Skip to main content

Advertisement

Log in

Editing of Endogenous Genes in Cellular Immunotherapies

  • CART and Immunotherapy (M Ruella & P Hanley, Section Editors)
  • Published:
Current Hematologic Malignancy Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

T cell-based cellular and antibody immunotherapies have dramatically altered the landscape of cancer treatment over the past decade. Over the same time span, gene editing technologies have enabled unprecedented degrees of genetic control.

Recent Findings

Knock-outs of endogenous genes, especially based on electroporation of targetable nucleases such as CRISPR/Cas9, have rapidly proliferated. Simultaneous introduction of large DNA sequences can integrate new synthetic genetic instructions with specific endogenous loci to alter T cell function and specificity. Recently developed discovery technologies to perform genome-wide knock-out and large-scale knock-in screens in T cells can rapidly identify endogenous gene targets and therapeutic knock-in programs.

Summary

Endogenous gene knock-outs and targeted knock-ins may offer the chance to expand beyond the current limitations of randomly integrating viral vector-based T cell therapies, and extend immunotherapies’ therapeutic advances to wider hematologic and solid tumor indications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Sudhakar A. History of cancer, ancient and modern treatment methods. J Cancer Sci Ther. 2009;01:i–iv. https://doi.org/10.4172/1948-5956.100000e2.

    Article  Google Scholar 

  2. Coley WB. The treatment of inoperable sarcoma with the ‘mixed toxins of erysipelas and Bacillus prodigiosus.: immediate and final results in one hundred and forty cases. J Am Med Assoc. 1898. https://doi.org/10.1001/jama.1898.92450090022001g.

  3. DeVita VT, Chu E. A history of cancer chemotherapy. Cancer Res. 2008;68:8643–53. https://doi.org/10.1158/0008-5472.CAN-07-6611.

    Article  CAS  PubMed  Google Scholar 

  4. Kaplan DH, Shankaran V, Dighe AS, Stockert E, Aguet M, Old LJ, et al. Demonstration of an interferon γ-dependent tumor surveillance system in immunocompetent mice. Proc Natl Acad Sci U S A. 1998;95:7556–61. https://doi.org/10.1073/pnas.95.13.7556.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Robert C, Thomas L, Bondarenko I, O’Day S, Weber J, Garbe C, et al. Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. N Engl J Med. 2011;364:2517–26. https://doi.org/10.1056/NEJMoa1104621.

    Article  CAS  PubMed  Google Scholar 

  6. Robert C, Ribas A, Wolchok JD, Hodi FS, Hamid O, Kefford R, et al. Anti-programmed-death-receptor-1 treatment with pembrolizumab in ipilimumab-refractory advanced melanoma: a randomised dose-comparison cohort of a phase 1 trial. Lancet. 2014;384:1109–17. https://doi.org/10.1016/S0140-6736(14)60958-2.

    Article  CAS  PubMed  Google Scholar 

  7. Tran E, Robbins PF, Rosenberg SA. ‘Final common pathway’ of human cancer immunotherapy: targeting random somatic mutations. Nat Immunol. 2017;18:255–62. https://doi.org/10.1038/ni.3682.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Rosenberg SA, Packard BS, Aebersold PM, Solomon D, Topalian SL, Toy ST, et al. Use of tumor-infiltrating lymphocytes and interleukin-2 in the immunotherapy of patients with metastatic melanoma. N Engl J Med. 1988;319:1676–80.

    Article  CAS  Google Scholar 

  9. Rosenberg SA, Lotze MT. Cancer immunotherapy using interleukin-2 and interleukin-2-activated lymphocytes. Annu Rev Immunol. 1986;4:681–709. https://doi.org/10.1146/annurev.iy.04.040186.003341.

    Article  CAS  PubMed  Google Scholar 

  10. Wang X, Rivière I. Clinical manufacturing of CAR T cells: foundation of a promising therapy. Mol Ther Oncolytics. 2016;3:16015. https://doi.org/10.1038/mto.2016.15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. McGranahan N, Furness AJS, Rosenthal R, et al. Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade. Science. 2016. https://doi.org/10.1126/science.aaf1490.

