczuski P, Dube MP, Kelesidis T, Rothernberg J, Stein JH, Brown TT. Body composition changes after initiation of raltegravir or portease inhibitors: ACTG A5260s. Clin Infect Dis. 2016. doi:10.1093/cid/ciw017.

  27. Shah RV, Murthy VL, Abbasi SA, Blankstein R, Kwong RY, Goldfine AB, et al. Visceral adiposity and the risk of metabolic syndrome across body mass index: the MESA Study. JACC Cardiovasc Imaging. 2014;7:1221–35.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Scherzer R, Heymsfield SB, Lee D, Powderly WG, Tien PC, Bacchetti P, et al. Decreased limb muscle and increased central adiposity are associated with 5-year all-cause mortality in HIV infection. AIDS. 2011;25:1405–14.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Guaraldi G, Murri R, Orlando G, Squillace N, Stentarelli C, Zona S, et al. Lipodystrophy and quality of life of HIV-infected persons. AIDS Rev. 2008;10:152–61.

    PubMed  Google Scholar 

  30. Reynolds NR, Neidig JL, Wu AW, Gifford AL, Holmes WC. Balancing disfigurement and fear of disease progression: patient perceptions of HIV body fat redistribution. AIDS Care. 2006;18:663–73.

    Article  CAS  PubMed  Google Scholar 

  31. Guaraldi G, Murri R, Orlando G, Giovanardi C, Squillace N, Vandelli M, et al. Severity of lipodystrophy is associated with decreased health-related quality of life. AIDS Patient Care STDS. 2008;22:577–85.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Burgoyne R, Collins E, Wagner C, Abbey S, Halman M, Nur M, et al. The relationship between lipodystrophy-associated body changes and measures of quality of life and mental health for HIV-positive adults. Qual Life Res. 2005;14:981–90.

    Article  PubMed  Google Scholar 

  33. Lenert LA, Feddersen M, Sturley A, Lee D. Adverse effects of medications and trade-offs between length of life and quality of life in human immunodeficiency virus infection. Am J Med. 2002;113:229–32.

    Article  PubMed  Google Scholar 

  34. Poudel-Tandukar K, Bertone-Johnson ER, Palmer PH, Poudel KC. C-reactive protein and depression in persons with human immunodeficiency virus infection: the positive living with HIV (POLH) study. Brain Behav Immun. 2014;42:89–95.

    Article  CAS  PubMed  Google Scholar 

  35. Koethe JR, Dee K, Bian A, Shintani A, Turner M, Bebawy S, et al. Circulating interleukin-6, soluble CD14, and other inflammation biomarker levels differ between obese and nonobese HIV-infected adults on antiretroviral therapy. AIDS Res Hum Retrovir. 2013;29:1019–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Betene ADC, De Wit S, Neuhaus J, Palfreeman A, Pepe R, Pankow JS, et al. Interleukin-6, high sensitivity C-reactive protein, and the development of type 2 diabetes among HIV-positive patients taking antiretroviral therapy. J Acquir Immune Defic Syndr. 2014;67:538–46.

    Article  CAS  Google Scholar 

  37. Bourlier V, Sengenes C, Zakaroff-Girard A, Decaunes P, Wdziekonski B, Galitzky J, et al. TGFbeta family members are key mediators in the induction of myofibroblast phenotype of human adipose tissue progenitor cells by macrophages. PLoS One. 2012;7:e31274.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Haase J, Weyer U, Immig K, Kloting N, Bluher M, Eilers J, et al. Local proliferation of macrophages in adipose tissue during obesity-induced inflammation. Diabetologia. 2014;57:562–71.

    Article  CAS  PubMed  Google Scholar 

  39. Vandanmagsar B, Youm YH, Ravussin A, Galgani JE, Stadler K, Mynatt RL, et al. The NLRP3 inflammasome instigates obesity-induced inflammation and insulin resistance. Nat Med. 2011;17:179–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Brestoff JR, Artis D. Immune regulation of metabolic homeostasis in health and disease. Cell. 2015;161:146–60. This is an excellent review on the interaction between the immune system and adiposity.

    Article  CAS  PubMed  Google Scholar 

  41. Hong KM, Burdick MD, Phillips RJ, Heber D, Strieter RM. Characterization of human fibrocytes as circulating adipocyte progenitors and the formation of human adipose tissue in SCID mice. FASEB J. 2005;19:2029–31.

