PD-1/PD-L1 Pathway and Its Blockade in Patients with Classic Hodgkin Lymphoma and Non-Hodgkin Large-Cell Lymphomas

Abstract

Purpose of Review

Programmed cell death protein-1 (PD-1) is currently the most extensively studied inhibitory checkpoint molecule. Many malignant neoplasms express the PD-1 ligands, PD-L1, and/or PD-L2, which bind to PD-1 on T cells and induce T cell “exhaustion.” By doing so, the malignant cells escape from an antitumor immune response (immune evasion). Blockade of the PD-1/PD-L1 pathway releases T cells from the inhibitory effects exerted by tumor cells and restores a T cell-mediated antitumor immune response. Here, we focus on understanding the immune biology of the PD-1/PD-L1 pathway in large-cell lymphomas, including classic Hodgkin lymphoma (CHL), diffuse large B cell lymphoma (DLBCL), and anaplastic large-cell lymphoma (ALCL), and the current status of PD-1 blockade immunotherapy in treating patients with these lymphomas.

Recent Findings

PD-1/PD-L1 pathway and PD-1 inhibitors have been widely tested in patients with a variety of lymphomas. Nivolumab and pembrolizumab have been approved by the U.S. Food and Drug Administration for treating patients with some types of relapsed or refractory (R/R) lymphomas. The highest response rate has been achieved in patients with CHL, due to a high frequency of genetic alterations of 9p24.1 and high expression of PD-1 ligands. The frequency of alterations of chromosome 9p24.1 and expression of PD-L1/PD-L1 in DLBCL (except some specific subtypes) is low; therefore, it is not recommended to treat unselected DLBCL patients with PD-1 inhibitors. Studies have shown a high frequency of PD-L1 expression in ALCL, especially in anaplastic lymphoma kinase (ALK)+ type. Several cases reports have described a dramatic and durable response to PD-1 blockade in patients with R/R ALCL, suggesting that patients with R/R ALCL may be potential candidates for PD-1 blockade immunotherapy.

Summary

Understanding the immune biology of lymphoid neoplasms has helped us identify the specific lymphoma types that are vulnerable to PD-1 inhibitors, such as CHL, and specific subtypes of DLBCL. However, our knowledge of many other lymphomas, including ALCL, in this area is still very limited and the future of PD-1 inhibitors in treating those lymphomas remains unclear.

This is a preview of subscription content, access via your institution.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.

    Zou W, Chen L. Inhibitory B7-family molecules in the tumour microenvironment. Nat Rev Immunol. 2008;8:467–77.

    CAS  PubMed  Google Scholar 

  2. 2.

    Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 2012;12:252–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Greenwald RJ, Freeman GJ, Sharpe AH. The B7 family revisited. Annu Rev Immunol. 2005;23:515–48.

    PubMed  Google Scholar 

  4. 4.

    Zak KM, Grudnik P, Magiera K, Dömling A, Dubin G, Holak TA. Structural biology of the immune checkpoint receptor PD-1 and its ligands PD-L1/PD-L2. Structure. 2017;25:1163–74.

    CAS  PubMed  Google Scholar 

  5. 5.

    Alsaab HO, Sau S, Alzhrani R, Tatiparti K, Bhise K, Kashaw SK, et al. PD-1 and PD-L1 checkpoint signaling inhibition for cancer immunotherapy: mechanism, combinations, and clinical outcome. Front Pharmacol. 2017;8:561.

    PubMed  PubMed Central  Google Scholar 

  6. 6.

    Xu-Monette ZY, Zhou J, Young KH. PD-1 expression and clinical PD-1 blockade in B-cell lymphomas. Blood. 2018;131:68–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Xia Y, Medeiros LJ, Young KH. Immune checkpoint blockade: releasing the brake towards hematological malignancies. Blood Rev. 2016;30:189–200.

    CAS  PubMed  Google Scholar 

  8. 8.

    Latchman Y, Wood CR, Chernova T, Chaudhary D, Borde M, Chernova I, et al. PD-L2 is a second ligand for PD-1 and inhibits T cell activation. Nat Immunol. 2001;2:261–8.

    CAS  PubMed  Google Scholar 

  9. 9.

    Chen L, Han X. Anti-PD-1/PD-L1 therapy of human cancer: past, present, and future. J Clin Invest. 2015;125:3384–91.

    PubMed  PubMed Central  Google Scholar 

  10. 10.

    Dong H, Strome SE, Salomao DR, Tamura H, Hirano F, Flies DB, et al. Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nat Med. 2002;8:793–800.