  12. Yarchoan M, Johnson BA, Lutz ER, Laheru DA, Jaffee EM. Targeting neoantigens to augment antitumour immunity. Nat Rev Cancer. 2017;17:209–22. https://doi.org/10.1038/nrc.2016.154.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. June CH, Sadelain M. Chimeric antigen receptor therapy. N Engl J Med. 2018;379:64–73. https://doi.org/10.1056/nejmra1706169.

    Article  CAS  PubMed  Google Scholar 

  14. Neelapu SS, Locke FL, Bartlett NL, Lekakis LJ, Miklos DB, Jacobson CA, et al. Axicabtagene ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma. N Engl J Med. 2017;377:2531–44. https://doi.org/10.1056/NEJMoa1707447.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. •• Maude SL, Laetsch TW, Buechner J, et al. Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. N Engl J Med. 2018. https://doi.org/10.1056/NEJMoa1709866. First FDA-approved gene-modified cellular therapy, culminating 30 years of technical development from the earliest virally mediated DNA insertions in human tumor-infiltrating lymphocytes.

  16. Riviere I, Gallardo HF, Hagani AB, Sadelain M. Retroviral-mediated gene transfer in primary murine and human T-lymphocytes. Mol Biotechnol. 2000;15:133–42. https://doi.org/10.1385/MB:15:2:133.

    Article  CAS  PubMed  Google Scholar 

  17. Levine BL, Miskin J, Wonnacott K, Keir C. Global manufacturing of CAR T cell therapy. Mol Ther Methods Clin Dev. 2017;4:92–101. https://doi.org/10.1016/j.omtm.2016.12.006.

    Article  CAS  PubMed  Google Scholar 

  18. Bailey SR, Maus MV. Gene editing for immune cell therapies. Nat Biotechnol. 2019;37:1425–34. https://doi.org/10.1038/s41587-019-0137-8.

    Article  CAS  PubMed  Google Scholar 

  19. Perez EE, Wang J, Miller JC, Jouvenot Y, Kim KA, Liu O, et al. Establishment of HIV-1 resistance in CD4+ T cells by genome editing using zinc-finger nucleases. Nat Biotechnol. 2008;26:808–16. https://doi.org/10.1038/nbt1410.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. • Schumann K, Lin S, Boyer E, et al. Generation of knock-in primary human T cells using Cas9 ribonucleoproteins. Proc Natl Acad Sci U S A. 2015. https://doi.org/10.1073/pnas.1512503112. First demonstration of efficient, targetable knock-out of endogenous genes using CRISPR/Cas9 systems in human T cells shown by RNP electroporation.

  21. Romano Ibarra GS, Paul B, Sather BD, Younan PM, Sommer K, Kowalski JP, et al. Efficient modification of the CCR5 locus in primary human T cells with megaTAL nuclease establishes HIV-1 resistance. Mol Ther Nucleic Acids. 2016;5:e352.

    Article  CAS  Google Scholar 

  22. •• Eyquem J, Mansilla-Soto J, Giavridis T, van der Stegen SJC, Hamieh M, Cunanan KM, et al. Targeting a CAR to the TRAC locus with CRISPR/Cas9 enhances tumour rejection. Nature. 2017;543:113–7. Large, targeted DNA integrations to the endogenous TCR locus in human T cells using a combination of CRISPR/Cas9 electroporation with an AAV vector containing an HDR template.

    Article  CAS  Google Scholar 

  23. Roth TL, Puig-Saus C, Yu R, Shifrut E, Carnevale J, Li PJ, et al. Reprogramming human T cell function and specificity with non-viral genome targeting. Nature. 2018;559:405–9. https://doi.org/10.1038/s41586-018-0326-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kumar P, Ban HS, Kim SS, Wu H, Pearson T, Greiner DL, et al. T cell-specific siRNA delivery suppresses HIV-1 infection in humanized mice. Cell. 2008;134:577–86. https://doi.org/10.1016/j.cell.2008.06.034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Iwamura K, Kato T, Miyahara Y, Naota H, Mineno J, Ikeda H, et al. SiRNA-mediated silencing of PD-1 ligands enhances tumor-specific human T-cell effector functions. Gene Ther. 2012;19:959–66. https://doi.org/10.1038/gt.2011.185.

