Skip to main content

Advertisement

Log in

The Potential of the CNS as a Reservoir for HIV-1 Infection: Implications for HIV Eradication

  • Central Nervous System and Cognition (SS Spudich, Section Editor)
  • Published:
Current HIV/AIDS Reports Aims and scope Submit manuscript

Abstract

The ability of HIV-1 to establish latent infection is a key obstacle to its eradication despite the existence of effective antiretroviral drugs. The brain has been postulated as a reservoir for latent infection, but its role in HIV persistence remains unclear. In this review, we discuss the evidence surrounding the role of the central nervous system (CNS) as a viral reservoir and the potential challenges this might present in eradicating HIV. The strategies for eradication of HIV and their application to latent CNS infection are explored. Finally, we outline new developments in drug delivery and new therapeutic modalities designed to target HIV infection in the CNS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Lohse N, Hansen AB, Pedersen G, Kronborg G, Gerstoft J, Sorensen HT, et al. Survival of persons with and without HIV infection in Denmark, 1995-2005. Ann Intern Med. 2007;146(2):87–95.

    Article  PubMed  Google Scholar 

  2. Joos B, Fischer M, Kuster H, Pillai SK, Wong JK, Boni J, et al. HIV rebounds from latently infected cells, rather than from continuing low-level replication. Proc Natl Acad Sci U S A. 2008;105(43):16725–30.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Wong JK, Hezareh M, Gunthard HF, Havlir DV, Ignacio CC, Spina CA, et al. Recovery of replication-competent HIV despite prolonged suppression of plasma viremia. Science. 1997;278(5341):1291–5.

    Article  CAS  PubMed  Google Scholar 

  4. Finzi D, Hermankova M, Pierson T, Carruth LM, Buck C, Chaisson RE, et al. Identification of a reservoir for HIV-1 in patients on highly active antiretroviral therapy. Science. 1997;278(5341):1295–300.

    Article  CAS  PubMed  Google Scholar 

  5. Eisele E, Siliciano RF. Redefining the viral reservoirs that prevent HIV-1 eradication. Immunity. 2012;37(3):377–88.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Gray LR, Roche M, Flynn JK, Wesselingh SL, Gorry PR, Churchill MJ. Is the central nervous system a reservoir of HIV-1? Curr Opin HIV AIDS. 2014;9(6):552–8.

    Article  CAS  PubMed  Google Scholar 

  7. Hutter G, Nowak D, Mossner M, Ganepola S, Mussig A, Allers K, et al. Long-term control of HIV by CCR5 Delta32/Delta32 stem-cell transplantation. N Engl J Med. 2009;360(7):692–8.

    Article  PubMed  Google Scholar 

  8. Allers K, Hutter G, Hofmann J, Loddenkemper C, Rieger K, Thiel E, et al. Evidence for the cure of HIV infection by CCR5Delta32/Delta32 stem cell transplantation. Blood. 2011;117(10):2791–9.

    Article  CAS  PubMed  Google Scholar 

  9. Saez-Cirion A, Bacchus C, Hocqueloux L, Avettand-Fenoel V, Girault I, Lecuroux C, et al. Post-treatment HIV-1 controllers with a long-term virological remission after the interruption of early initiated antiretroviral therapy ANRS VISCONTI Study. PLoS Pathog. 2013;9(3):e1003211. This paper describes the VISCONTI cohort, some of whom achieved functional cure with early HAART.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Persaud D, Gay H, Ziemniak C, Chen YH, Piatak Jr M, Chun TW, et al. Absence of detectable HIV-1 viremia after treatment cessation in an infant. N Engl J Med. 2013;369(19):1828–35. This paper describes the case of the ‘Mississippi baby’, who until recently was thought to have been functionally cured by early introduction of HAART.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Archin NM, Liberty AL, Kashuba AD, Choudhary SK, Kuruc JD, Crooks AM, et al. Administration of vorinostat disrupts HIV-1 latency in patients on antiretroviral therapy. Nature. 2012;487(7408):482–5. This study is a proof of concept of the use of vorinostat in HIV eradication.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Deng K, Pertea M, Rongvaux A, Wang L, Durand CM, Ghiaur G, et al. Broad CTL response is required to clear latent HIV-1 due to dominance of escape mutations. Nature. 2015;517(7534):381–5. This study delineates a mechanism by which HIV evades the innate immune system and offers a proof of concept of boosting a broad CTL response to defeat this mechanism.

    Article  CAS  PubMed  Google Scholar 

  13. DiGiusto DL, Krishnan A, Li L, Li H, Li S, Rao A, et al. RNA-based gene therapy for HIV with lentiviral vector-modified CD34(+) cells in patients undergoing transplantation for AIDS-related lymphoma. Sci Transl Med. 2010;2(36):36ra43.