    CAS  PubMed  Google Scholar 

  42. Divoux A, Tordjman J, Lacasa D, Veyrie N, Hugol D, Aissat A, et al. Fibrosis in human adipose tissue: composition, distribution, and link with lipid metabolism and fat mass loss. Diabetes. 2010;59:2817–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Giralt M, Domingo P, Villarroya F. Adipose tissue biology and HIV-infection. Best Pract Res Clin Endocrinol Metab. 2011;25:487–99.

    Article  CAS  PubMed  Google Scholar 

  44. de Souza Dantes Oliveira SdSA TL, da Silva Barbosa L, Souza Lisboa PG, Tavares Dutra CD, Margalho Sousa L, Simoes Quaresma JA, et al. Immunohistochemical analysis of the expression of TNF-alpha, TGF-beta, and caspase-3 in subcutaneous tissue of patients with HIV lipodystrophy syndrome. Microb Pathog 2014:41–47.

  45. Bereziat V, Cervera P, Le Dour C, Verpont MC, Dumont S, Vantyghem MC, et al. LMNA mutations induce a non-inflammatory fibrosis and a brown fat-like dystrophy of enlarged cervical adipose tissue. Am J Pathol. 2011;179:2443–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Torriani M, Fitch K, Stavrou E, Bredella MA, Lim R, Sass CA, et al. Deiodinase 2 expression is increased in dorsocervical fat of patients with HIV-associated lipohypertrophy syndrome. J Clin Endocrinol Metab. 2012;97:E602–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kosmiski LA, Sage-El A, Kealey EH, Bessesen DH. Brown fat activity is not apparent in subjects with HIV lipodystrophy and increased resting energy expenditure. Obesity (Silver Spring). 2011;19:2096–8.

    Article  CAS  Google Scholar 

  48. Sevastianova K, Sutinen J, Greco D, Sievers M, Salmenkivi K, Perttila J, et al. Comparison of dorsocervical with abdominal subcutaneous adipose tissue in patients with and without antiretroviral therapy-associated lipodystrophy. Diabetes. 2011;60:1894–900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Feeney ER, van Vonderen MG, Wit F, Danner SA, van Agtmael MA, Villarroya F, et al. Zidovudine/lamivudine but not nevirapine in combination with lopinavir/ritonavir decreases subcutaneous adipose tissue mitochondrial DNA. AIDS. 2012;26:2165–74.

    Article  CAS  PubMed  Google Scholar 

  50. McComsey GA, Daar ES, O'Riordan M, Collier AC, Kosmiski L, Santana JL, et al. Changes in fat mitochondrial DNA and function in subjects randomized to abacavir-lamivudine or tenofovir DF-emtricitabine with atazanavir-ritonavir or efavirenz: AIDS Clinical Trials Group study A5224s, substudy of A5202. J Infect Dis. 2013;207:604–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Garrabou G, Lopez S, Moren C, Martinez E, Fontdevila J, Cardellach F, et al. Mitochondrial damage in adipose tissue of untreated HIV-infected patients. AIDS. 2011;25:165–70.

    Article  CAS  PubMed  Google Scholar 

  52. Vidal F, Domingo P, Villarroya F, Giralt M, Lopez-Dupla M, Gutierrez M, et al. Adipogenic/lipid, inflammatory, and mitochondrial parameters in subcutaneous adipose tissue of untreated HIV-1-infected long-term nonprogressors: significant alterations despite low viral burden. J Acquir Immune Defic Syndr. 2012;61:131–7.

    Article  CAS  PubMed  Google Scholar 

  53. Gallego-Escuredo JM, Villarroya J, Domingo P, Targarona EM, Alegre M, Domingo JC, et al. Differentially altered molecular signature of visceral adipose tissue in HIV-1-associated lipodystrophy. J Acquir Immune Defic Syndr. 2013;64:142–8.

    Article  CAS  PubMed  Google Scholar 

  54. McGee KC, Shahmanesh M, Boothby M, Nightingale P, Gathercole LL, Tripathi G, et al. Evidence for a shift to anaerobic metabolism in adipose tissue in efavirenz-containing regimens for HIV with different nucleoside backbones. Antivir Ther. 2012;17:495–507.

    Article  CAS  PubMed  Google Scholar 

  55. Morse CG, Voss JG, Rakocevic G, McLaughlin M, Vinton CL, Huber C, et al. HIV infection and antiretroviral therapy have divergent effects on mitochondria in adipose tissue. J Infect Dis. 2012;205:1778–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Domingo P, Gutierrez Mdel M, Gallego-Escuredo JM, Torres F, Mateo MG, Villarroya J, et al. A 48-week study of fat molecular alterations in HIV naive patients starting tenofovir/emtricitabine with lopinavir/ritonavir or efavirenz. J Acquir Immune Defic Syndr. 2014;66:457–65.