    Article  CAS  PubMed  Google Scholar 

  26. Lieber MR, Ma Y, Pannicke U, Schwarz K. Mechanism and regulation of human non-homologous DNA end-joining. Nat Rev Mol Cell Biol. 2003;4:712–20. https://doi.org/10.1038/nrm1202.

    Article  CAS  PubMed  Google Scholar 

  27. Carroll D. Genome engineering with targetable nucleases. Annu Rev Biochem. 2014;83:409–39. https://doi.org/10.1146/annurev-biochem-060713-035418.

    Article  CAS  PubMed  Google Scholar 

  28. Tebas P, Stein D, Tang WW, Frank I, Wang SQ, Lee G, et al. Gene editing of CCR5 in autologous CD4 T cells of persons infected with HIV. N Engl J Med. 2014;370:901–10. https://doi.org/10.1056/NEJMoa1300662.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Riley RS, June CH, Langer R, Mitchell MJ. Delivery technologies for cancer immunotherapy. Nat Rev Drug Discov. 2019;18:175–96. https://doi.org/10.1038/s41573-018-0006-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhao Y, Zheng Z, Cohen CJ, Gattinoni L, Palmer DC, Restifo NP, et al. High-efficiency transfection of primary human and mouse T lymphocytes using RNA electroporation. Mol Ther. 2006;13:151–9. https://doi.org/10.1016/j.ymthe.2005.07.688.

    Article  CAS  PubMed  Google Scholar 

  31. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science. 2012. https://doi.org/10.1126/science.1225829.

  32. Cong L, Ran FA, Cox D, et al. Multiplex genome engineering using CRISPR/Cas systems. Science. 2013. https://doi.org/10.1126/science.1231143.

  33. Ren J, Zhang X, Liu X, Fang C, Jiang S, June CH, et al. A versatile system for rapid multiplex genome-edited CAR T cell generation. Oncotarget. 2017;8:17002–11. https://doi.org/10.18632/oncotarget.15218.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Vakulskas CA, Dever DP, Rettig GR, Turk R, Jacobi AM, Collingwood MA, et al. A high-fidelity Cas9 mutant delivered as a ribonucleoprotein complex enables efficient gene editing in human hematopoietic stem and progenitor cells. Nat Med. 2018;24:1216–24. https://doi.org/10.1038/s41591-018-0137-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kelley ML, Strezoska Ž, He K, Vermeulen A, Smith A v B. Versatility of chemically synthesized guide RNAs for CRISPR-Cas9 genome editing. J Biotechnol. 2016;233:74–83. https://doi.org/10.1016/j.jbiotec.2016.06.011.

    Article  CAS  PubMed  Google Scholar 

  36. Nguyen DN, Roth TL, Li PJ, Chen PA, Apathy R, Mamedov MR, et al. Polymer-stabilized Cas9 nanoparticles and modified repair templates increase genome editing efficiency. Nat Biotechnol. 2020;38:44–9. https://doi.org/10.1038/s41587-019-0325-6.

    Article  CAS  PubMed  Google Scholar 

  37. Liang X, Potter J, Kumar S, Ravinder N, Chesnut JD. Enhanced CRISPR/Cas9-mediated precise genome editing by improved design and delivery of gRNA, Cas9 nuclease, and donor DNA. J Biotechnol. 2017;241:136–46. https://doi.org/10.1016/j.jbiotec.2016.11.011.

    Article  CAS  PubMed  Google Scholar 

  38. Wienert B, Feng SJ, Locke M, Nguyen DN, Wyman SK, Kazane KR, et al. Timed inhibition of CDC7 increases CRISPR-Cas9 mediated templated repair. bioRxiv. 2018. https://doi.org/10.1101/500462.

