Skip to main content

Advertisement

Log in

Acute Liver Failure Induced by Anti-infectious Drugs: Causes and Management

  • Drug-Induced Liver Injury (F Bessone and R Andrade, Section Editors)
  • Published:
Current Hepatology Reports Aims and scope Submit manuscript

Abstract

Worldwide, antimicrobial agents are the most common cause of idiosyncratic drug-induced liver injury (DILI) and drug-induced acute liver failure (ALF). The causes vary geographically; antituberculosis medications, sulfonamides, penicillin group of drugs, and macrolides are the top four implicated antibacterial agents, followed by antifungal and antiviral drugs. Women are at a higher risk for drug-induced ALF. Some drugs have distinct clinical, biochemical, and histological signatures. ALF caused by drugs generally has a subacute presentation that permits time for adequate work up, evaluation, and transfer to a tertiary facility for intensive monitoring and/or liver transplantation. Spontaneous survival is less common in patients with idiosyncratic drug-induced ALF, particularly in higher stages of encephalopathy, and liver transplantation may be the only means for survival. Liver explant biopsies have generally demonstrated submassive to massive necroses. There is no specific antidote in almost all of the cases. Immediate cessation of the offending medication at or before the onset of jaundice may limit the progression of liver injury in some cases; N-acetyl cysteine (NAC) may be helpful in patients with early stages of encephalopathy. Steroids may be given in patients with immunoallergic manifestations. This review summarizes the current knowledge about the presentation and management of ALF from antimicrobial agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Wlodzimirow KA, Eslami S, Abu-Hanna A, et al. Systematic review: acute liver failure—one disease, more than 40 definitions. Aliment Pharmacol Ther. 2012;35:1245–56.

    Article  CAS  PubMed  Google Scholar 

  2. Trey C, Lipworth L, Chalmers TC, et al. Fulminant hepatic failure. Presumable contribution to halothane. N Engl J Med. 1968;279:798–801.

    Article  CAS  PubMed  Google Scholar 

  3. •• O'Grady JG, Schalm SW, Williams R. Acute liver failure: redefining the syndromes. Lancet. 1993;342:273–5. The original classification of ALF into hyperacute, acute, and subacute liver failures.

    Article  PubMed  Google Scholar 

  4. Lee WM, Squires RH Jr, Nyberg SL, et al. Acute liver failure: summary of a workshop. Hepatology. 2008;47:1401–15.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Kumar R, Bhatia V, Khanal S, et al. Antituberculosis therapy-induced acute liver failure: magnitude, profile, prognosis, and predictors of outcome. Hepatology. 2010;51:1665–74.

    Article  CAS  PubMed  Google Scholar 

  6. Ostapowicz G, Fontana RJ, Schiodt FV, et al. Results of a prospective study of acute liver failure at 17 tertiary care centers in the United States. Ann Intern Med. 2002;137:947–54.

    Article  PubMed  Google Scholar 

  7. Bernuau J, Benhamou JP. Classifying acute liver failure. Lancet. 1993;342:252–3.

    Article  CAS  PubMed  Google Scholar 

  8. Escorsell A, Mas A, de la Mata M. Acute liver failure in Spain: analysis of 267 cases. Liver Transpl. 2007;13:1389–95.

    Article  PubMed  Google Scholar 

  9. Bower WA, Johns M, Margolis HS, et al. Population-based surveillance for acute liver failure. Am J Gastroenterol. 2007;102:2459–63.

    Article  PubMed  Google Scholar 

  10. Mindikoglu AL, Magder LS, Regev A. Outcome of liver transplantation for drug-induced acute liver failure in the United States: analysis of the United Network for Organ Sharing database. Liver Transpl. 2009;15:719–29.

    Article  PubMed  Google Scholar 

  11. Bernal W, Hyyrylainen A, Gera A, et al. Lessons from look-back in acute liver failure? A single centre experience of 3300 patients. J Hepatol. 2013;59:74–80.

    Article  PubMed  Google Scholar 

  12. • Bernal W, Wendon J. Acute liver failure. N Engl J Med. 2013;369:2525–34. Review on ALF, detailing geographic differences in causes and pathophysiology underlining multisystem organ involvement in ALF.

    Article  CAS  PubMed  Google Scholar 

  13. Robles-Diaz M, Lucena MI, Kaplowitz N, et al. Use of Hy’s law and a new composite algorithm to predict acute liver failure in patients with drug-induced liver injury. Gastroenterology. 2014;147:109–18.