    Article  CAS  PubMed  Google Scholar 

  57. Agarwal N, Balasubramanyam A. Viral mechanisms of adipose dysfunction: lessons from HIV-1 Vpr. Adipocyte. 2015;4:55–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Couturier J, Suliburk JW, Brown JM, Luke DJ, Agarwal N, Yu X, et al. Human adipose tissue as a reservoir for memory CD4+ T cells and HIV. AIDS. 2015;29:667–74. This article highlights adipose tissue as an immune organ and potential reservoir for HIV, an important consideration for the HIV cure agenda.

    Article  CAS  PubMed  Google Scholar 

  59. van Wijk JP, Cabezas MC. Hypertriglyceridemia, metabolic syndrome, and cardiovascular disease in HIV-infected patients: effects of antiretroviral therapy and adipose tissue distribution. Int J Vasc Med. 2012;2012:201027.

    PubMed  PubMed Central  Google Scholar 

  60. Balagopal A, Philp FH, Astemborski J, Block TM, Mehta A, Long R, et al. Human immunodeficiency virus-related microbial translocation and progression of hepatitis C. Gastroenterology. 2008;135:226–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Dillon SM, Lee EJ, Kotter CV, Austin GL, Gianella S, Siewe B, et al. Gut dendritic cell activation links an altered colonic microbiome to mucosal and systemic T-cell activation in untreated HIV-1 infection. Mucosal Immunol 2015

  62. Vesterbacka J, Barqasho B, Haggblom A, Nowak P. Effects of co-trimoxazole on microbial translocation in HIV-1-infected patients initiating antiretroviral therapy. AIDS Res Hum Retrovir 2015.

  63. Vujkovic-Cvijin I, Dunham RM, Iwai S, Maher MC, Albright RG, Broadhurst MJ, et al. Dysbiosis of the gut microbiota is associated with HIV disease progression and tryptophan catabolism. Sci Transl Med. 2013;5:193ra191.

    Article  CAS  Google Scholar 

  64. Lozupone CA, Rhodes ME, Neff CP, Fontenot AP, Campbell TB, Palmer BE. HIV-induced alteration in gut microbiota: driving factors, consequences, and effects of antiretroviral therapy. Gut Microbes. 2014;5:562–70.

    Article  PubMed  Google Scholar 

  65. Perez-Santiago J, Gianella S, Massanella M, Spina CA, Karris MY, Var SR, et al. Gut Lactobacillales are associated with higher CD4 and less microbial translocation during HIV infection. AIDS. 2013;27:1921–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Murphy EA, Velazquez KT, Herbert KM. Influence of high-fat diet on gut microbiota: a driving force for chronic disease risk. Curr Opin Clin Nutr Metab Care 2015.

  67. Kirpich IA, Marsano LS, McClain CJ. Gut-liver axis, nutrition, and non-alcoholic fatty liver disease. Clin Biochem 2015.

  68. Srinivasa S, Fitch KV, Wong K, Torriani M, Mayhew C, Stanley T, et al. RAAS activation is associated with visceral adiposity and insulin resistance among HIV-infected patients. J Clin Endocrinol Metab 2015:jc20151461.

  69. Boccara F, Auclair M, Cohen A, Lefevre C, Prot M, Bastard JP, et al. HIV protease inhibitors activate the adipocyte renin angiotensin system. Antivir Ther. 2010;15:363–75.

    Article  CAS  PubMed  Google Scholar 

  70. Lake JE, Tseng CH, Currier JS. A pilot study of telmisartan for visceral adiposity in HIV infection: the metabolic abnormalities, telmisartan, and HIV infection (MATH) trial. PLoS One. 2013;8:e58135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Ucciferri C, Falasca K, Mancino P, Di Iorio A, Vecchiet J. Microalbuminuria and hypertension in HIV-infected patients: a preliminary study of telmisartan. Eur Rev Med Pharmacol Sci. 2012;16:491–8.

    CAS  PubMed  Google Scholar 

  72. Vecchiet J, Ucciferri C, Falasca K, Mancino P, Di Iorio A, De Caterina R. Antihypertensive and metabolic effects of telmisartan in hypertensive HIV-positive patients. Antivir Ther. 2011;16:639–45.