    CAS  PubMed  Google Scholar 

  11. 11.

    Azuma T, Yao S, Zhu G, Flies AS, Flies SJ, Chen L. B7-H1 is a ubiquitous antiapoptotic receptor on cancer cells. Blood. 2008;111:3635–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Sheikh S, Kuruvilla J. Pembrolizumab for the treatment of diffuse large B-cell lymphoma. Expert Opin Biol Ther. 2019;19:1119–26.

    CAS  PubMed  Google Scholar 

  13. 13.

    Younes A, Santoro A, Shipp M, Zinzani PL, Timmerman JM, Ansell S, et al. Nivolumab for classical Hodgkin's lymphoma after failure of both autologous stem-cell transplantation and brentuximab vedotin: a multicentre, multicohort, single-arm phase 2 trial. Lancet Oncol. 2016;17:1283–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Wang C, Thudium KB, Han M, Wang XT, Huang H, Feingersh D, et al. In vitro characterization of the anti-PD-1 antibody nivolumab, BMS-936558, and in vivo toxicology in non-human primates. Cancer Immunol Res. 2014;2:846–56.

    CAS  PubMed  Google Scholar 

  15. 15.

    Chen R, Zinzani PL, Fanale MA, Armand P, Johnson NA, Brice P, et al. Phase II study of the efficacy and safety of pembrolizumab for relapsed/refractory classic Hodgkin lymphoma. J Clin Oncol. 2017;35:2125–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Garon EB, Rizvi NA, Hui R, Leighl N, Balmanoukian AS, Eder JP, et al. Pembrolizumab for the treatment of non-small-cell lung cancer. N Engl J Med. 2015;372:2018–28.

    PubMed  PubMed Central  Google Scholar 

  17. 17.

    Lee HT, Lee SH, Heo YS. Molecular interactions of antibody drugs targeting PD-1, PD-L1, and CTLA-4 in immuno-oncology. Molecules. 2019;24.

  18. 18.

    Swerdlow SH CE, Harris NL, Jaffe ES, Pileri SA, Stein H, Thiele J. WHO classification of tumours of haematopoietic and lymphoid tissues. Revised Fourth Edition ed. 2017.

    Google Scholar 

  19. 19.

    Yamamoto R, Nishikori M, Kitawaki T, Sakai T, Hishizawa M, Tashima M, et al. PD-1-PD-1 ligand interaction contributes to immunosuppressive microenvironment of Hodgkin lymphoma. Blood. 2008;111:3220–4.

    CAS  PubMed  Google Scholar 

  20. 20.

    Greaves P, Clear A, Owen A, Iqbal S, Lee A, Matthews J, et al. Defining characteristics of classical Hodgkin lymphoma microenvironment T-helper cells. Blood. 2013;122:2856–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Muenst S, Hoeller S, Dirnhofer S, Tzankov A. Increased programmed death-1+ tumor-infiltrating lymphocytes in classical Hodgkin lymphoma substantiate reduced overall survival. Hum Pathol. 2009;40:1715–22.

    CAS  PubMed  Google Scholar 

  22. 22.

    Jelinek T, Mihalyova J, Kascak M, Duras J, Hajek R. PD-1/PD-L1 inhibitors in haematological malignancies: update 2017. Immunology. 2017;152:357–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Menter T, Bodmer-Haecki A, Dirnhofer S, Tzankov A. Evaluation of the diagnostic and prognostic value of PDL1 expression in Hodgkin and B-cell lymphomas. Hum Pathol. 2016;54:17–24.

    CAS  PubMed  Google Scholar 

  24. 24.

    Roemer MG, Advani RH, Ligon AH, et al. PD-L1 and PD-L2 genetic alterations define classical Hodgkin lymphoma and predict outcome. J Clin Oncol. 2016;34:2690–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. 25.

    •• Ansell SM, Lesokhin AM, Borrello I, et al. PD-1 blockade with nivolumab in relapsed or refractory Hodgkin’s lymphoma. N Engl J Med. 2015;372:311–9 In this phase 1 study, nivolumab had substantial therapeutic activity and an acceptable safety profile in patients with previously heavily treated relapsed or refractory Hodgkin’s lymphoma.

    PubMed  Google Scholar 

  26. 26.