    Article  CAS  PubMed  Google Scholar 

  14. •• Chalasani N, Bonkovsky HL, Fontana R, et al. Features and outcomes of 899 patients with drug-induced liver injury: the DILIN prospective study. Gastroenterology. 2015;148:1340–52. Updated study results from the DILIN group with antibiotics being the most common among which amoxicillin–augmentin ranks first Mortality higher in those with underlying NAFLD.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Devarbhavi H, Patil M, Reddy VV, et al. Drug-induced acute liver failure in 128 patients including children: implicated drug, outcome, predictors of mortality-results from a single-center drug-inducedliver injury registry. Hepatology. 2017;66:1674A.

  16. Reuben A, Koch DG, Lee WM. Drug-induced acute liver failure: results of a U.S. multicenter, prospective study. Hepatology. 2010;52:2065–76.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Oketani M, Ido A, Nakayama N, et al. Etiology and prognosis of fulminant hepatitis and late-onset hepatic failure in Japan: summary of the annual nationwide survey between 2004 and 2009. Hepatol Res. 2013;43:97–105.

    Article  PubMed  Google Scholar 

  18. Devarbhavi H, Dierkhising R, Kremers WK. Antituberculosis therapy drug-induced liver injury and acute liver failure. Hepatology. 2010 Aug;52(2):798–9; author reply 799-800. https://doi.org/10.1002/hep.23805.

    Article  PubMed  Google Scholar 

  19. Shalimar KS, Gunjan D, et al. Acute liver failure due to hepatitis E virus infection is associated with better survival than other etiologies in Indian patients. Dig Dis Sci. 2017;62:1058–66.

    Article  CAS  PubMed  Google Scholar 

  20. Bjornsson E, Olsson R. Outcome and prognostic markers in severe drug-induced liver disease. Hepatology. 2005;42:481–9.

    Article  PubMed  Google Scholar 

  21. Devarbhavi H, Dierkhising R, Kremers WK, et al. Single-center experience with drug-induced liver injury from India: causes, outcome, prognosis, and predictors of mortality. Am J Gastroenterol. 2010;105:2396–404.

    Article  PubMed  Google Scholar 

  22. Rockey DC, Seeff LB, Rochon J, et al. Causality assessment in drug-induced liver injury using a structured expert opinion process: comparison to the Roussel-Uclaf causality assessment method. Hepatology. 2010;51:2117–26.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Danan G, Benichou C. Causality assessment of adverse reactions to drugs—I. A novel method based on the conclusions of international consensus meetings: application to drug-induced liver injuries. J Clin Epidemiol. 1993;46:1323–30.

    Article  CAS  PubMed  Google Scholar 

  24. •• Singanayagam A, Sridhar S, Dhariwal J, et al. A comparison between two strategies for monitoring hepatic function during antituberculous therapy. Am J Respir Crit Care Med. 2012;185:653–9. DILI from anti-TB drugs is 17% according to predefined DILI criteria, many of whice could be considered adaptation. No deaths from DILI.

    Article  CAS  PubMed  Google Scholar 

  25. •• Saukkonen JJ, Cohn DL, Jasmer RM, et al. An official ATS statement: hepatotoxicity of antituberculosis therapy. Am J Respir Crit Care Med. 2006;174:935–52. An excellent review on antituberculosis drug hepatotoxicity.

    Article  CAS  PubMed  Google Scholar 

  26. Nahid P, Dorman SE, Alipanah N, et al. Official American Thoracic Society/Centers for Disease Control and Prevention/Infectious Diseases Society of America clinical practice guidelines: treatment of drug-susceptible tuberculosis. Clin Infect Dis. 2016;63:e147–95.

    Article  PubMed  Google Scholar 

  27. Shi J, Xie M, Wang J, et al. Susceptibility of N-acetyltransferase 2 slow acetylators to antituberculosis drug-induced liver injury: a meta-analysis. Pharmacogenomics. 2015;16:2083–97.

    Article  CAS  PubMed  Google Scholar 

  28. • Devarbhavi H, Singh R, Patil M, et al. Outcome and determinants of mortality in 269 patients with combination anti-tuberculosis drug-induced liver injury. J Gastroenterol Hepatol. 2013;28:161–7. Study that showed DILI from anti-TB drugs was more common in the first 2 months, but the risk of DILI persists throughout the duration of therapy.