    Article  CAS  PubMed  Google Scholar 

  73. Lim S, Meigs JB. Links between ectopic fat and vascular disease in humans. Arterioscler Thromb Vasc Biol. 2014;34:1820–6. This article draws attention to the importance of fat distribution to metabolic health, focusing on the important link between fat maldistribution and cardiovascular disease.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Alexopoulos N, Katritsis D, Raggi P. Visceral adipose tissue as a source of inflammation and promoter of atherosclerosis. Atherosclerosis. 2014;233:104–12.

    Article  CAS  PubMed  Google Scholar 

  75. Orlando G, Guaraldi G, Zona S, Carli F, Bagni P, Menozzi M, et al. Ectopic fat is linked to prior cardiovascular events in men with HIV. J Acquir Immune Defic Syndr. 2012;59:494–7.

    Article  PubMed  Google Scholar 

  76. Sattler FR, He J, Letendre S, Wilson C, Sanders C, Heaton R, et al. Abdominal obesity contributes to neurocognitive impairment in HIV-infected patients with increased inflammation and immune activation. J Acquir Immune Defic Syndr. 2015;68:281–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Sinha R, Dufour S, Petersen KF, LeBon V, Enoksson S, Ma YZ, et al. Assessment of skeletal muscle triglyceride content by (1)H nuclear magnetic resonance spectroscopy in lean and obese adolescents: relationships to insulin sensitivity, total body fat, and central adiposity. Diabetes. 2002;51:1022–7.

    Article  CAS  PubMed  Google Scholar 

  78. Krssak M, Falk Petersen K, Dresner A, DiPietro L, Vogel SM, Rothman DL, et al. Intramyocellular lipid concentrations are correlated with insulin sensitivity in humans: a 1H NMR spectroscopy study. Diabetologia. 1999;42:113–6.

    Article  CAS  PubMed  Google Scholar 

  79. Therkelsen KE, Pedley A, Speliotes EK, Massaro JM, Murabito J, Hoffmann U, et al. Intramuscular fat and associations with metabolic risk factors in the Framingham Heart Study. Arterioscler Thromb Vasc Biol. 2013;33:863–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Lang T, Cauley JA, Tylavsky F, Bauer D, Cummings S, Harris TB, et al. Computed tomographic measurements of thigh muscle cross-sectional area and attenuation coefficient predict hip fracture: the health, aging, and body composition study. J Bone Miner Res. 2010;25:513–9.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Goodpaster BH, Carlson CL, Visser M, Kelley DE, Scherzinger A, Harris TB, et al. Attenuation of skeletal muscle and strength in the elderly: the health ABC study. J Appl Physiol (1985). 2001;90:2157–65.

    CAS  Google Scholar 

  82. Visser M, Goodpaster BH, Kritchevsky SB, Newman AB, Nevitt M, Rubin SM, et al. Muscle mass, muscle strength, and muscle fat infiltration as predictors of incident mobility limitations in well-functioning older persons. J Gerontol A Biol Sci Med Sci. 2005;60:324–33.

    Article  PubMed  Google Scholar 

  83. Hicks GE, Simonsick EM, Harris TB, Newman AB, Weiner DK, Nevitt MA, et al. Trunk muscle composition as a predictor of reduced functional capacity in the health, aging and body composition study: the moderating role of back pain. J Gerontol A Biol Sci Med Sci. 2005;60:1420–4.

    Article  PubMed  Google Scholar 

  84. Scherzer R, Shen W, Heymsfield SB, Lewis CE, Kotler DP, Punyanitya M, et al. Intermuscular adipose tissue and metabolic associations in HIV infection. Obesity (Silver Spring). 2011;19:283–91.

    Article  CAS  Google Scholar 

  85. Torriani M, Hadigan C, Jensen ME, Grinspoon S. Psoas muscle attenuation measurement with computed tomography indicates intramuscular fat accumulation in patients with the HIV-lipodystrophy syndrome. J Appl Physiol (1985). 2003;95:1005–10.

    Article  Google Scholar 

  86. Alligier M, Meugnier E, Debard C, Lambert-Porcheron S, Chanseaume E, Sothier M, et al. Subcutaneous adipose tissue remodeling during the initial phase of weight gain induced by overfeeding in humans. J Clin Endocrinol Metab. 2012;97:E183–92.