    • Chen BJ, Chapuy B, Ouyang J, et al. PD-L1 expression is characteristic of a subset of aggressive B-cell lymphomas and virus-associated malignancies. Clin Cancer Res. 2013;19:3462–73 This study identifed a group of lymphomas that should be considered for PD-1/PD-L1-directed therapies, and validate methods to detect PD-L1 in FFPE tissue biopsies.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Armand P, Chen YB, Redd RA, Joyce RM, Bsat J, Jeter E, et al. PD-1 blockade with pembrolizumab for classical Hodgkin lymphoma after autologous stem cell transplantation. Blood. 2019;134:22–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. 28.

    •• Armand P, Shipp MA, Ribrag V, et al. Programmed death-1 blockade with pembrolizumab in patients with classical Hodgkin lymphoma after brentuximab vedotin failure. J Clin Oncol. 2016;34:3733–9 In this phase 1b study, pembrolizumab treatment induced favorable responses in a heavily pretreated patients with CHL.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. 29.

    • Georgiou K, Chen L, Berglund M, et al. Genetic basis of PD-L1 overexpression in diffuse large B-cell lymphomas. Blood. 2016;127:3026–34 This study demonstrated the genetic basis of PD-L1 overexpression in DLBCL and suggest that treatments targeting the PD-1-PD-L1/PD-L2 axis might benefit DLBCL patients.

    CAS  PubMed  Google Scholar 

  30. 30.

    Li L, Zhang J, Chen J, Xu-Monette ZY, Miao Y, Xiao M, et al. B-cell receptor-mediated NFATc1 activation induces IL-10/STAT3/PD-L1 signaling in diffuse large B-cell lymphoma. Blood. 2018;132:1805–17.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Kiyasu J, Miyoshi H, Hirata A, Arakawa F, Ichikawa A, Niino D, et al. Expression of programmed cell death ligand 1 is associated with poor overall survival in patients with diffuse large B-cell lymphoma. Blood. 2015;126:2193–201.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Xing W, Dresser K, Zhang R, Evens AM, Yu H, Woda BA, et al. PD-L1 expression in EBV-negative diffuse large B-cell lymphoma: clinicopathologic features and prognostic implications. Oncotarget. 2016;7:59976–86.

    PubMed  PubMed Central  Google Scholar 

  33. 33.

    Lesokhin AM, Ansell SM, Armand P, Scott EC, Halwani A, Gutierrez M, et al. Nivolumab in patients with relapsed or refractory hematologic malignancy: preliminary results of a phase Ib study. J Clin Oncol. 2016;34:2698–704.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Godfrey J, Tumuluru S, Bao R, Leukam M, Venkataraman G, Phillip J, et al. PD-L1 gene alterations identify a subset of diffuse large B-cell lymphoma harboring a T-cell-inflamed phenotype. Blood. 2019;133:2279–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Wang Y, Wenzl K, Manske MK, et al. Amplification of 9p24.1 in diffuse large B-cell lymphoma identifies a unique subset of cases that resemble primary mediastinal large B-cell lymphoma. Blood Cancer J. 2019;9:73.

    PubMed  PubMed Central  Google Scholar 

  36. 36.

    Kwon D, Kim S, Kim PJ, Go H, Nam SJ, Paik JH, et al. Clinicopathological analysis of programmed cell death 1 and programmed cell death ligand 1 expression in the tumour microenvironments of diffuse large B cell lymphomas. Histopathology. 2016;68:1079–89.

    PubMed  Google Scholar 

  37. 37.

    • Ansell SM, Minnema MC, Johnson P, et al. Nivolumab for relapsed/refractory diffuse large B-cell lymphoma in patients ineligible for or having failed autologous transplantation: a single-arm, phase II study. J Clin Oncol. 2019;37:481–9 In this phase II study, nivolumab monotherapy is associated with a favorable safety profile but a low overall response rate among patients with DLBCL who are ineligible for auto-HCT or who experienced failure with auto-HCT.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Andorsky DJ, Yamada RE, Said J, Pinkus GS, Betting DJ, Timmerman JM. Programmed death ligand 1 is expressed by non-Hodgkin lymphomas and inhibits the activity of tumor-associated T cells. Clin Cancer Res. 2011;17:4232–44.

    CAS  PubMed  Google Scholar 

  39. 39.

    Chapuy B, Roemer MG, Stewart C, et al. Targetable genetic features of primary testicular and primary central nervous system lymphomas. Blood. 2016;127:869–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Twa DD, Chan FC, Ben-Neriah S, et al. Genomic rearrangements involving programmed death ligands are recurrent in primary mediastinal large B-cell lymphoma. Blood. 2014;123:2062–5.