    Article  CAS  PubMed  Google Scholar 

  29. Devarbhavi H, Kremers W. Fulminant hepatic failure: causes, course and predictors of outcome. Indian J Gastroenterol. 2005;25:A154.

    Google Scholar 

  30. deLemos AS, Ghabril M, Rockey DC, et al. Amoxicillin-clavulanate-induced liver injury. Dig Dis Sci. 2016;61:2406–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Andrade RJ, Lucena MI, Fernandez MC, et al. Drug-induced liver injury: an analysis of 461 incidences submitted to the Spanish registry over a 10-year period. Gastroenterology. 2005;129:512–21.

    Article  PubMed  Google Scholar 

  32. Bjornsson ES, Bergmann OM, Bjornsson HK, et al. Incidence, presentation, and outcomes in patients with drug-induced liver injury in the general population of Iceland. Gastroenterology. 2013;144:1419–25.

    Article  PubMed  Google Scholar 

  33. Bessone F, Hernandez N, Lucena MI, et al. The Latin American DILI registry experience: a successful ongoing collaborative strategic initiative. Int J Mol Sci 2016;17:313.

  34. Yazici C, Mutlu E, Bonkovsky HL, et al. Risk factors for severe or fatal drug-induced liver injury from amoxicillin-clavulanic acid. Hepatol Res. 2015;45:676–82.

    Article  CAS  PubMed  Google Scholar 

  35. Sistanizad M, Peterson GM. Drug-induced liver injury in the Australian setting. J Clin Pharm Ther. 2013;38:115–20.

    Article  CAS  PubMed  Google Scholar 

  36. Robles M, Toscano E, Cotta J, et al. Antibiotic-induced liver toxicity: mechanisms, clinical features and causality assessment. Curr Drug Saf. 2010;5:212–22.

    Article  CAS  PubMed  Google Scholar 

  37. Bjornsson E, Jerlstad P, Bergqvist A, et al. Fulminant drug-induced hepatic failure leading to death or liver transplantation in Sweden. Scand J Gastroenterol. 2005;40:1095–101.

    Article  PubMed  Google Scholar 

  38. •• Daly AK, Donaldson PT, Bhatnagar P, et al. HLA-B*5701 genotype is a major determinant of drug-induced liver injury due to flucloxacillin. Nat Genet. 2009;41:816–9. Seminal study demonstrating odds ratio of 80 to flucloxacillin suggesting genetic determinism as a risk factor.

    Article  CAS  PubMed  Google Scholar 

  39. Dobson JL, Angus PW, Jones R, et al. Flucloxacillin-induced aplastic anaemia and liver failure. Transpl Int. 2005;18:487–9.

    Article  PubMed  Google Scholar 

  40. • Devarbhavi H, Raj S, Joseph T, et al. Features and treatment of dapsone-induced hepatitis, based on analysis of 44 cases and literature review. Clin Gastroenterol Hepatol. 2017;26:30611–0. A large series on dapsone DILI including a summary of published cases demonstrating a majority (88–90%) presenting with immunoallergic features and instances of acute liver failure.

    Google Scholar 

  41. Zaman F, Ye G, Abreo KD, et al. Successful orthotopic liver transplantation after trimethoprim-sulfamethoxazole associated fulminant liver failure. Clin Transpl. 2003;17:461–4.

    Article  Google Scholar 

  42. Ng CT, Tan CK, CC O, et al. Successful extracorporeal liver dialysis for the treatment of trimethoprim-sulfamethoxazole-induced fulminant hepatic failure. Singap Med J. 2013;54:e113–6.

    Article  Google Scholar 

  43. Agrawal S, Agarwalla A. Dapsone hypersensitivity syndrome: a clinico-epidemiological review. J Dermatol. 2005;32:883–9.

    Article  PubMed  Google Scholar 

  44. Quaresma MV, Bernardes Filho F, Hezel J, et al. Dapsone in the treatment of pemphigus vulgaris: adverse effects and its importance as a corticosteroid sparing agent. An Bras Dermatol. 2015;90:51–4.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Kiang TKL, Ford J-A, Yoshida EM, et al. Nitrofurantoin-associated lung and liver toxicity leading to liver transplantation in a middle-aged patient. Can J Hosp Pharm. 2011;64:262–70.

    PubMed  PubMed Central  Google Scholar 

  46. Chalasani N, Fontana RJ, Bonkovsky HL, et al. Causes, clinical features, and outcomes from a prospective study of drug-induced liver injury in the United States. Gastroenterology. 2008;135:1924–34.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Bjornsson E, Talwalkar J, Treeprasertsuk S, et al. Drug-induced autoimmune hepatitis: clinical characteristics and prognosis. Hepatology. 2010;51:2040–8.