    Article  CAS  PubMed  Google Scholar 

  87. Pasarica M, Gowronska-Kozak B, Burk D, Remedios I, Hymel D, Gimble J, et al. Adipose tissue collagen VI in obesity. J Clin Endocrinol Metab. 2009;94:5155–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Mracek T, Stephens NA, Gao D, Bao Y, Ross JA, Ryden M, et al. Enhanced ZAG production by subcutaneous adipose tissue is linked to weight loss in gastrointestinal cancer patients. Br J Cancer. 2011;104:441–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Dahlman I, Mejhert N, Linder K, Agustsson T, Mutch DM, Kulyte A, et al. Adipose tissue pathways involved in weight loss of cancer cachexia. Br J Cancer. 2010;102:1541–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Murphy RA, Register TC, Shively CA, Carr JJ, Ge Y, Heilbrun ME, et al. Adipose tissue density, a novel biomarker predicting mortality risk in older adults. J Gerontol A Biol Sci Med Sci. 2014;69:109–17. This article addresses adipose tissue density as a potential marker of fat health, an important but currently under-explored area in both HIV infection and the general population.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Kershaw EE, Flier JS. Adipose tissue as an endocrine organ. J Clin Endocrinol Metab. 2004;89:2548–56.

    Article  CAS  PubMed  Google Scholar 

  92. Grundy SM, Cleeman JI, Daniels SR, Donato KA, Eckel RH, Franklin BA, et al. Diagnosis and management of the metabolic syndrome: an american heart association/national heart, lung, and blood institute scientific statement. Circulation. 2005;112:2735–52.

    Article  PubMed  Google Scholar 

  93. Wildman RP, Muntner P, Reynolds K, McGinn AP, Rajpathak S, Wylie-Rosett J, et al. The obese without cardiometabolic risk factor clustering and the normal weight with cardiometabolic risk factor clustering: prevalence and correlates of 2 phenotypes among the US population (NHANES 1999–2004). Arch Intern Med. 2008;168:1617–24.

    Article  PubMed  Google Scholar 

  94. Sung KC, Cha SC, Sung JW, So MS, Byrne CD. Metabolically healthy obese subjects are at risk of fatty liver but not of pre-clinical atherosclerosis. Nutr Metab Cardiovasc Dis. 2014;24:256–62.

    Article  PubMed  Google Scholar 

  95. Phillips CM. Metabolically healthy obesity: definitions, determinants and clinical implications. Rev Endocr Metab Disord. 2013;14:219–27.

    Article  CAS  PubMed  Google Scholar 

  96. Lynch LA, O'Connell JM, Kwasnik AK, Cawood TJ, O'Farrelly C, O'Shea DB. Are natural killer cells protecting the metabolically healthy obese patient? Obesity (Silver Spring). 2009;17:601–5.

    Article  CAS  Google Scholar 

  97. Phillips CM, Perry IJ. Does inflammation determine metabolic health status in obese and nonobese adults? J Clin Endocrinol Metab. 2013;98:E1610–9.

    Article  CAS  PubMed  Google Scholar 

  98. Primeau V, Coderre L, Karelis AD, Brochu M, Lavoie ME, Messier V, et al. Characterizing the profile of obese patients who are metabolically healthy. Int J Obes (Lond). 2011;35:971–81.

    Article  CAS  Google Scholar 

  99. Roberson LL, Aneni EC, Maziak W, Agatston A, Feldman T, Rouseff M, et al. Beyond BMI: The “Metabolically healthy obese” phenotype & its association with clinical/subclinical cardiovascular disease and all-cause mortality -- a systematic review. BMC Public Health. 2014;14:14.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Camhi SM, Katzmarzyk PT. Differences in body composition between metabolically healthy obese and metabolically abnormal obese adults. Int J Obes (Lond) 2013.

  101. Hinnouho GM, Czernichow S, Dugravot A, Batty GD, Kivimaki M, Singh-Manoux A. Metabolically healthy obesity and risk of mortality: does the definition of metabolic health matter? Diabetes Care. 2013;36:2294–300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Kim TN, Park MS, Yang SJ, Yoo HJ, Kang HJ, Song W, et al. Body size phenotypes and low muscle mass: the Korean sarcopenic obesity study (KSOS). J Clin Endocrinol Metab. 2013;98:811–7.

    Article  CAS  PubMed  Google Scholar 

  103. van der AD, Nooyens AC, van Duijnhoven FJ, Verschuren MM, Boer JM. All-cause mortality risk of metabolically healthy abdominal obese individuals: the EPIC-MORGEN study. Obesity (Silver Spring). 2014;22:557–64.

    Article  CAS  Google Scholar 

  104. Kramer CK, Zinman B, Retnakaran R. Are metabolically healthy overweight and obesity benign conditions?: a systematic review and meta-analysis. Ann Intern Med. 2013;159:758–69.