  39. Hultquist JF, Schumann K, Woo JM, Manganaro L, McGregor MJ, Doudna J, et al. A Cas9 Ribonucleoprotein platform for functional genetic studies of HIV-host interactions in primary human T cells. Cell Rep. 2016;17:1438–52. https://doi.org/10.1016/j.celrep.2016.09.080.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hultquist JF, Hiatt J, Schumann K, McGregor MJ, Roth TL, Haas P, et al. CRISPR–Cas9 genome engineering of primary CD4+ T cells for the interrogation of HIV–host factor interactions. Nat Protoc. 2019;14:1–27. https://doi.org/10.1038/s41596-018-0069-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Seki A, Rutz S. Optimized RNP transfection for highly efficient CRI SPR/Cas9-mediated gene knockout in primary T cells. J Exp Med. 2018;215:985–97. https://doi.org/10.1084/jem.20171626.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Rupp LJ, Schumann K, Roybal KT, Gate RE, Ye CJ, Lim WA, et al. CRISPR/Cas9-mediated PD-1 disruption enhances anti-tumor efficacy of human chimeric antigen receptor T cells. Sci Rep. 2017;7:737. https://doi.org/10.1038/s41598-017-00462-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ren J, Liu X, Fang C, Jiang S, June CH, Zhao Y. Multiplex genome editing to generate universal CAR T cells resistant to PD1 inhibition. Clin Cancer Res. 2017;23:2255–66. https://doi.org/10.1158/1078-0432.CCR-16-1300.

    Article  CAS  PubMed  Google Scholar 

  44. Torikai H, Reik A, Liu PQ, Zhou Y, Zhang L, Maiti S, et al. A foundation for universal T-cell based immunotherapy: T cells engineered to express a CD19-specific chimeric-antigen-receptor and eliminate expression of endogenous TCR. Blood. 2012;119:5697–705. https://doi.org/10.1182/blood-2012-01-405365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Osborn MJ, Webber BR, Knipping F, Lonetree CL, Tennis N, DeFeo AP, et al. Evaluation of TCR gene editing achieved by TALENs, CRISPR/Cas9, and megaTAL nucleases. Mol Ther. 2016;24:570–81. https://doi.org/10.1038/mt.2015.197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Shifrut E, Carnevale J, Tobin V, Roth TL, Woo JM, Bui CT, et al. Genome-wide CRISPR screens in primary human T cells reveal key regulators of immune function. Cell. 2018;175:1958–1971.e15. https://doi.org/10.1016/j.cell.2018.10.024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ting PY, Parker AE, Lee JS, Trussell C, Sharif O, Luna F, et al. Guide Swap enables genome-scale pooled CRISPR–Cas9 screening in human primary cells. Nat Methods. 2018;15:941–6. https://doi.org/10.1038/s41592-018-0149-1.

    Article  CAS  PubMed  Google Scholar 

  48. Wei J, Long L, Zheng W, Dhungana Y, Lim SA, Guy C, et al. Targeting REGNASE-1 programs long-lived effector T cells for cancer therapy. Nature. 2019;576:471–6. https://doi.org/10.1038/s41586-019-1821-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Stadtmauer EA, Fraietta JA, Davis MM, et al. CRISPR-engineered T cells in patients with refractory cancer. Science. 2020. https://doi.org/10.1126/science.aba7365.

  50. Sadelain M, Rivière I, Riddell S. Therapeutic T cell engineering. Nature. 2017;545:423–31.

    Article  CAS  Google Scholar 

  51. Jasin M, Rothstein R. Repair of strand breaks by homologous recombination. Cold Spring Harb Perspect Biol. 2013;5. https://doi.org/10.1101/cshperspect.a012740.

  52. •• Urnov FD, Miller JC, Lee YL, Beausejour CM, Rock JM, Augustus S, et al. Highly efficient endogenous human gene correction using designed zinc-finger nucleases. Nature. 2005. https://doi.org/10.1038/nature03556. Early demonstration of ability to perform homology directed repair at endogenous genetic loci in ex vivo cultured human immune cells.