    Article  PubMed  Google Scholar 

  48. Lienart F, Morissens M, Jacobs P, et al. Doxycycline and hepatotoxicity. Acta Clin Belg. 1992;47:205–8.

    Article  CAS  PubMed  Google Scholar 

  49. Urban TJ, Nicoletti P, Chalasani N, et al. Minocycline hepatotoxicity: clinical characterization and identification of HLA-B *35:02 as a risk factor. J Hepatol. 2017;67:137–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kuhn A, Weiler-Normann C, Schramm C, et al. Acute liver failure following minocycline treatment—a case report and review of the literature. Z Gastroenterol. 2012;50:771–5.

    Article  CAS  PubMed  Google Scholar 

  51. Losanoff JE, Holder-Murray JM, Ahmed EB, et al. Minocycline toxicity requiring liver transplant. Dig Dis Sci. 2007;52:3242–4.

    Article  PubMed  Google Scholar 

  52. Ekiz F, Uskudar O, Simsek Z, et al. Cefuroxime axetil-induced liver failure. Ann Hepatol. 2010 Jul-Sep;9(3):306.

    PubMed  Google Scholar 

  53. Brinker AD, Wassel RT, Lyndly J, et al. Telithromycin-associated hepatotoxicity: clinical spectrum and causality assessment of 42 cases. Hepatology. 2009;49:250–7.

    Article  PubMed  Google Scholar 

  54. Easton-Carter KL, Hardikar W, Smith AL. Possible roxithromycin-induced fulminant hepatic failure in a child. Pharmacotherapy. 2001;21:867–70.

    Article  CAS  PubMed  Google Scholar 

  55. Maggi P, Solarino B, Cassano P, et al. Fatal fulminant hepatitis following administration of clarithromycin in a patient chronically treated with antipsycotic drugs. Immunopharmacol Immunotoxicol. 2013;35:191–4.

    Article  CAS  PubMed  Google Scholar 

  56. Masia M, Gutierrez F, Jimeno A, et al. Fulminant hepatitis and fatal toxic epidermal necrolysis (Lyell disease) coincident with clarithromycin administration in an alcoholic patient receiving disulfiram therapy. Arch Intern Med. 2002;162:474–6.

    Article  PubMed  Google Scholar 

  57. Tietz A, Heim MH, Eriksson U, et al. Fulminant liver failure associated with clarithromycin. Ann Pharmacother. 2003;37:57–60.

    Article  PubMed  Google Scholar 

  58. Raschi E, Poluzzi E, Koci A, et al. Assessing liver injury associated with antimycotics: concise literature review and clues from data mining of the FAERS database. World J Hepatol. 2014;6:601–12.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Lo Re V 3rd, Carbonari DM, Lewis JD, et al. Oral azole antifungal medications and risk of acute liver injury, overall and by chronic liver disease status. Am J Med. 2016;129:283–91.

    Article  CAS  PubMed  Google Scholar 

  60. Kao WY, CW S, Huang YS, et al. Risk of oral antifungal agent-induced liver injury in Taiwanese. Br J Clin Pharmacol. 2014;77:180–9.

    Article  CAS  PubMed  Google Scholar 

  61. Raschi E, de Ponti F. Drug- and herb-induced liver injury: progress, current challenges and emerging signals of post-marketing risk. World J Hepatol. 2015;7:1761–71.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Pettit NN, Pisano J, Weber S, et al. Hepatic failure in a patient receiving itraconazole for pulmonary histoplasmosis—case report and literature review. Am J Ther. 2016;23:0000000000000313.

    Article  Google Scholar 

  63. Lou HY, Fang CL, Fang SU, et al. Hepatic failure related to itraconazole use successfully treated by corticosteroids. Hepat Mon. 2011;11:843–6.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Srebrnik A, Levtov S, Ben-Ami R, et al. Liver failure and transplantation after itraconazole treatment for toenail onychomycosis. J Eur Acad Dermatol Venereol. 2005;19:205–7.

    Article  CAS  PubMed  Google Scholar 

  65. Tuccori M, Bresci F, Guidi B, et al. Fatal hepatitis after long-term pulse itraconazole treatment for onychomycosis. Ann Pharmacother. 2008;42:1112–7.