    Article  PubMed  Google Scholar 

  105. Paula AA, Falcao MC, Pacheco AG. Metabolic syndrome in HIV-infected individuals: underlying mechanisms and epidemiological aspects. AIDS Res Ther. 2013;10:32.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Dahl AK, Fauth EB, Ernsth-Bravell M, Hassing LB, Ram N, Gerstof D. Body mass index, change in body mass index, and survival in old and very old persons. J Am Geriatr Soc. 2013;61:512–8.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Corrada MM, Kawas CH, Mozaffar F, Paganini-Hill A. Association of body mass index and weight change with all-cause mortality in the elderly. Am J Epidemiol. 2006;163:938–49.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Lee CG, Boyko EJ, Nielson CM, Stefanick ML, Bauer DC, Hoffman AR, et al. Mortality risk in older men associated with changes in weight, lean mass, and fat mass. J Am Geriatr Soc. 2011;59:233–40.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Harrington M, Gibson S, Cottrell RC. A review and meta-analysis of the effect of weight loss on all-cause mortality risk. Nutr Res Rev. 2009;22:93–108.

    Article  PubMed  Google Scholar 

  110. Tang AM, Forrester J, Spiegelman D, Knox TA, Tchetgen E, Gorbach SL. Weight loss and survival in HIV-positive patients in the era of highly active antiretroviral therapy. J Acquir Immune Defic Syndr. 2002;31:230–6.

    Article  PubMed  Google Scholar 

  111. Mangili A, Murman DH, Zampini AM, Wanke CA. Nutrition and HIV infection: review of weight loss and wasting in the era of highly active antiretroviral therapy from the nutrition for healthy living cohort. Clin Infect Dis. 2006;42:836–42.

    Article  CAS  PubMed  Google Scholar 

  112. McComsey G, Rightmire A, Wirtz V, Yang R, Mathew M, McGrath D. Changes in body composition with ritonavir-boosted and unboosted atazanavir treatment in combination with Lamivudine and Stavudine: a 96-week randomized, controlled study. Clin Infect Dis. 2009;48:1323–6.

    Article  CAS  PubMed  Google Scholar 

  113. Brown TT, Chu H, Wang Z, Palella FJ, Kingsley L, Witt MD, et al. Longitudinal increases in waist circumference are associated with HIV-serostatus, independent of antiretroviral therapy. AIDS. 2007;21:1731–8.

    Article  CAS  PubMed  Google Scholar 

  114. McComsey GA, Kitch D, Sax PE, Tebas P, Tierney C, Jahed NC, et al. Peripheral and central fat changes in subjects randomized to abacavir-lamivudine or tenofovir-emtricitabine with atazanavir-ritonavir or efavirenz: ACTG Study A5224s. Clin Infect Dis. 2011;53:185–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Erlandson KM, Kitch D, Tierney C, Sax PE, Daar ES, Tebas P, et al. Weight and lean body mass change with antiretroviral initiation and impact on bone mineral density. AIDS. 2013;27:2069–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Curran A, Martinez E, Saumoy M, del Rio L, Crespo M, Larrousse M, et al. Body composition changes after switching from protease inhibitors to raltegravir: SPIRAL-LIP substudy. AIDS. 2012;26:475–81.

    Article  CAS  PubMed  Google Scholar 

  117. Lake JE, McComsey GA, Hulgan TM, Wanke CA, Mangili A, Walmsley SL, et al. A randomized trial of Raltegravir replacement for protease inhibitor or non-nucleoside reverse transcriptase inhibitor in HIV-infected women with lipohypertrophy. AIDS Patient Care STDS. 2012;26:532–40.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Lake JE, McComsey GA, Hulgan T, Wanke CA, Mangili A, Walmsley SL, et al. Switch to raltegravir decreases soluble CD14 in virologically suppressed overweight women: the Women, Integrase and Fat Accumulation Trial. HIV Med. 2014;15:431–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Lake JE, McComsey GA, Hulgan T, Wanke CA, Mangili A, Walmsley SL, et al. Switch to raltegravir from protease inhibitor or nonnucleoside reverse-transcriptase inhibitor does not reduce visceral Fat in human immunodeficiency virus-infected women with central adiposity. Open Forum Infect Dis. 2015;2:ofv059.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Martinez E, D'Albuquerque PM, Llibre JM, Gutierrez F, Podzamczer D, Antela A, et al. Changes in cardiovascular biomarkers in HIV-infected patients switching from ritonavir-boosted protease inhibitors to raltegravir. AIDS. 2012;26:2315–26.