    CAS  PubMed  Google Scholar 

  41. 41.

    •• Zinzani PL, Ribrag V, Moskowitz CH, et al. Safety and tolerability of pembrolizumab in patients with relapsed/refractory primary mediastinal large B-cell lymphoma. Blood. 2017;130:267–70 In this phase 1b trial, pembrolizumab in heavily pretreated rrPMBCL patients demonstrated a manageable safety profile and promising antitumor activity.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Shi M, Roemer MG, Chapuy B, et al. Expression of programmed cell death 1 ligand 2 (PD-L2) is a distinguishing feature of primary mediastinal (thymic) large B-cell lymphoma and associated with PDCD1LG2 copy gain. Am J Surg Pathol. 2014;38:1715–23.

    PubMed  PubMed Central  Google Scholar 

  43. 43.

    •• Nayak L, Iwamoto FM, LaCasce A, et al. PD-1 blockade with nivolumab in relapsed/refractory primary central nervous system and testicular lymphoma. Blood. 2017;129:3071–3 This study suggest that nivolumab is active in relapsed/refractory PCNSL and PTL and support further investigation of PD-1 blockade in these diseases.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Panjwani PK, Charu V, DeLisser M, Molina-Kirsch H, Natkunam Y, Zhao S. Programmed death-1 ligands PD-L1 and PD-L2 show distinctive and restricted patterns of expression in lymphoma subtypes. Hum Pathol. 2018;71:91–9.

    CAS  PubMed  Google Scholar 

  45. 45.

    Atsaves V, Tsesmetzis N, Chioureas D, Kis L, Leventaki V, Drakos E, et al. PD-L1 is commonly expressed and transcriptionally regulated by STAT3 and MYC in ALK-negative anaplastic large-cell lymphoma. Leukemia. 2017;31:1633–7.

    CAS  PubMed  Google Scholar 

  46. 46.

    Marzec M, Zhang Q, Goradia A, Raghunath PN, Liu X, Paessler M, et al. Oncogenic kinase NPM/ALK induces through STAT3 expression of immunosuppressive protein CD274 (PD-L1, B7-H1). Proc Natl Acad Sci U S A. 2008;105:20852–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. 47.

    •• Kwong YL, Chan TSY, Tan D, et al. PD1 blockade with pembrolizumab is highly effective in relapsed or refractory NK/T-cell lymphoma failing l-asparaginase. Blood. 2017;129:2437–42 This study demonstrated pembrolizumab as a potent strategy for NK/T-cell lymphomas failing l-asparaginase regimens.

    CAS  PubMed  Google Scholar 

  48. 48.

    Yamamoto R, Nishikori M, Tashima M, Sakai T, Ichinohe T, Takaori-Kondo A, et al. B7-H1 expression is regulated by MEK/ERK signaling pathway in anaplastic large cell lymphoma and Hodgkin lymphoma. Cancer Sci. 2009;100:2093–100.

    CAS  PubMed  Google Scholar 

  49. 49.

    Barta SK, Zain J, MacFarlane AW, et al. Phase II study of the PD-1 inhibitor pembrolizumab for the treatment of relapsed or refractory mature T-cell lymphoma. Clin Lymphoma Myeloma Leuk. 2019;19:356–64 e3.

    PubMed  Google Scholar 

  50. 50.

    • Shen J, Li S, Medeiros LJ, et al. PD-L1 expression is associated with ALK positivity and STAT3 activation, but not outcome in patients with systemic anaplastic large cell lymphoma. Mod Pathol. 2019; This study demonstrated high PD-L1 expression on the anaplastic large cell lymphoma cells, suggesting these patients as potential candidates for PD-1 blockade immunotherapy.

  51. 51.

    Zhang JP, Song Z, Wang HB, Lang L, Yang YZ, Xiao W, et al. A novel model of controlling PD-L1 expression in ALK(+) anaplastic large cell lymphoma revealed by CRISPR screening. Blood. 2019;134:171–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. 52.

    Khodadoust MS, Rook AH, Porcu P, Foss F, Moskowitz AJ, Shustov A, et al. Pembrolizumab in relapsed and refractory mycosis fungoides and Sezary syndrome: a multicenter phase II study. J Clin Oncol. 2020;38:20–8.

    PubMed  Google Scholar 

  53. 53.

    Chan TS, Khong PL, Kwong YL. Pembrolizumab for relapsed anaplastic large cell lymphoma after allogeneic haematopoietic stem cell transplantation: efficacy and safety. Ann Hematol. 2016;95:1913–5.