    Article  CAS  PubMed  Google Scholar 

  66. Perveze Z, Johnson MW, Rubin RA, et al. Terbinafine-induced hepatic failure requiring liver transplantation. Liver Transpl. 2007;13:162–4.

    Article  PubMed  Google Scholar 

  67. Nunez M. Clinical syndromes and consequences of antiretroviral-related hepatotoxicity. Hepatology. 2010;52:1143–55.

    Article  CAS  PubMed  Google Scholar 

  68. Clark SJ, Creighton S, Portmann B, et al. Acute liver failure associated with antiretroviral treatment for HIV: a report of six cases. J Hepatol. 2002;36:295–301.

    Article  PubMed  Google Scholar 

  69. Jones M, Nunez M. Liver toxicity of antiretroviral drugs. Semin Liver Dis. 2012;32:167–76.

    Article  CAS  PubMed  Google Scholar 

  70. Surgers L, Lacombe K. Hepatoxicity of new antiretrovirals: a systematic review. Clin Res Hepatol Gastroenterol. 2013;37:126–33.

    Article  CAS  PubMed  Google Scholar 

  71. Bunchorntavakul C, Reddy KR. Drug hepatotoxicity: newer agents. Clin Liver Dis. 2017;21:115–34.

    Article  PubMed  Google Scholar 

  72. Sanne I, Mommeja-Marin H, Hinkle J, et al. Severe hepatotoxicity associated with nevirapine use in HIV-infected subjects. J Infect Dis. 2005;191:825–9.

    Article  CAS  PubMed  Google Scholar 

  73. Lopez-Delgado JC, Mendiluce RM, Pinol TS, et al. Urgent liver transplantation for nevirapine-induced acute liver failure: report of a case and review of the literature. Ann Transplant. 2012;17:122–7.

    CAS  PubMed  Google Scholar 

  74. Jao J, Sturdevant M, del Rio Martin J, et al. Nevirapine-induced stevens johnson-syndrome and fulminant hepatic failure requiring liver transplantation. Am J Transplant. 2010;10:1713–6.

    Article  CAS  PubMed  Google Scholar 

  75. Martin-Carbonero L, Nunez M, Gonzalez-Lahoz J, et al. Incidence of liver injury after beginning antiretroviral therapy with efavirenz or nevirapine. HIV Clin Trials. 2003;4:115–20.

    Article  PubMed  Google Scholar 

  76. Kappelhoff BS, van Leth F, Robinson PA, et al. Are adverse events of nevirapine and efavirenz related to plasma concentrations? Antivir Ther. 2005;10:489–98.

    CAS  PubMed  Google Scholar 

  77. Elsharkawy AM, Schwab U, McCarron B, et al. Efavirenz induced acute liver failure requiring liver transplantation in a slow drug metaboliser. J Clin Virol. 2013;58:331–3.

    Article  CAS  PubMed  Google Scholar 

  78. Turkova A, Ball C, Gilmour-White S, et al. A paediatric case of acute liver failure associated with efavirenz-based highly active antiretroviral therapy and effective use of raltegravir in combination antiretroviral treatment after liver transplantation. J Antimicrob Chemother. 2009 Mar;63(3):623–5. https://doi.org/10.1093/jac/dkn548.

    Article  CAS  PubMed  Google Scholar 

  79. Fink DL, Bloch E. Liver transplantation for acute liver failure due to efavirenz hepatotoxicity: the importance of routine monitoring. Int J STD AIDS. 2013;24:831–3.

    Article  PubMed  Google Scholar 

  80. Abrescia N, D'Abbraccio M, Figoni M, et al. Fulminant hepatic failure after the start of an efavirenz-based HAART regimen in a treatment-naive female AIDS patient without hepatitis virus co-infection. J Antimicrob Chemother. 2002 Nov;50(5):763–5.

    Article  CAS  PubMed  Google Scholar 

  81. Qayyum S, Dong H, Kovacic D, et al. Combination therapy efavirenz/emtricitabine/tenofovir disoproxil fumarate associated with hepatic failure. Curr Drug Saf. 2012;7:391–3.

    Article  PubMed  Google Scholar 

  82. Soni S, Churchill DR, Gilleece Y. Abacavir-induced hepatotoxicity: a report of two cases. AIDS. 2008 Nov 30;22(18):2557–8. https://doi.org/10.1097/QAD.0b013e32831c8af4.