    Article  CAS  PubMed  Google Scholar 

  121. Domingo P, Gutierrez Mdel M, Gallego-Escuredo JM, Torres F, Mateo GM, Villarroya J, et al. Effects of switching from stavudine to raltegravir on subcutaneous adipose tissue in HIV-infected patients with HIV/HAART-associated lipodystrophy syndrome (HALS). A clinical and molecular study. PLoS One. 2014;9:e89088.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Veldhuis JD, Anderson SM, Shah N, Bray M, Vick T, Gentili A, et al. Neurophysiological regulation and target-tissue impact of the pulsatile mode of growth hormone secretion in the human. Growth Horm IGF Res. 2001;11(Suppl A):S25–37.

    Article  PubMed  Google Scholar 

  123. Lo J, You SM, Canavan B, Liebau J, Beltrani G, Koutkia P, et al. Low-dose physiological growth hormone in patients with HIV and abdominal fat accumulation: a randomized controlled trial. JAMA :J Am Med Assoc. 2008;300:509–19.

    Article  CAS  Google Scholar 

  124. Stanley TL, Falutz J, Mamputu JC, Soulban G, Potvin D, Grinspoon SK. Effects of tesamorelin on inflammatory markers in HIV patients with excess abdominal fat: relationship with visceral adipose reduction. AIDS. 2011;25:1281–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Falutz J, Allas S, Kotler D, Thompson M, Koutkia P, Albu J, et al. A placebo-controlled, dose-ranging study of a growth hormone releasing factor in HIV-infected patients with abdominal fat accumulation. AIDS. 2005;19:1279–87.

    Article  CAS  PubMed  Google Scholar 

  126. Stanley TL, Grinspoon SK. Effects of growth hormone-releasing hormone on visceral fat, metabolic, and cardiovascular indices in human studies. Growth Horm IGF Res. 2015;25:59–65.

    Article  CAS  PubMed  Google Scholar 

  127. Pedersen BK, Bruunsgaard H. Possible beneficial role of exercise in modulating low-grade inflammation in the elderly. Scand J Med Sci Sports. 2003;13:56–62.

    Article  CAS  PubMed  Google Scholar 

  128. Pedersen BK, Steensberg A, Fischer C, Keller C, Keller P, Plomgaard P, et al. The metabolic role of IL-6 produced during exercise: is IL-6 an exercise factor? Proc Nutr Soc. 2004;63:263–7.

    Article  CAS  PubMed  Google Scholar 

  129. Fillipas S, Cherry CL, Cicuttini F, Smirneos L, Holland AE. The effects of exercise training on metabolic and morphological outcomes for people living with HIV: a systematic review of randomised controlled trials. HIV Clin Trials. 2010;11:270–82.

    Article  CAS  PubMed  Google Scholar 

  130. Fitch K, Abbara S, Lee H, Stavrou E, Sacks R, Michel T, et al. Effects of lifestyle modification and metformin on atherosclerotic indices among HIV-infected patients with the metabolic syndrome. AIDS. 2012;26:587–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Lindegaard B, Hansen T, Hvid T, van Hall G, Plomgaard P, Ditlevsen S, et al. The effect of strength and endurance training on insulin sensitivity and fat distribution in human immunodeficiency virus-infected patients with lipodystrophy. J Clin Endocrin Metab. 2008;93:3860–9.

    Article  CAS  Google Scholar 

  132. Troseid M, Ditlevsen S, Hvid T, Gerstoft J, Grondahl T, Pedersen BK, et al. Reduced trunk fat and triglycerides after strength training are associated with reduced LPS levels in HIV-infected individuals. J Acquir Immune Defic Syndr. 2014;66:e52–4.

    PubMed  Google Scholar 

  133. Hu H, Moon J, Chung JH, Kim OY, Yu R, Shin MJ. Arginase inhibition ameliorates adipose tissue inflammation in mice with diet-induced obesity. Biochem Biophys Res Commun. 2015;464:840–7.

    Article  CAS  PubMed  Google Scholar 

  134. d'Ettorre G, Ceccarelli G, Giustini N, Serafino S, Calantone N, De Girolamo G, et al. Probiotics reduce inflammation in antiretroviral treated, HIV-infected individuals: results of the “Probio-HIV” clinical trial. PLoS One. 2015;10:e0137200.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  135. Stiksrud B, Nowak P, Nwosu FC, Kvale D, Thalme A, Sonnerborg A, et al. Reduced levels of D-dimer and changes in gut microbiota composition after probiotic intervention in HIV-infected individuals on stable ART. J Acquir Immune Defic Syndr 2015.