  53. Sather BD, Romano Ibarra GS, Sommer K, et al. Efficient modification of CCR5 in primary human hematopoietic cells using a megaTAL nuclease and AAV donor template. Sci Transl Med. 2015;7:307ra156.

    Article  Google Scholar 

  54. Wang J, DeClercq JJ, Hayward SB, Li PWL, Shivak DA, Gregory PD, et al. Highly efficient homology-driven genome editing in human T cells by combining zinc-finger nuclease mRNA and AAV6 donor delivery. Nucleic Acids Res. 2016;44:e30. https://doi.org/10.1093/nar/gkv1121.

    Article  CAS  PubMed  Google Scholar 

  55. Hubbard N, Hagin D, Sommer K, Song Y, Khan I, Clough C, et al. Targeted gene editing restores regulated CD40L function in X-linked hyper-IgM syndrome. Blood. 2016;127:2513–22.

    Article  CAS  Google Scholar 

  56. Wang D, Tai PWL, Gao G. Adeno-associated virus vector as a platform for gene therapy delivery. Nat Rev Drug Discov. 2019;18:358–78. https://doi.org/10.1038/s41573-019-0012-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Lombardo A, Genovese P, Beausejour CM, Colleoni S, Lee YL, Kim KA, et al. Gene editing in human stem cells using zinc finger nucleases and integrase-defective lentiviral vector delivery. Nat Biotechnol. 2007;25:1298–306. https://doi.org/10.1038/nbt1353.

    Article  CAS  PubMed  Google Scholar 

  58. Knipping F, Osborn MJ, Petri K, Tolar J, Glimm H, von Kalle C, et al. Genome-wide specificity of highly efficient TALENs and CRISPR/Cas9 for T cell receptor modification. Mol Ther Methods Clin Dev. 2017;4:213–24. https://doi.org/10.1016/j.omtm.2017.01.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Chen F, Pruett-Miller SM, Huang Y, Gjoka M, Duda K, Taunton J, et al. High-frequency genome editing using ssDNA oligonucleotides with zinc-finger nucleases. Nat Methods. 2011;8:753–5. https://doi.org/10.1038/nmeth.1653.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Hale M, Lee B, Honaker Y, Leung WH, Grier AE, Jacobs HM, et al. Homology-directed recombination for enhanced engineering of chimeric antigen receptor T cells. Mol Ther Methods Clin Dev. 2017;4:192–203. https://doi.org/10.1016/j.omtm.2016.12.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. MacLeod DT, Antony J, Martin AJ, et al. Integration of a CD19 CAR into the TCR alpha chain locus streamlines production of allogeneic gene-edited CAR T cells. Mol Ther. 2017;25:949–61. https://doi.org/10.1016/j.ymthe.2017.02.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Schober K, Müller TR, Gökmen F, Grassmann S, Effenberger M, Poltorak M, et al. Orthotopic replacement of T-cell receptor α- and β-chains with preservation of near-physiological T-cell function. Nat Biomed Eng. 2019;3:974–84. https://doi.org/10.1038/s41551-019-0409-0.

    Article  PubMed  Google Scholar 

  63. Roth TL, Li PJ, Blaeschke F, Roybal K, Shifrut E, Marson A. Pooled knockin targeting for genome engineering of cellular immunotherapies resource pooled knockin targeting for genome engineering of cellular immunotherapies. Cell. 2020:1–17.

Download references

Funding

T.L.R. was supported by the UCSF Medical Scientist Training Program (T32GM007618), the UCSF Endocrinology Training Grant (T32 DK007418), and the NIDDK (F30DK120213).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Theodore L. Roth.

Ethics declarations

Conflict of Interest

T.L.R. is a co-founder, holds equity in, and served as the Chief Scientific Officer of Arsenal Biosciences.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on CART and Immunotherapy

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roth, T.L. Editing of Endogenous Genes in Cellular Immunotherapies. Curr Hematol Malig Rep 15, 235–240 (2020). https://doi.org/10.1007/s11899-020-00587-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11899-020-00587-0

Keywords

Navigation