    PubMed  Google Scholar 

  54. 54.

    Rigaud C, Abbou S, Minard-Colin V, Geoerger B, Scoazec JY, Vassal G, et al. Efficacy of nivolumab in a patient with systemic refractory ALK+ anaplastic large cell lymphoma. Pediatr Blood Cancer. 2018;65.

  55. 55.

    Hebart H, Lang P, Woessmann W. Nivolumab for refractory anaplastic large cell lymphoma: a case report. Ann Intern Med. 2016;165:607–8.

    PubMed  Google Scholar 

  56. 56.

    Green MR, Monti S, Rodig SJ, Juszczynski P, Currie T, O'Donnell E, et al. Integrative analysis reveals selective 9p24.1 amplification, increased PD-1 ligand expression, and further induction via JAK2 in nodular sclerosing Hodgkin lymphoma and primary mediastinal large B-cell lymphoma. Blood. 2010;116:3268–77.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. 57.

    Green MR, Rodig S, Juszczynski P, Ouyang J, Sinha P, O'Donnell E, et al. Constitutive AP-1 activity and EBV infection induce PD-L1 in Hodgkin lymphomas and posttransplant lymphoproliferative disorders: implications for targeted therapy. Clin Cancer Res. 2012;18:1611–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. 58.

    Steidl C, Shah SP, Woolcock BW, Rui L, Kawahara M, Farinha P, et al. MHC class II transactivator CIITA is a recurrent gene fusion partner in lymphoid cancers. Nature. 2011;471:377–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. 59.

    Tan KL, Scott DW, Hong F, Kahl BS, Fisher RI, Bartlett NL, et al. Tumor-associated macrophages predict inferior outcomes in classic Hodgkin lymphoma: a correlative study from the E2496 intergroup trial. Blood. 2012;120:3280–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. 60.

    Steidl C, Lee T, Shah SP, Farinha P, Han G, Nayar T, et al. Tumor-associated macrophages and survival in classic Hodgkin’s lymphoma. N Engl J Med. 2010;362:875–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. 61.

    Carey CD, Gusenleitner D, Lipschitz M, Roemer MGM, Stack EC, Gjini E, et al. Topological analysis reveals a PD-L1-associated microenvironmental niche for Reed-Sternberg cells in Hodgkin lymphoma. Blood. 2017;130:2420–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. 62.

    Merryman RW, Armand P, Wright KT, Rodig SJ. Checkpoint blockade in Hodgkin and non-Hodgkin lymphoma. Blood Adv. 2017;1:2643–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. 63.

    Ma SD, Xu X, Jones R, Delecluse HJ, Zumwalde NA, Sharma A, et al. PD-1/CTLA-4 blockade inhibits Epstein-Barr virus-induced lymphoma growth in a cord blood humanized-mouse model. PLoS Pathog. 2016;12:e1005642.

    PubMed  PubMed Central  Google Scholar 

  64. 64.

    Herrera AF, Moskowitz AJ, Bartlett NL, Vose JM, Ramchandren R, Feldman TA, et al. Interim results of brentuximab vedotin in combination with nivolumab in patients with relapsed or refractory Hodgkin lymphoma. Blood. 2018;131:1183–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. 65.

    Keane C, Vari F, Hertzberg M, Cao KAL, Green MR, Han E, et al. Ratios of T-cell immune effectors and checkpoint molecules as prognostic biomarkers in diffuse large B-cell lymphoma: a population-based study. Lancet Haematol. 2015;2:e445–55.

    PubMed  Google Scholar 

  66. 66.

    Nowakowski GS, Blum KA, Kahl BS, Friedberg JW, Baizer L, Little RF, et al. Beyond RCHOP: a blueprint for diffuse large B cell lymphoma research. J Natl Cancer Inst. 2016;108:djw257.

    PubMed  PubMed Central  Google Scholar 

  67. 67.

    Kwiecinska A, Tsesmetzis N, Ghaderi M, Kis L, Saft L, Rassidakis GZ. CD274 (PD-L1)/PDCD1 (PD-1) expression in de novo and transformed diffuse large B-cell lymphoma. Br J Haematol. 2018;180:744–8.

    PubMed  Google Scholar 

  68. 68.

    Twa DD, Mottok A, Chan FC, et al. Recurrent genomic rearrangements in primary testicular lymphoma. J Pathol. 2015;236:136–41.

    CAS  PubMed  Google Scholar 

  69. 69.