  136. Villar-Garcia J, Hernandez JJ, Guerri-Fernandez R, Gonzalez A, Lerma E, Guelar A, et al. Effect of probiotics (Saccharomyces boulardii) on microbial translocation and inflammation in HIV-treated patients: a double-blind, randomized, placebo-controlled trial. J Acquir Immune Defic Syndr. 2015;68:256–63.

    Article  PubMed  Google Scholar 

  137. Vesterbacka J, Barqasho B, Haggblom A, Nowak P. Effects of co-trimoxazole on microbial translocation in HIV-1-infected patients initiating antiretroviral therapy. AIDS Res Hum Retrovir. 2015;31:830–6.

    Article  CAS  PubMed  Google Scholar 

  138. Perez-Matute P, Perez-Martinez L, Aguilera-Lizarraga J, Blanco JR, Oteo JA. Maraviroc modifies gut microbiota composition in a mouse model of obesity: a plausible therapeutic option to prevent metabolic disorders in HIV-infected patients. Rev Esp Quimioter. 2015;28:200–6.

    PubMed  Google Scholar 

  139. Capel E, Auclair M, Caron-Debarle M, Capeau J. Effects of ritonavir-boosted darunavir, atazanavir and lopinavir on adipose functions and insulin sensitivity in murine and human adipocytes. Antivir Ther. 2012;17:549–56.

    Article  CAS  PubMed  Google Scholar 

  140. Kitazawa T, Yoshino Y, Suzuki S, Koga I, Ota Y. Lopinavir inhibits insulin signaling by promoting protein tyrosine phosphatase 1B expression. Exp Ther Med. 2014;8:851–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Diaz-Delfin J, Domingo P, Mateo MG, Gutierrez Mdel M, Domingo JC, Giralt M, et al. Effects of rilpivirine on human adipocyte differentiation, gene expression, and release of adipokines and cytokines. Antimicrob Agents Chemother. 2012;56:3369–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Diaz-Delfin J, del Mar Gutierrez M, Gallego-Escuredo JM, Domingo JC, Gracia Mateo M, Villarroya F, et al. Effects of nevirapine and efavirenz on human adipocyte differentiation, gene expression, and release of adipokines and cytokines. Antiviral Res. 2011;91:112–9.

    Article  CAS  PubMed  Google Scholar 

  143. Gibellini L, De Biasi S, Pinti M, Nasi M, Riccio M, Carnevale G, et al. The protease inhibitor atazanavir triggers autophagy and mitophagy in human preadipocytes. AIDS. 2012;26:2017–26.

    Article  CAS  PubMed  Google Scholar 

  144. Minami R, Yamamoto M, Takahama S, Ando H, Miyamura T, Suematsu E. Comparison of the influence of four classes of HIV antiretrovirals on adipogenic differentiation: the minimal effect of raltegravir and atazanavir. J Infect Chemother. 2011;17:183–8.

    Article  CAS  PubMed  Google Scholar 

  145. Bociaga-Jasik M, Polus A, Goralska J, Czech U, Gruca A, Sliwa A, et al. Metabolic effects of the HIV protease inhibitor--saquinavir in differentiating human preadipocytes. Pharmacol Rep. 2013;65:937–50.

    Article  CAS  PubMed  Google Scholar 

  146. Menezes CN, Duarte R, Dickens C, Dix-Peek T, Van Amsterdam D, John MA, et al. The early effects of stavudine compared with tenofovir on adipocyte gene expression, mitochondrial DNA copy number and metabolic parameters in South African HIV-infected patients: a randomized trial. HIV Med. 2013;14:217–25.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristine M. Erlandson.

Ethics declarations

Conflict of Interest

Kristine M. Erlandson reports grants from NIH and is a recipient of the Gilead Sciences Research Scholars Program in HIV.

Jordan E Lake reports personal fees from Gilead Sciences and GlaxoSmithKline.

Funding

This manuscript was supported through funding from the National Institutes of Health, National Institute on Aging (K23 AG050260 to KM Erlandson) and National Institutes of Allergy and Infectious Diseases (K23 AI110532 to JE Lake).

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on HIV Pathogenesis and Treatment

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Erlandson, K.M., Lake, J.E. Fat Matters: Understanding the Role of Adipose Tissue in Health in HIV Infection. Curr HIV/AIDS Rep 13, 20–30 (2016). https://doi.org/10.1007/s11904-016-0298-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11904-016-0298-8

Keywords

Navigation