    Article  PubMed  Google Scholar 

  83. Di Filippo E, Ripamonti D, Rizzi M. Abacavir-induced liver toxicity in an HIV-infected patient. AIDS. 2014 Feb 20;28(4):613. https://doi.org/10.1097/QAD.0000000000000139.

    Article  PubMed  Google Scholar 

  84. Haas C, Ziccardi MR, Borgman J. Abacavir-induced fulminant hepatic failure in a HIV/HCV co-infected patient. BMJ Case Rep. 2015;15:2015–212566.

    Google Scholar 

  85. Sulkowski MS, Mehta SH, Chaisson RE, et al. Hepatotoxicity associated with protease inhibitor-based antiretroviral regimens with or without concurrent ritonavir. AIDS. 2004;18:2277–84.

    Article  CAS  PubMed  Google Scholar 

  86. Hicks CB, Cahn P, Cooper DA, et al. Durable efficacy of tipranavir-ritonavir in combination with an optimised background regimen of antiretroviral drugs for treatment-experienced HIV-1-infected patients at 48 weeks in the Randomized Evaluation of Strategic Intervention in multi-drug resistant patients with Tipranavir (RESIST) studies: an analysis of combined data from two randomised open-label trials. Lancet. 2006;368:466–75.

    Article  CAS  PubMed  Google Scholar 

  87. Chan-Tack KM, Struble KA, Birnkrant DB. Intracranial hemorrhage and liver-associated deaths associated with tipranavir/ritonavir: review of cases from the FDA’s Adverse Event Reporting System. AIDS Patient Care STDs. 2008;22:843–50.

    Article  PubMed  Google Scholar 

  88. Temple R. Hy’s law: predicting serious hepatotoxicity. Pharmacoepidemiol Drug Saf. 2006;15:241–3.

    Article  PubMed  Google Scholar 

  89. O'Grady JG, Alexander GJ, Hayllar KM, et al. Early indicators of prognosis in fulminant hepatic failure. Gastroenterology. 1989;97:439–45.

    Article  PubMed  Google Scholar 

  90. Kamath PS, Wiesner RH, Malinchoc M, et al. A model to predict survival in patients with end-stage liver disease. Hepatology. 2001;33:464–70.

    Article  CAS  PubMed  Google Scholar 

  91. Koch DG, Tillman H, Durkalski V, et al. Development of a model to predict transplant-free survival of patients with acute liver failure. Clin Gastroenterol Hepatol. 2016;14:1199–206.

    Article  PubMed  Google Scholar 

  92. • Lee WM, Hynan LS, Rossaro L, et al. Intravenous N-acetylcysteine improves transplant-free survival in early stage non-acetaminophen acute liver failure. Gastroenterology. 2009;137:856–64. A randomised study showing improved survival in early coma grades in patients with non-acetaminophen ALF.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Devarbhavi H, Raj S, Aradya VH, et al. Drug-induced liver injury associated with stevens-Johnson syndrome/toxic epidermal necrolysis: patient characteristics, causes, and outcome in 36 cases. Hepatology. 2016;63:993–9.

    Article  CAS  PubMed  Google Scholar 

  94. Karkhanis J, Verna EC, Chang MS, et al. Steroid use in acute liver failure. Hepatology. 2014;59:612–21.

    Article  CAS  PubMed  Google Scholar 

  95. Czaja AJ. Acute and acute severe (fulminant) autoimmune hepatitis. Dig Dis Sci. 2013;58:897–914.

    Article  CAS  PubMed  Google Scholar 

  96. Gonzalez HC, Jafri SM, Gordon SC. Management of acute hepatotoxicity including medical agents and liver support systems. Clin Liver Dis. 2017;21:163–80.

    Article  PubMed  Google Scholar 

  97. Habib S, Shaikh OS. Drug-induced acute liver failure. Clin Liver Dis. 2017;21:151–62.

    Article  PubMed  Google Scholar 

  98. Larsen FS, Schmidt LE, Bernsmeier C, et al. High-volume plasma exchange in patients with acute liver failure: an open randomised controlled trial. J Hepatol. 2016;64:69–78.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harshad Devarbhavi.

Ethics declarations

Conflict of Interest

Harshad Devarbhavi declares no potential conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Drug-Induced Liver Injury

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Devarbhavi, H. Acute Liver Failure Induced by Anti-infectious Drugs: Causes and Management. Curr Hepatology Rep 16, 276–285 (2017). https://doi.org/10.1007/s11901-017-0367-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11901-017-0367-5

Keywords

Navigation