    Rossille D, Gressier M, Damotte D, et al. High level of soluble programmed cell death ligand 1 in blood impacts overall survival in aggressive diffuse large B-cell lymphoma: results from a French multicenter clinical trial. Leukemia. 2014;28:2367–75.

    CAS  PubMed  Google Scholar 

  70. 70.

    Frigault MJ, Armand P, Redd RA, Jeter E, Merryman RW, Coleman KC, et al. PD-1 blockade for diffuse large B-cell lymphoma after autologous stem cell transplantation. Blood Adv. 2020;4:122–6.

    PubMed  PubMed Central  Google Scholar 

  71. 71.

    Chong EA, Melenhorst JJ, Lacey SF, Ambrose DE, Gonzalez V, Levine BL, et al. PD-1 blockade modulates chimeric antigen receptor (CAR)-modified T cells: refueling the CAR. Blood. 2017;129:1039–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. 72.

    Prokoph N, Larose H, Lim MS, Burke GAA, Turner SD. Treatment options for paediatric anaplastic large cell lymphoma (ALCL): current standard and beyond. Cancers. 2018;10.

  73. 73.

    Fukano R, Mori T, Kobayashi R, Mitsui T, Fujita N, Iwasaki F, et al. Haematopoietic stem cell transplantation for relapsed or refractory anaplastic large cell lymphoma: a study of children and adolescents in Japan. Br J Haematol. 2015;168:557–63.

    PubMed  Google Scholar 

  74. 74.

    Morel A, Briere J, Lamant L, et al. Long-term outcomes of adults with first-relapsed/refractory systemic anaplastic large-cell lymphoma in the pre-brentuximab vedotin era: a LYSA/SFGM-TC study. Eur J Cancer. 2017;83:146–53.

    CAS  PubMed  Google Scholar 

  75. 75.

    Crescenzo R, Abate F, Lasorsa E, Tabbo' F, Gaudiano M, Chiesa N, et al. Convergent mutations and kinase fusions lead to oncogenic STAT3 activation in anaplastic large cell lymphoma. Cancer Cell. 2015;27:516–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. 76.

    Khoury JD, Medeiros LJ, Rassidakis GZ, Yared MA, Tsioli P, Leventaki V, et al. Differential expression and clinical significance of tyrosine-phosphorylated STAT3 in ALK+ and ALK- anaplastic large cell lymphoma. Clin Cancer Res. 2003;9:3692–9.

    CAS  PubMed  Google Scholar 

  77. 77.

    Bardhan K, Aksoylar HI, Bourgeois TL, Strauss L, Weaver JD, Delcuze B, et al. Phosphorylation of PD-1-Y248 is a marker of PD-1-mediated inhibitory function in human T cells. Sci Rep. 2019;9:17252.

    PubMed  PubMed Central  Google Scholar 

  78. 78.

    Wilcox RA, Feldman AL, Wada DA, Yang ZZ, Comfere NI, Dong H, et al. B7-H1 (PD-L1, CD274) suppresses host immunity in T-cell lymphoproliferative disorders. Blood. 2009;114:2149–58.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. 79.

    Wartewig T, Kurgyis Z, Keppler S, Pechloff K, Hameister E, Öllinger R, et al. PD-1 is a haploinsufficient suppressor of T cell lymphomagenesis. Nature. 2017;552:121–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. 80.

    Ratner L, Waldmann TA, Janakiram M, Brammer JE. Rapid progression of adult T-cell leukemia-lymphoma after PD-1 inhibitor therapy. N Engl J Med. 2018;378:1947–8.

    PubMed  Google Scholar 

  81. 81.

    Tabanelli V, Corsini C, Fiori S, Agostinelli C, Calleri A, Orecchioni S, et al. Recurrent PDL1 expression and PDL1 (CD274) copy number alterations in breast implant-associated anaplastic large cell lymphomas. Hum Pathol. 2019;90:60–9.

    CAS  PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jie Xu.

Ethics declarations

Conflict of Interest

WX, LJM, SL, CCY, JDK, and JX declare no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Molecular Testing and Diagnostics

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xie, W., Medeiros, L.J., Li, S. et al. PD-1/PD-L1 Pathway and Its Blockade in Patients with Classic Hodgkin Lymphoma and Non-Hodgkin Large-Cell Lymphomas. Curr Hematol Malig Rep 15, 372–381 (2020). https://doi.org/10.1007/s11899-020-00589-y

Download citation

Keywords

  • PD-1
  • PD-L1
  • Lymphoma