    Article  PubMed Central  PubMed  Google Scholar 

  14. Overton ET, Sterrett S, Westfall AO, Kahan SM, Burkholder G, Zajac AJ, et al. Effects of atorvastatin and pravastatin on immune activation and T-cell function in antiretroviral therapy-suppressed HIV-1-infected patients. AIDS. 2014;28(17):2627–31. This retrospective study describes the (different) effects of atorvastatin and pravastatin on the immune system in the context of HIV infection.

    Article  CAS  PubMed  Google Scholar 

  15. Chun TW, Davey Jr RT, Ostrowski M, Shawn Justement J, Engel D, Mullins JI, et al. Relationship between pre-existing viral reservoirs and the re-emergence of plasma viremia after discontinuation of highly active anti-retroviral therapy. Nat Med. 2000;6(7):757–61.

    Article  CAS  PubMed  Google Scholar 

  16. Brew BJ, Gray L, Lewin S, Churchill M. Is specific HIV eradication from the brain possible or needed? Expert Opin Biol Ther. 2013;13(3):403–9.

    Article  PubMed  Google Scholar 

  17. Valcour V, Sithinamsuwan P, Letendre S, Ances B. Pathogenesis of HIV in the central nervous system. Curr HIV/AIDS Rep. 2011;8(1):54–61.

    Article  PubMed Central  PubMed  Google Scholar 

  18. Everall I, Vaida F, Khanlou N, Lazzaretto D, Achim C, Letendre S, et al. Cliniconeuropathologic correlates of human immunodeficiency virus in the era of antiretroviral therapy. J Neurovirol. 2009;15(5–6):360–70.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Anthony IC, Ramage SN, Carnie FW, Simmonds P, Bell JE. Influence of HAART on HIV-related CNS disease and neuroinflammation. J Neuropathol Exp Neurol. 2005;64(6):529–36.

    CAS  PubMed  Google Scholar 

  20. Crowe S, Zhu T, Muller WA. The contribution of monocyte infection and trafficking to viral persistence, and maintenance of the viral reservoir in HIV infection. J Leukoc Biol. 2003;74(5):635–41.

    Article  CAS  PubMed  Google Scholar 

  21. Sofroniew MV, Vinters HV. Astrocytes: biology and pathology. Acta Neuropathol. 2010;119(1):7–35.

    Article  PubMed Central  PubMed  Google Scholar 

  22. Thompson KA, Cherry CL, Bell JE, McLean CA. Brain cell reservoirs of latent virus in presymptomatic HIV-infected individuals. Am J Pathol. 2011;179(4):1623–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Carroll-Anzinger D, Al-Harthi L. Gamma interferon primes productive human immunodeficiency virus infection in astrocytes. J Virol. 2006;80(1):541–4.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Churchill MJ, Wesselingh SL, Cowley D, Pardo CA, McArthur JC, Brew BJ, et al. Extensive astrocyte infection is prominent in human immunodeficiency virus-associated dementia. Ann Neurol. 2009;66(2):253–8.

    Article  PubMed  Google Scholar 

  25. Takahashi K, Wesselingh SL, Griffin DE, McArthur JC, Johnson RT, Glass JD. Localization of HIV-1 in human brain using polymerase chain reaction/in situ hybridization and immunocytochemistry. Ann Neurol. 1996;39(6):705–11.

    Article  CAS  PubMed  Google Scholar 

  26. Sharer LR, Saito Y, Da Cunha A, Ung PC, Gelbard HA, Epstein LG, et al. In situ amplification and detection of HIV-1 DNA in fixed pediatric AIDS brain tissue. Hum Pathol. 1996;27(6):614–7.

    Article  CAS  PubMed  Google Scholar 

  27. An SF, Groves M, Giometto B, Beckett AA, Scaravilli F. Detection and localisation of HIV-1 DNA and RNA in fixed adult AIDS brain by polymerase chain reaction/in situ hybridisation technique. Acta Neuropathol. 1999;98(5):481–7.

    Article  CAS  PubMed  Google Scholar 

  28. Churchill MJ, Gorry PR, Cowley D, Lal L, Sonza S, Purcell DF, et al. Use of laser capture microdissection to detect integrated HIV-1 DNA in macrophages and astrocytes from autopsy brain tissues. J Neurovirol. 2006;12(2):146–52.

    Article  PubMed  Google Scholar 

  29. Desplats P, Dumaop W, Smith D, Adame A, Everall I, Letendre S, et al. Molecular and pathologic insights from latent HIV-1 infection in the human brain. Neurology. 2013;80(15):1415–23. This study suggests an association between pathological findings of latent CNS infection and cognitive impairment.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Gelman BB, Lisinicchia JG, Morgello S, Masliah E, Commins D, Achim CL, et al. Neurovirological correlation with HIV-associated neurocognitive disorders and encephalitis in a HAART-era cohort. J Acquir Immune Defic Syndr. 2013;62(5):487–95. This study also examines the relationship between markers of latent infection and cognitive impairment.

    Article  PubMed Central  PubMed  Google Scholar 

  31. Gelman BB, Chen T, Lisinicchia JG, Soukup VM, Carmical JR, Starkey JM, et al. The national NeuroAIDS tissue consortium brain gene array: two types of HIV-associated neurocognitive impairment. PLoS One. 2012;7(9):e46178.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Eden A, Fuchs D, Hagberg L, Nilsson S, Spudich S, Svennerholm B, et al. HIV-1 viral escape in cerebrospinal fluid of subjects on suppressive antiretroviral treatment. J Infect Dis. 2010;202(12):1819–25.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Dahl V, Peterson J, Fuchs D, Gisslen M, Palmer S, Price RW. Low levels of HIV-1 RNA detected in the cerebrospinal fluid after up to 10 years of suppressive therapy are associated with local immune activation. AIDS. 2014;28(15):2251–8. This study uses neopterin as a surrogate marker for CNS inflammation to illustrate the association between low levels of HIV RNA in the CNS and ongoing immune activation.

    Article  CAS  PubMed  Google Scholar 

  34. Dahl V, Gisslen M, Hagberg L, Peterson J, Shao W, Spudich S, et al. An example of genetically distinct HIV type 1 variants in cerebrospinal fluid and plasma during suppressive therapy. J Infect Dis. 2014;209(10):1618–22. This paper uses genetic analysis of virus in CSF and plasma to suggest independent, compartmentalised populations of HIV in the CNS and plasma.

    Article  PubMed  Google Scholar 

  35. Dinoso JB, Rabi SA, Blankson JN, Gama L, Mankowski JL, Siliciano RF, et al. A simian immunodeficiency virus-infected macaque model to study viral reservoirs that persist during highly active antiretroviral therapy. J Virol. 2009;83(18):9247–57.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Clements JE, Gama L, Graham DR, Mankowski JL, Zink MC. A simian immunodeficiency virus macaque model of highly active antiretroviral treatment: viral latency in the periphery and the central nervous system. Curr Opin HIV AIDS. 2011;6(1):37–42.

    Article  PubMed Central  PubMed  Google Scholar 

  37. Queen SE, Mears BM, Kelly KM, Dorsey JL, Liao Z, Dinoso JB, et al. Replication-competent simian immunodeficiency virus (SIV) Gag escape mutations archived in latent reservoirs during antiretroviral treatment of SIV-infected macaques. J Virol. 2011;85(17):9167–75.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Gray LR, Turville SG, Hitchen TL, Cheng WJ, Ellett AM, Salimi H, et al. HIV-1 entry and trans-infection of astrocytes involves CD81 vesicles. PLoS One. 2014;9(2):e90620. This study elucidates the mechanism by which HIV enters astrocytes, which is quite different from the mechanism of entry into CD4+ T cells and therefore offers different therapeutic targets.

    Article  PubMed Central  PubMed  Google Scholar 

  39. Gray LR, Tachedjian G, Ellett AM, Roche MJ, Cheng WJ, Guillemin GJ, et al. The NRTIs lamivudine, stavudine and zidovudine have reduced HIV-1 inhibitory activity in astrocytes. PLoS One. 2013;8(4):e62196.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Serramía MJ, Alvarez S, Fuentes-Paniagua E, Clemente MI, Sánchez-Nieves J, Gómez R, et al. In vivo delivery of siRNA to the brain by carbosilane dendrimer. J Control Release. 2015;200C:60–70. This study combines two new treatment advances, nanotechnology and RNA interference, to demonstrate a new method of targeting CNS infection.

    Article  Google Scholar 

  41. Mahajan HS, Mahajan MS, Nerkar PP, Agrawal A. Nanoemulsion-based intranasal drug delivery system of saquinavir mesylate for brain targeting. Drug Deliv. 2014;21(2):148–54. This paper illustrates the use of a novel formulation of an existing drug to enable better targeting of CNS infection.

    Article  CAS  PubMed  Google Scholar 

  42. Kelly KM, Beck SE, Metcalf Pate KA, Queen SE, Dorsey JL, Adams RJ, et al. Neuroprotective maraviroc monotherapy in simian immunodeficiency virus-infected macaques: reduced replicating and latent SIV in the brain. AIDS. 2013;27(18):F21–8. This paper provides a proof of concept for the use of maraviroc in treating CNS infection in the SIV/macaque animal model.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Bruce J. Brew declares grants, personal fees, and non-financial support from VIIV, Boehringer Ingelheim, and Merck Sharp & Dohme, as well as grants and non-financial support from NHMRC and NIH, all outside the submitted work.

Alessandro F. Fois declares no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruce J. Brew.

Additional information

This article is part of the Topical Collection on Central Nervous System and Cognition

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fois, A.F., Brew, B.J. The Potential of the CNS as a Reservoir for HIV-1 Infection: Implications for HIV Eradication. Curr HIV/AIDS Rep 12, 299–303 (2015). https://doi.org/10.1007/s11904-015-0257-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11904-015-0257-9

Keywords

Navigation